
EINNEt: Optimizing Tensor Programs
with Derivation-Based Transformations

Zheng et al.

Sidharrth Nagappan
University of Cambridge

sn666@cam.ac.uk

mailto:sn666@cam.ac.uk

Why?
• DNNs are Directed Acyclic Graphs (DAGs)

• DNNs made up of tensor operators, matrix multiplications, etc.

• How to optimise these graphs to run as efficiently as possible on different hardware?

Existing Approaches
Operator-Level Optimisers

Optimize tensor operators via schedule
search

Separate computation definition from
execution plan

Graph-Level Optimizers

Use superoptimization to find graph
transformations

Enumerate possible subgraphs over
predefined operators

Limitations
Operator-Level Optimisers

Optimize tensor operators via schedule search

Separate computation definition from execution plan

Graph-Level Optimizers

Use superoptimization to find graph transformations

Enumerate possible subgraphs over predefined
operators

Restricted to Predefined Operator Representable (POR)
Transformations

Can only rearrange or combine existing operators like convolution or
matrix multiplication

Can't optimise transformations requiring new or custom operators

Can’t modify computation semantics

Solution
• Break down tensor computations into general tensor algebra instead of pre-defined

operators

• Derivation-Based Transformations Apply mathematical derivation rules to tensor
algebra expressions

• Automatic Operator Creation Generate new operators (eOperators) as needed.

EINNET: Optimizing Tensor Programs with Derivation-Based Transformations

Liyan Zheng→ Haojie Wang Jidong Zhai Muyan Hu Zixuan Ma Tuowei Wang
Shuhong Huang Xupeng Miao† Shizhi Tang Kezhao Huang Zhihao Jia†

Tsinghua University †Carnegie Mellon University

Abstract
Boosting the execution performance of deep neural networks
(DNNs) is critical due to their wide adoption in real-world
applications. However, existing approaches to optimizing the
tensor computation of DNNs only consider transformations
representable by a fixed set of predefined tensor operators,
resulting in a highly restricted optimization space. To address
this issue, we propose EINNET, a derivation-based tensor
program optimizer. EINNET optimizes tensor programs by
leveraging transformations between general tensor algebra ex-
pressions and automatically creating new operators desired by
transformations, enabling a significantly larger search space
that includes those supported by prior works as special cases.
Evaluation on seven DNNs shows that EINNET outperforms
existing tensor program optimizers by up to 2.72↑ (1.52↑
on average) on NVIDIA A100 and up to 2.68↑ (1.55↑ on
average) on NVIDIA V100. EINNET is publicly available at
https://github.com/InfiniTensor/InfiniTensor.

1 Introduction

Fast execution of deep neural networks (DNNs) is critical in
a variety of tasks, such as autonomous driving [16, 21, 26],
object detection [15, 18], speech recognition [5, 17], and
machine translation [37, 39]. A DNN is generally represented
as a tensor program, which is a directed acyclic graph contain-
ing tensor operators (e.g., convolution, matrix multiplication)
performed on a set of tensors (i.e., n-dimensional arrays).

To improve the runtime performance of a DNN, exist-
ing frameworks (TensorFlow [3], PyTorch [31], and Ten-
sorRT [35]) rely on manually-designed rules to map an input
tensor program to expert-written kernel libraries. Although
widely used, these approaches require extensive engineering
efforts and miss optimization opportunities hard to manually
discover. To address these problems, recent works have
proposed a variety of automated approaches that optimize
DNN computation by searching over a set of candidate

→Tsinghua University and BNRist

Input
program

General Tensor Algebra Transformations

POR Trans.

General Tensor Algebra Expressions
Predefined operators
Conv Matmul Add

Prior
work

EINNET

Figure 1: Comparing EINNET’s search space with that
of prior work. “POR Trans.” indicates predefined operator
representable transformations.

program transformations or generating high performance
kernels on specific hardware. We classify these works into
two categories based on their search spaces.

The first category of work, including TVM [7] and An-
sor [40], is motivated by Halide’s idea of compute/schedule
separation [33] and optimizes tensor programs at the operator
level. For a given tensor operator, they automatically generate
high-performance kernels by searching over schedules, each
of which specifies an architecture-dependent execution plan
on particular hardware. To optimize the graph structure of a
tensor program, TVM and Ansor greedily apply a fixed set of
expert-designed program transformations.

The second category of work optimizes tensor programs
using graph-level transformations, which reorganize the DNN
computation in more efficient ways. As two representative
systems, TASO [20] and PET [38] adopt a superoptimization-
based approach to discovering graph transformations. They
generate candidate graph transformations by enumerating all
possible graphs over a given set of tensor operators up to a
fixed size, and search to apply these generated transformations
to an input tensor program.

