EINNEt: Optimizing Tensor Programs with Derivation-Based Transformations Zheng et al.

Sidharrth Nagappan University of Cambridge <u>sn666@cam.ac.uk</u>

- DNNs are Directed Acyclic Graphs (DAGs)
- DNNs made up of tensor operators, matrix multiplications, etc.
- How to optimise these graphs to run as efficiently as possible on different hardware?

Why?

Existing Approaches

Operator-Level Optimisers

- Optimize tensor operators via schedule search
- Separate computation definition from execution plan

Graph-Level Optimizers

Use superoptimization to find graph transformations

Enumerate possible subgraphs over predefined operators

jiazhihao/**TASO**

The Tensor Algebra SuperOptimizer for Deep Learning

thu-pacman/PET

PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections

Limitations

Operator-Level Optimisers

- Optimize tensor operators via schedule search
- Separate computation definition from execution plan

Restricted to Predefined Operator Representable (POR) **Transformations**

Can only rearrange or combine existing operators like convolution or *matrix multiplication*

Can't optimise transformations requiring new or custom operators Can't modify computation semantics

Graph-Level Optimizers

Use superoptimization to find graph transformations Enumerate possible subgraphs over predefined operators

Solution

- Break down tensor computations into general tensor algebra instead of pre-defined operators
- **Derivation-Based Transformations** Apply mathematical derivation rules to tensor algebra expressions
- Automatic Operator Creation Generate new operators (eOperators) as needed.

Program Splitting Divide tensor program into smaller subprograms

Compute-intensive operators High FLOPs

Map to Pre-Defined Operators

Convert to Tensor Algebra Use tensor algebra mapping

Derivation-Based Optimisation

Apply derivative rules, get functionally equivalent, but more efficient representations

Manageable memory-bound expressions

Create and fuse eOperators

Program Splitting Divide tensor program into smaller subprograms

Derivation-Based Optimisation Apply derivative rules, get functionally equivalent, but more efficient representations

Map to Pre-Defined Operators

Convert to Tensor Algebra Use tensor algebra mapping

Create and fuse eOperators

What is Tensor Algebra

Linear Algebra Rules That We Learn

Higher Dimensional Data

Scalars, Vectors, Matrices

Apply Rules

Tensor Algebra

Traversal Notation L

Iteration over output tensor dimensions

$L_{i=0}^{N-1}$

Summation Notation

Reduction (e.g. sum) over dimensions

Matrix Multiplication

Tensor Algebra Form

Outer loops followed by inner summation

Program Splitting Divide tensor program into smaller subprograms

Convert to Tensor Algebra Use tensor algebra mapping

Map to Pre-Defined Operators

Derivation-Based Optimisation

Apply derivative rules, get functionally equivalent, but more efficient representations

Create and fuse eOperators

Intra-Expression Derivation

Summation Splitting

$$\sum_{x=0}^{X-1} \sum_{y=0}^{Y-1} f(x, y) = \sum_{x=0}^{X-1} \left(\sum_{y=0}^{Y-1} f(x, y) \right)$$

Traversal Merging

$$L_x L_y f(x, y)$$
 -

Combines two separate traversals into a single traversal

Splits a summation into nested summations for partial computation and reuse.

Variable Substitution

$$f(h+r, w+s) \rightarrow f(t, s)$$

Transforms indices to simplify expressions

Boundary Tightening

$$L_{i=a-k}^{b+k}f(i) \cdot$$

Restricts iteration ranges to exclude unnecessary computations

Derivation Rules

Transform tensor algebra expressions into equivalent, potentially more efficient forms.

Inter-Expression Derivation

 $\rightarrow L_{(x,y)}f(x,y)$

 $\rightarrow L^b_{i=a} f(i)$

Expression Splitting

Divide an expression into independent parts

Expression Merging

Combine independent expressions into one.

Expression Fusion

Fuse dependent expressions to reduce overhead.

Program Splitting Divide tensor program into smaller subprograms

Convert to Tensor Algebra Use tensor algebra mapping

Derivation-Based Optimisation Apply derivative rules, get functionally equivalent, but more efficient representations

Map to Pre-Defined Operators

Might create an eOperator that efficiently adds offsets to a matrix – not usually found in standard libraries

Use TVM Kernel Generator

Create and fuse eOperators

HUGE Search Space

Distance-Guided Search and Redundancy Pruning

Guide the search process towards expressions that are likely to be mappable to existing highly-optimized operators in libraries like cuDNN or cuBLAS

Expression Distance - difference between a given expression and the canonical expression of a target operator

Expression Distance - difference between a given expression and the canonical expression of a target operator