Both operator- and graph-level optimizers only consider
program transformations whose nodes are tensor operators
predefined by optimizer developers, as shown in the grey box
of Figure 1. We call these transformations predefined operator
representable (POR) transformations. Despite the fact that

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 739

Program Splitting
Divide tensor program into smaller

subprograms

Convert to Tensor Algebra
Use tensor algebra mapping

Derivation-Based
Optimisation

Apply derivative rules, get
functionally equivalent, but more

efficient representations

 Map to Pre-Defined Operators Create and fuse eOperators

Compute-intensive operators
High FLOPs

Manageable memory-bound
expressions

Program Splitting
Divide tensor program into smaller

subprograms

Convert to Tensor Algebra
Use tensor algebra mapping

Derivation-Based
Optimisation

Apply derivative rules, get
functionally equivalent, but more

efficient representations

 Map to Pre-Defined Operators Create and fuse eOperators

What is Tensor Algebra

Linear Algebra Rules That We Learn

Scalars, Vectors, Matrices

Higher Dimensional Data

Apply Rules

Tensor Algebra

Traversal Notation L

Iteration over output tensor dimensions

LN−1
i=0

K−1

∑
k=0

Summation Notation

Reduction (e.g. sum) over dimensions

Matrix Multiplication

C[i, j] =
K−1

∑
k=0

A[i, k] × B[k, j]

Standard Form

LM−1
i=0 LN−1

j=0 (
K−1

∑
k=0

A[i, k] × B[k, j])
Tensor Algebra Form

Outer loops followed by inner summation

Program Splitting
Divide tensor program into smaller

subprograms

Convert to Tensor Algebra
Use tensor algebra mapping

Derivation-Based
Optimisation

Apply derivative rules, get
functionally equivalent, but more

efficient representations

 Map to Pre-Defined Operators Create and fuse eOperators

Derivation Rules
Transform tensor algebra expressions into equivalent, potentially more efficient forms.

Intra-Expression Derivation

X−1

∑
x=0

Y−1

∑
y=0

f(x, y) =
X−1

∑
x=0

Y−1

∑
y=0

f(x, y)

Splits a summation into nested summations for
partial computation and reuse.

Summation Splitting

Inter-Expression Derivation

Expression Splitting

Divide an expression into independent
parts

Expression Merging

Combine independent expressions into
one.

Expression Fusion

Fuse dependent expressions to reduce
overhead.

f(h + r, w + s) → f(t, s)

Transforms indices to simplify expressions

Variable Substitution

LxLy f(x, y) → L(x,y) f(x, y)
Combines two separate traversals into a single

traversal

Traversal Merging

Lb+k
i=a−k f(i) → Lb

i=a f(i)
Restricts iteration ranges to exclude unnecessary

computations

Boundary Tightening

Program Splitting
Divide tensor program into smaller

subprograms

Convert to Tensor Algebra
Use tensor algebra mapping

Derivation-Based
Optimisation

Apply derivative rules, get
functionally equivalent, but more

efficient representations

 Map to Pre-Defined Operators Create and fuse eOperators

Might create an eOperator that
efficiently adds offsets to a matrix —

not usually found in standard libraries

Use TVM Kernel Generator

Distance-Guided Search and Redundancy
Pruning

Guide the search process towards expressions that are likely to be
mappable to existing highly-optimized operators in libraries like
cuDNN or cuBLAS

Expression Distance - difference between a given expression and
the canonical expression of a target operator

HUGE Search Space

Explorative
derivation

Converging
derivation Matched states

All possible
searching states
Initial expression

MaxDepth

Figure 10: Distance-guided search

the maximum number of derivation rules EINNET applies
during explorative derivation. As described in §5, EINNET
opportunistically uses vendor-provided kernel libraries to
maximize performance. Thus, EINNET leverages converging
derivation to quickly derive an expression toward a target
operator (e.g., operators in cuDNN and cuBLAS). EINNET
automatically generates necessary eOperators to bridge the
gap between the current expression and target operator.

Converging derivation. During converging derivation,
EINNET first selects a target operator and uses a novel metric,
expression distance, to guide the applications of derivation
rules in this stage. Expression distance measures the dif-
ference between a given expression E1 and the canonical
expression of a given operator E2. To calculate the distance
between E1 and E2, EINNET first matches all iterators in E1
and E2 using the iterator mapping table (see §5.1) and counts
the total number of mismatched iterators as their distance.

Specifically, each iterator mismatch between the current ex-
pression and target operator indicates that the two expressions
have a different number of iterators in an iterator group (see
Table 2). EINNET applies derivation rules to fix mismatches,
such as variable substitution rules to merge/split iterators,
resulting in reduced expression distances. For example, to
derive the expression in the inner scope of E6 in Figure 5
to a Matmul, EINNET compares their iterators (Table 2) and
obtains the following matches: t1, t2 → m;r,s, f → n;c → k.
To fix mismatches, EINNET applies variable substitutions to
merge iterators t1 and t2 into m and merge r,s, f into n.

After all iterators are matched, EINNET infers the shape of
each input/output tensor according to the target operator and
constructs new tensors from existing ones by adding eOpera-
tors. For example, the new input tensor A↑ and weight tensor
K↑ for Matmul are constructed by the following expressions:

A↑[m,k] = A↑[t1 ↓W + t2,c] = A[t1, t2,c] (2)

K↑[k,n] = K↑[c,r↓S↓F + s↓F + f] = K[r,s, f ,c], (3)

where the mapping functions are (m,k) = !A(t1, t2,c) = (t1↓
W + t2,c) and (k,n) = !K(r,s, f ,c) = (c,r↓S↓F + s↓F +
f), and W , S, and F are the range of the iterators w, s and f .
EINNET automatically generates Expression (2) and (3) to
fix the mismatch and reduce the expression distance.

During converging derivation, EINNET only considers
derivations that reduce the expression distance of the current
expression and target operator, allowing EINNET to prune

most derivations and quickly converge to the target operator.
By enumerating operators in the iterator mapping table as
the target operator, EINNET finds transformations involving
different operators.

Delayed code generation. To accelerate the search, EINNET
estimates the performance of derived programs to avoid
frequent code generation for eOperators. Specifically, the
execution time of a predefined operator is measured by
profiling its kernel on hardware. Meanwhile, the run time of
an eOperator is estimated based on its input/output sizes and
hardware memory bandwidth. We observe that this estimation
is accurate since eOperators are memory-bound and usually
account for a small part of the total execution time.

6.2 Redundancy Pruning
Applying different sequences of derivations may result in the
same expression. For example, splitting an iterator into two
and then merging them results in the original one. To prune
redundancy, EINNET uses a fingerprint technique to detect
duplicate expressions. A fingerprint is a hash of an expression
and can eliminate the following sources of redundancy:
• Summation reordering: summations can be reordered,

e.g., ∀ωx ∀ωy f (ωx,ωy) is equivalent with ∀ωy ∀ωx f (ωx,ωy). Note that
traversal reordering does not imply equivalence since it
involves layout transformations.

• Operand reordering: operands of commutative binary
operations can be reordered, e.g., Lωx(T1[ωx]+T2[ωx]) is equal
to Lωx(T2[ωx]+T1[ωx]). Operand reordering should be applied
for both iterator computation and tensor computation.

• Iterator renaming: iterators should be distinguished by
their iterator space instead of names, e.g., LN

x=0 LM
y=0 f (x,y)

and LN
y=0 LM

z=0 f (y,z) are equivalent, and (x,y) in the former
one should be mapped to (y,z) in the latter one.

• Tensor renaming: tensors introduced by different scopes
may have the same value.
To eliminate the above sources of redundancy, EINNET

adopts the following methods to calculate fingerprints. For a
traversal iterator, EINNET uses its iterator space and its order
relative to all other traversal notations in the current scope
as its fingerprint. Since order is considered, fingerprint can
differentiate traversal iterators with the same iterator spaces
but in different locations of the traversal notations. For a
summation iterator, EINNET only uses its iterator space as
its fingerprint. Thus expressions under summation reordering
have the same fingerprint. To account for operand reordering,
EINNET uses the operation type and an order-independent
hash for commutative operations (e.g., addition) and an order-
dependent hash for other operations. The fingerprint of a
tensor depends on its source. For an input tensor, EINNET
calculates its fingerprint by hashing its name. For an interme-
diate tensor generated by a scope, its fingerprint is identical
to that of the expression that produces the tensor.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 747

Expression Distance - difference between a given expression and the
canonical expression of a target operator

Optimising a 3 x 3 Convolution

O[n, h, w, f] =
C−1

∑
c=0

2

∑
r=0

2

∑
s=0

I[n, h + r, w + s, c] × K[r, s, f, c]

3 x 3 Convolution

2

∑
r=0

2

∑
s=0 (

C−1

∑
c=0

I[n, h + r, w + s, c] × K[r, s, f, c])
Split summations for intermediate computation use

OffsetReduce
+Relu

Conv3x3Conv1x1

Relu

T0

T1

Conv3x3
Add

Relu

Matmul
Split

T0

T1

Conv3x3
+Add+Relu

Matmul Matmul

T1

Relu
Conv3x3

Add
Relu

W0 W1 W0 W1 W0 W1

(i) Original
(ii) Intra-expression

derivation
(iii) Inter-expression

derivation

w
h

Co
nv

(ii) Split weight

(i) Conv

Split weight
along r and s

s
r

M
at
m
ul

M
at
m
ul

M
at
m
ul…

Of
fs
et
Re

du
ce

s
r
w

h

Co
nv

(ii) Duplicate input

…

M
at
m
ul

Of
fs
et
Co

nc
atOffsetReduce

DLT DLT DLT+Concat
T0

DLT

(iii) Transform Conv to Matmul
using im2col algorithm

(iii) Transform Conv to
Matmul with OffsetReduce

(a) Optimizations found by EINNET

(i) Conv

DLT

(b) Optimization of Convolution found by EINNET (c) Im2col Optimization for Convolution