Optimising a 3 x 3 Convolution

c, W h tmu Mat N N Ce • Б r s Ο Matmul OffsetR (i) Conv DLT Split weight Matmul along r and s → ┛┛┛ ┛┛┛ ┛┛┛ (iii) Transform Conv to (ii) Split weight Matmul with OffsetReduce

$$O[n, h, w, f] = \sum_{c=0}^{C-1} \sum_{r=0}^{2} \sum_{s=0}^{2} I[n, h+r, w+s, c] \times K[r, s, f, c]$$

3 x 3 Convolution

$$\sum_{r=0}^{2} \sum_{s=0}^{2} \left(\sum_{c=0}^{C-1} I[n, h+r, w+s, c] \times K[r, s, f, c] \right)$$

Split summations for intermediate computation use

Optimising a 3 x 3 Convolution

$$t = h + r, \quad s' = w + s$$
 $O[n, t, s', f] = \sum_{c=0}^{C-1} I[n, t, s', c] \times K[t - h, s' - w, f, c]$

$$m = t \times W + s'$$
 $O'[m, f] = \sum_{k=0}^{C-1} A[m, k] \times B[k, f]$

Merge traversals over t and s' into a single dimension m

 $O'[m,n] = A[m,k] \times B[k,n]$ $m = t \times W + s$, k = c, $n = r \times 3 + s \times 1 + f$

Reshape tensors to fit the matrix multiplication paradigm

O[n, h, w, f] = OffsetReduce(O'[m, f], offsets)

Handle offsets and intermediate computation, create an **OffsetReduce eOperator**

New variables to simplify expression

2x Speed-Up compared to cuDNN

Evaluation / Results

- Run on computation graphs of InfoGAN, DCGAN, FSRCNN, GCN, ResNet-18, CSRNet, Longformer (*why Longformer?*)
- 2.72x speedup on A100 GPUs, 2.68x speed on V100 GPUs
- Shown to work with existing kernels cuBLAS/cuDNN, AutoTVM, and Ansor
 - Certain transformations beneficial only on some backends
 - Customizing transformations for each backend is beneficial
- For GCN (remember my talk 3 weeks ago) transformed spatially separable convolutions into faster matrix operations

(C)EinNet

EINNET outperforms PET.

Since PET > TASO, reasonable to assume that EINNET also outperforms TASO.

Strengths

- Converting to barebones tensor algebra expands search space for optimisation • Creates new "eOperators" that cater to very specific operations
- - First-of-its-kind
- Derivation-based optimisation is mathematically sound
- Can alter optimisation strategies based on backend (cuDNN/Ansor/etc.)
- **Distance-guided search** is an innovative way of restricting search space while ensuring the final equation is still computable with the available backend engine
- Effort was taken to test on a variety of model flavours CNN / GNN / Transformer

- No discussion about compilation time
 - competitors?

"search spends no more than two hours for most models, which depends on the number of operators contained in models"

Weaknesses

• How long does EinnNet take to optimise a computation graph, compared to its

- No discussion about compilation time
 - in models
 - competitors?
- Search space is defined by heuristic of maximum search depth
 - changing size of the search space actually impacts performance

Weaknesses

• search spends no more than two hours for most models, which depends on the number of operators contained

• How long does EinnNet take to optimise a computation graph, compared to its

• While speedups achieved by different search depths compared, unclear how

- No discussion about compilation time
 - models
 - competitors?
- Search space is defined by heuristic of maximum search depth
 - While speedups achieved by different search depths compared, unclear how changing size of the search space actually impacts performance
- How big are each of the models?
 - parameters not mentioned

Weaknesses

search spends no more than two hours for most models, which depends on the number of operators contained in

• How long does EinnNet take to optimise a computation graph, compared to its

• ResNet, Longformer, GANs come in many sizes, which were used - num model

□ **README** ▲ Apache-2.0 license

To quickly evaluate our system, we offer a server equipped with the necessary hardware, software dependencies, and baseline frameworks. Each directory contains a run.sh script that generates the evaluation results on the provided server. If you wish to run these scripts on a different environment, you should update the environment variables within them.

And this is the README!

https://github.com/zhengly123/OSDI23-EinNet-AE

Ø

Future Work

- Adaptive heuristics of search space
 - See how changing depth affects performance
- Analyse time taken for optimisation as model size and complexity changes
- See whether these methods scale to TPUs as well
- Theoretically prove that optimisation is efficient on other common operations like pooling / batch normalisation
- Distributed tensor algebra?
 - How would it work when model layers are split and you have distributed tensors?

Thank you, questions?