Figure 3: Optimization examples of EINNET. Figure (a) shows the optimization that transforms a Conv3→3 operator into a
Matmul and an eOperator OffsetReduce, and a Conv1→1 operator into a Matmul. Then, inter-expression derivation is performed
to fuse multiple operators into one. Figure (b) shows the optimization details performed by EINNET for the Conv3→3 operator,
which first splits the weight tensor into 9 tensors, then multiplies each tensor with the input, and finally adds the nine results
together with certain offsets (illustrated by the dashed boxes and red blocks). The Matmuls in Figure (b) are further fused into
a single one. As a comparison, Figure (c) shows the typical im2col [36] optimization for Conv, which performs a different
transformation from that in Figure (b) and can also be automatically found by EINNET.

• We present the first attempt to explore a significantly
larger expression search space using a derivation-based
mechanism.

• We build EINNET, an implementation of the above tech-
niques with over 23K lines of C++ and Python code, which
achieves up to 2.72→ speedup over existing tensor program
optimizers.

2 Overview and Motivating Example

Figure 2 shows an overview of EINNET, a tensor program
optimizer with derivation-based transformations. For an input
tensor program, EINNET first splits it into multiple subpro-
grams consisting of predefined operators. Each subprogram
is translated to a tensor algebra expression (§3) by a program
translator. Then, EINNET’s derivation-based optimizer uses
different derivation rules, including inter- and intra-expression
derivation rules (§4) and expression instantiation rules (§5), to
generate optimized subprograms for each expression, which
consists of both predefined operators and eOperators. Finally,
EINNET selects the best discovered transformation for each
subprogram and post-optimizes the expressions to construct
an efficient tensor program (§6).

Motivating example. As a motivating example, Figure 3(a)
shows an optimization found by EINNET. It first performs
an intra-expression derivation to transform convolutions into
matrix multiplications, and then performs inter-expression
derivation to fuse multiple operators into one. The red opera-
tors, such as OffsetReduce, DLT (data layout transformation),
and OffsetReduce+Relu, are eOperators automatically dis-
covered and generated by EINNET. Figure 3(b) shows the
details of the new optimization discovered by EINNET for

Conv3x3 in Figure 3(a). Figure 3(c) illustrates the classic
im2col [36] optimization for convolution, which is widely
implemented in existing libraries and also covered by the
automatic optimization space of EINNET. Different from
copying input tensors for the kernel size times in im2col,
the newly discovered transformation copies output tensors
the same number of times. It can be more efficient when the
output size is smaller than the input size, and achieves a 2→
speedup compared with cuDNN on the NVIDIA A100 GPU
for certain convolutions in ResNet-18 [19] in our evaluation.

Existing tensor program optimizers cannot automatically
discover such transformations because: (1) the transforma-
tions require eOperators (e.g., adding intermediate tensors
with offsets), which are outside of the POR transformation
space explored by superoptimization-based frameworks such
as TASO [20] and PET [38], and (2) the transformations
modify the computation semantics instead of the schedule,
and thus cannot be found by schedule-based optimizers like
TVM [7] and Ansor [40].

3 Tensor Algebra Expression

EINNET represents a tensor program as tensor algebra expres-
sions, which defines how to compute each element of output
tensors from input tensors. Figure 4 shows the expression of
multiplying three matrices (i.e., A→B→C). We now describe
the components of an expression. For simplicity, we assume
an expression has one output. EINNET’s expression can be
easily generalized to multiple outputs.

Traversal and summation notations. A traversal notation,
denoted as Lx1

x=x0
, consists of an iterator x and an iterating

space [x0,x1). The traversal notation corresponds to a dimen-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 741

Optimising a 3 x 3 Convolution

t = h + r, s′￼ = w + s O[n, t, s′￼, f] =
C−1

∑
c=0

I[n, t, s′￼, c] × K[t − h, s′￼− w, f, c]

New variables to simplify expression

m = t × W + s′￼ O′￼[m, f] =
C−1

∑
k=0

A[m, k] × B[k, f]

O′￼[m, n] = A[m, k] × B[k, n] m = t × W + s, k = c, n = r × 3 + s × 1 + f

Merge traversals over 𝑡 and 𝑠′ into a single dimension m

Reshape tensors to fit the matrix multiplication paradigm

O[n, h, w, f] = OffsetReduce(O′￼[m, f], offsets)

Handle offsets and intermediate computation, create an OffsetReduce eOperator

2x Speed-Up compared to
cuDNN

Evaluation / Results
• Run on computation graphs of InfoGAN, DCGAN, FSRCNN, GCN, ResNet-18,

CSRNet, Longformer (why Longformer?)

• 2.72x speedup on A100 GPUs, 2.68x speed on V100 GPUs

• Shown to work with existing kernels - cuBLAS/cuDNN, AutoTVM, and Ansor

• Certain transformations beneficial only on some backends

• Customizing transformations for each backend is beneficial

• For GCN (remember my talk 3 weeks ago) - transformed spatially separable
convolutions into faster matrix operations

� � � � � � �
�

�

�
�

�

�	
�

����

�+%,���

� � � � � � �
�

�

	�
��
�

	�
��
�

����

�����

� � � � � � �
�

�

��
��
�

�
�

�

�

��
�

�

��
�

��	�

������

� � � � � � �
�

�

��
��
�

��
��
�

��	�

���

� � � � � � �
�

�

�
	�

��

�

����

�$.�$/���

� � � � � � �
�

�

�
��

��
��

����

����$/

� � � � � � �
�

�

�

��
�

�

��
�

�
�
� ����

�,+&%,-*$-

� � � � � � �
�

�

��
��
�

��
��
�

����

� � � � � � �
�

�

��
��
�

��
��
�
����

� � � � � � �
�

�

�
��
�

��
�

��
��
�

��
��
�

��
�

� � � � � � �
�

�

�
	�

�
��

����

� � � � � � �
�

�

����

� � � � � � �
�

�

����

� � � � � � �
�

�

	�
��
�

��
��
�

�
�
� ����

� � � � � � �
�

�

��
��
�

		
��
�

����

� � � � � � �
�

�

�	
��
�

��
�

�

��	�

� � � � � � �
�

�

��
��
�

��
�

�

��
��
�

��
��
�

����

� � � � � � �
�

�

��
��

��
��
�

��	�

� � � � � � �
�

�

�
��

��
��

����

� � � � � � �
�

�

�

�

����

� � � � � � �
�

�

��
��
�

��
��
�

�
�
� ����

� � � � � � �
�

�

�	
�

�

�	
�	
�

�

�

����

� � � � � � �
�

�

�
��

�
��

����

� � � � � � �
�

�

	�
�	
�

��
��
�

��
��
�

��
��
�

����

� � � � � � �
�

�

��
��

����

� � � � � � �
�

�

����

� � � � � � �
�

�

����

� � � � � � �
�

�

��
��
�

�	
��
�

�
�
� ����

�$
)!
/(0
$�
�2
$#
���
(*
$

�
��
�

�!
/#
'�
�(
3$
��

�
��
�

�!
/#
'�
�(
3$
��
�

��
��

�!
/#
'�
�(
3$
��

��
��

�!
/#
'�
�(
3$
��
�

����$+.,-�),1 ����$+.,-��,1� �� ����(*")$ ������ ����$+.,-�� ������ ����(+�$/

Figure 12: End-to-end performance comparison with other systems on an A100 and a V100 GPU with batch sizes of 1 and 16.
OOM means out of memory. Bars over 4→ are truncated, and their relative execution times to EINNET are marked on the bars.
The numbers above EINNET’s bars show EINNET’s speedups over the best baseline.

 � �
�

�

��
��

���%

��� �
�

 � �
�

�

��	%

������

 � �
�

�

��	%

���

 � �
�

�

���%

��"��#���

��
��
#�$

��
�%

��
���

��
�

�
����" !�� ��������#���"� ��������#

Figure 13: End-to-end performance comparison with Ten-
sorRT on an A100 with TF32 and batch sizes of 1. The
numbers above EINNET’s bars show EINNET’s speedups
over the best baseline.

einsum in other frameworks. Figure 12 shows the results on
NVIDIA A100 and V100 GPUs under batch sizes 1 and 16.

EINNET outperforms the best existing baseline by up to
2.72→ on A100 and 2.68→ on V100. For both CNNs (e.g.,
GCN) and language models (e.g., Longformer), EINNET is
able to improve their performance by more than 2→. Among
the seven models, ResNet-18 has been heavily optimized by
existing tensor program frameworks and optimizers; how-
ever, EINNET still outperforms existing optimizers by 1.2→
on V100, by applying the novel transformations shown in
Figure 3. For CSRNet, a typical optimization case of PET,
EINNET discovers similar transformations by derivations
and eliminates extra introduced transposes, indicating that
EINNET’s derivation rules can perform PET’s optimizations
and uncover additional improvements.

Figure 13 shows the speedup with the computation data
type of TF32 and Tensor Cores on A100. To show the benefits
provided by EINNET, we create a baseline EINNET-Base
which executes models in EINNET with derivation optimiza-
tions disabled. As shown in Figure 13, while EINNET usually
brings significant speedups over EINNET-Base and TensorRT,
TensorRT can have better performance in models like ResNet-
18. Though TensorRT is not open source, the profiling results

Table 3: Performance studies on the cases in §7.3. The Algo
column shows the best convolution algorithm for cuDNN,
where IGEMM, FFT, and WINO refer to implicit GEMM, Fast
Fourier Transform, and Winograd [24] algorithms. The
DRAM and L2 columns show the amount of memory access.

Input shape Conv
Algo

Time
(ms)

DRAM
(MB)

L2
(MB)

Conv3x3 [1,512,7,7] Original WINO 0.126 56.7 70.6
Figure 3 (b) Optimized N/A 0.046 10.5 27.5

Conv- [16,448,2,2] Original IGEMM 0.136 7.74 122
Transpose Optimized N/A 0.032 8.07 27.8

Conv5x5 [16,32,224,224] Original FFT 0.854 547 579
Figure 6 Optimized WINO 0.528 368 499

G2BMM [8,10000,64] Original N/A 7.14 20.9 19750
Figure 14 Optimized N/A 1.57 20.6 817

show that it leverages many efficient GPU kernels besides
cuBLAS and cuDNN. This can be an important source of its
high performance, which is beyond the current search space
of EINNET.

7.3 Optimization Analysis

This section analyzes the optimizations discovered by EIN-
NET on these DNNs. To highlight transformations beyond
the scope of existing tensor program optimizers, we focus on
transformations involving eOperators.

Transforming operator types. EINNET is able to op-
portunistically substitute an inefficient operator with well-
optimized operators of different types. In ResNet-18 and Info-
GAN, the transformations from Conv and ConvTranspose to
Matmul are profitable. Table 3 shows a detailed performance
analysis. As shown in Figure 3(b), EINNET transforms a
Conv3x3 to a Matmul and an eOperator (OffsetReduce),
which significantly reduces GPU DRAM accesses from 56.7
MB to 10.5 MB and achieves a 2.7→ speedup. As another

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 749

More significant on larger models

EINNET outperforms PET.

Since PET > TASO, reasonable to assume that EINNET also
outperforms TASO.

Strengths
• Converting to barebones tensor algebra expands search space for optimisation

• Creates new “eOperators” that cater to very specific operations

• First-of-its-kind

• Derivation-based optimisation is mathematically sound

• Can alter optimisation strategies based on backend (cuDNN/Ansor/etc.)

• Distance-guided search is an innovative way of restricting search space while
ensuring the final equation is still computable with the available backend engine

• Effort was taken to test on a variety of model flavours - CNN / GNN / Transformer

Weaknesses
• No discussion about compilation time

• How long does EinnNet take to optimise a computation graph, compared to its
competitors?

“search spends no more than two hours for most models, which depends on the number of
operators contained in models”

Weaknesses
• No discussion about compilation time

• search spends no more than two hours for most models, which depends on the number of operators contained
in models

• How long does EinnNet take to optimise a computation graph, compared to its
competitors?

• Search space is defined by heuristic of maximum search depth

• While speedups achieved by different search depths compared, unclear how
changing size of the search space actually impacts performance

Explorative
derivation

Converging
derivation Matched states

All possible
searching states
Initial expression

MaxDepth

Figure 10: Distance-guided search

the maximum number of derivation rules EINNET applies
during explorative derivation. As described in §5, EINNET
opportunistically uses vendor-provided kernel libraries to
maximize performance. Thus, EINNET leverages converging
derivation to quickly derive an expression toward a target
operator (e.g., operators in cuDNN and cuBLAS). EINNET
automatically generates necessary eOperators to bridge the
gap between the current expression and target operator.

Converging derivation. During converging derivation,
EINNET first selects a target operator and uses a novel metric,
expression distance, to guide the applications of derivation
rules in this stage. Expression distance measures the dif-
ference between a given expression E1 and the canonical
expression of a given operator E2. To calculate the distance
between E1 and E2, EINNET first matches all iterators in E1
and E2 using the iterator mapping table (see §5.1) and counts
the total number of mismatched iterators as their distance.

Specifically, each iterator mismatch between the current ex-
pression and target operator indicates that the two expressions
have a different number of iterators in an iterator group (see
Table 2). EINNET applies derivation rules to fix mismatches,
such as variable substitution rules to merge/split iterators,
resulting in reduced expression distances. For example, to
derive the expression in the inner scope of E6 in Figure 5
to a Matmul, EINNET compares their iterators (Table 2) and
obtains the following matches: t1, t2 → m;r,s, f → n;c → k.
To fix mismatches, EINNET applies variable substitutions to
merge iterators t1 and t2 into m and merge r,s, f into n.

After all iterators are matched, EINNET infers the shape of
each input/output tensor according to the target operator and
constructs new tensors from existing ones by adding eOpera-
tors. For example, the new input tensor A↑ and weight tensor
K↑ for Matmul are constructed by the following expressions:

A↑[m,k] = A↑[t1 ↓W + t2,c] = A[t1, t2,c] (2)

K↑[k,n] = K↑[c,r↓S↓F + s↓F + f] = K[r,s, f ,c], (3)

where the mapping functions are (m,k) = !A(t1, t2,c) = (t1↓
W + t2,c) and (k,n) = !K(r,s, f ,c) = (c,r↓S↓F + s↓F +
f), and W , S, and F are the range of the iterators w, s and f .
EINNET automatically generates Expression (2) and (3) to
fix the mismatch and reduce the expression distance.

During converging derivation, EINNET only considers
derivations that reduce the expression distance of the current
expression and target operator, allowing EINNET to prune

most derivations and quickly converge to the target operator.
By enumerating operators in the iterator mapping table as
the target operator, EINNET finds transformations involving
different operators.

Delayed code generation. To accelerate the search, EINNET
estimates the performance of derived programs to avoid
frequent code generation for eOperators. Specifically, the
execution time of a predefined operator is measured by
profiling its kernel on hardware. Meanwhile, the run time of
an eOperator is estimated based on its input/output sizes and
hardware memory bandwidth. We observe that this estimation
is accurate since eOperators are memory-bound and usually
account for a small part of the total execution time.

6.2 Redundancy Pruning
Applying different sequences of derivations may result in the
same expression. For example, splitting an iterator into two
and then merging them results in the original one. To prune
redundancy, EINNET uses a fingerprint technique to detect
duplicate expressions. A fingerprint is a hash of an expression
and can eliminate the following sources of redundancy:
• Summation reordering: summations can be reordered,

e.g., ∀ωx ∀ωy f (ωx,ωy) is equivalent with ∀ωy ∀ωx f (ωx,ωy). Note that
traversal reordering does not imply equivalence since it
involves layout transformations.

• Operand reordering: operands of commutative binary
operations can be reordered, e.g., Lωx(T1[ωx]+T2[ωx]) is equal
to Lωx(T2[ωx]+T1[ωx]). Operand reordering should be applied
for both iterator computation and tensor computation.

• Iterator renaming: iterators should be distinguished by
their iterator space instead of names, e.g., LN

x=0 LM
y=0 f (x,y)

and LN
y=0 LM

z=0 f (y,z) are equivalent, and (x,y) in the former
one should be mapped to (y,z) in the latter one.

• Tensor renaming: tensors introduced by different scopes
may have the same value.
To eliminate the above sources of redundancy, EINNET

adopts the following methods to calculate fingerprints. For a
traversal iterator, EINNET uses its iterator space and its order
relative to all other traversal notations in the current scope
as its fingerprint. Since order is considered, fingerprint can
differentiate traversal iterators with the same iterator spaces
but in different locations of the traversal notations. For a
summation iterator, EINNET only uses its iterator space as
its fingerprint. Thus expressions under summation reordering
have the same fingerprint. To account for operand reordering,
EINNET uses the operation type and an order-independent
hash for commutative operations (e.g., addition) and an order-
dependent hash for other operations. The fingerprint of a
tensor depends on its source. For an input tensor, EINNET
calculates its fingerprint by hashing its name. For an interme-
diate tensor generated by a scope, its fingerprint is identical
to that of the expression that produces the tensor.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 747

Weaknesses
• No discussion about compilation time

• search spends no more than two hours for most models, which depends on the number of operators contained in
models

• How long does EinnNet take to optimise a computation graph, compared to its
competitors?

• Search space is defined by heuristic of maximum search depth

• While speedups achieved by different search depths compared, unclear how
changing size of the search space actually impacts performance

• How big are each of the models?

• ResNet, Longformer, GANs come in many sizes, which were used - num model
parameters not mentioned

Explorative
derivation

Converging
derivation Matched states

All possible
searching states
Initial expression

MaxDepth

Figure 10: Distance-guided search

the maximum number of derivation rules EINNET applies
during explorative derivation. As described in §5, EINNET
opportunistically uses vendor-provided kernel libraries to
maximize performance. Thus, EINNET leverages converging
derivation to quickly derive an expression toward a target
operator (e.g., operators in cuDNN and cuBLAS). EINNET
automatically generates necessary eOperators to bridge the
gap between the current expression and target operator.

Converging derivation. During converging derivation,
EINNET first selects a target operator and uses a novel metric,
expression distance, to guide the applications of derivation
rules in this stage. Expression distance measures the dif-
ference between a given expression E1 and the canonical
expression of a given operator E2. To calculate the distance
between E1 and E2, EINNET first matches all iterators in E1
and E2 using the iterator mapping table (see §5.1) and counts
the total number of mismatched iterators as their distance.

Specifically, each iterator mismatch between the current ex-
pression and target operator indicates that the two expressions
have a different number of iterators in an iterator group (see
Table 2). EINNET applies derivation rules to fix mismatches,
such as variable substitution rules to merge/split iterators,
resulting in reduced expression distances. For example, to
derive the expression in the inner scope of E6 in Figure 5
to a Matmul, EINNET compares their iterators (Table 2) and
obtains the following matches: t1, t2 → m;r,s, f → n;c → k.
To fix mismatches, EINNET applies variable substitutions to
merge iterators t1 and t2 into m and merge r,s, f into n.

After all iterators are matched, EINNET infers the shape of
each input/output tensor according to the target operator and
constructs new tensors from existing ones by adding eOpera-
tors. For example, the new input tensor A↑ and weight tensor
K↑ for Matmul are constructed by the following expressions:

A↑[m,k] = A↑[t1 ↓W + t2,c] = A[t1, t2,c] (2)

K↑[k,n] = K↑[c,r↓S↓F + s↓F + f] = K[r,s, f ,c], (3)

where the mapping functions are (m,k) = !A(t1, t2,c) = (t1↓
W + t2,c) and (k,n) = !K(r,s, f ,c) = (c,r↓S↓F + s↓F +
f), and W , S, and F are the range of the iterators w, s and f .
EINNET automatically generates Expression (2) and (3) to
fix the mismatch and reduce the expression distance.

During converging derivation, EINNET only considers
derivations that reduce the expression distance of the current
expression and target operator, allowing EINNET to prune

most derivations and quickly converge to the target operator.
By enumerating operators in the iterator mapping table as
the target operator, EINNET finds transformations involving
different operators.

Delayed code generation. To accelerate the search, EINNET
estimates the performance of derived programs to avoid
frequent code generation for eOperators. Specifically, the
execution time of a predefined operator is measured by
profiling its kernel on hardware. Meanwhile, the run time of
an eOperator is estimated based on its input/output sizes and
hardware memory bandwidth. We observe that this estimation
is accurate since eOperators are memory-bound and usually
account for a small part of the total execution time.

6.2 Redundancy Pruning
Applying different sequences of derivations may result in the
same expression. For example, splitting an iterator into two
and then merging them results in the original one. To prune
redundancy, EINNET uses a fingerprint technique to detect
duplicate expressions. A fingerprint is a hash of an expression
and can eliminate the following sources of redundancy:
• Summation reordering: summations can be reordered,

e.g., ∀ωx ∀ωy f (ωx,ωy) is equivalent with ∀ωy ∀ωx f (ωx,ωy). Note that
traversal reordering does not imply equivalence since it
involves layout transformations.

• Operand reordering: operands of commutative binary
operations can be reordered, e.g., Lωx(T1[ωx]+T2[ωx]) is equal
to Lωx(T2[ωx]+T1[ωx]). Operand reordering should be applied
for both iterator computation and tensor computation.

• Iterator renaming: iterators should be distinguished by
their iterator space instead of names, e.g., LN

x=0 LM
y=0 f (x,y)

and LN
y=0 LM

z=0 f (y,z) are equivalent, and (x,y) in the former
one should be mapped to (y,z) in the latter one.

• Tensor renaming: tensors introduced by different scopes
may have the same value.
To eliminate the above sources of redundancy, EINNET

adopts the following methods to calculate fingerprints. For a
traversal iterator, EINNET uses its iterator space and its order
relative to all other traversal notations in the current scope
as its fingerprint. Since order is considered, fingerprint can
differentiate traversal iterators with the same iterator spaces
but in different locations of the traversal notations. For a
summation iterator, EINNET only uses its iterator space as
its fingerprint. Thus expressions under summation reordering
have the same fingerprint. To account for operand reordering,
EINNET uses the operation type and an order-independent
hash for commutative operations (e.g., addition) and an order-
dependent hash for other operations. The fingerprint of a
tensor depends on its source. For an input tensor, EINNET
calculates its fingerprint by hashing its name. For an interme-
diate tensor generated by a scope, its fingerprint is identical
to that of the expression that produces the tensor.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 747

And this is the README! 🤦

https://github.com/zhengly123/OSDI23-EinNet-AE

https://emojipedia.org/person-facepalming

Future Work

• Adaptive heuristics of search space
• See how changing depth affects performance

• Analyse time taken for optimisation as model size and complexity changes

• See whether these methods scale to TPUs as well

• Theoretically prove that optimisation is efficient on other common operations like
pooling / batch normalisation

• Distributed tensor algebra?
• How would it work when model layers are split and you have distributed tensors?

Thank you, questions?

