Unity: Accelerating DNN Training Through Joint Optimization of Algebraic Transformations and Parallelization

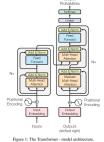
Colin Unger[†]♠ Zhihao Jia^{‡♭}♠ Wei Wu^{*}♦ Sina Lin[§] Mandeep Baines[♭] Carlos Efrain Quintero Narvaez[♭] Vinay Ramakrishnaiah^{*} Nirmal Prajapati^{*} Pat McCormick^{*} Jamaludin Mohd-Yusof^{*} Xi Luo[‡] Dheevatsa Mudigere[♭] Jongsoo Park[♭] Misha Smelyanskiy[♭] Alex Aiken[†]

Stanford University[†] Carnegie Mellon University[‡] Los Alamos National Lab^{*} NVIDIA[◊] Microsoft[§] Meta[♭] SLAC National Accelerator Laboratory[‡]

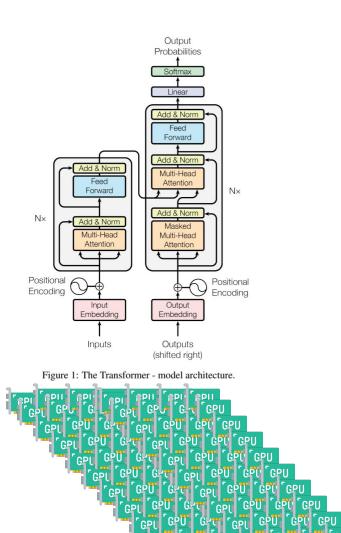
[Paper link]

Presented by Andrzej Szablewski 20/11/2024

Motivation



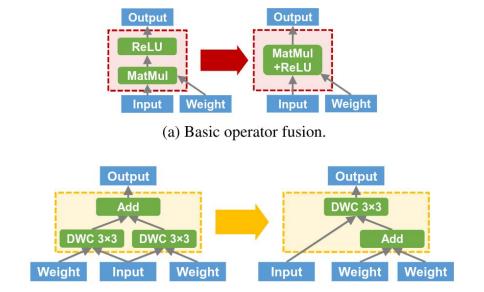
Tight in the manufacture model at more



Optimisations

- Algebraic transformations
 - operator fusion
 - operator reordering
- Parallelism, many dimensions!
 - data
 - model
 - spatial
 - reduction
 - pipeline

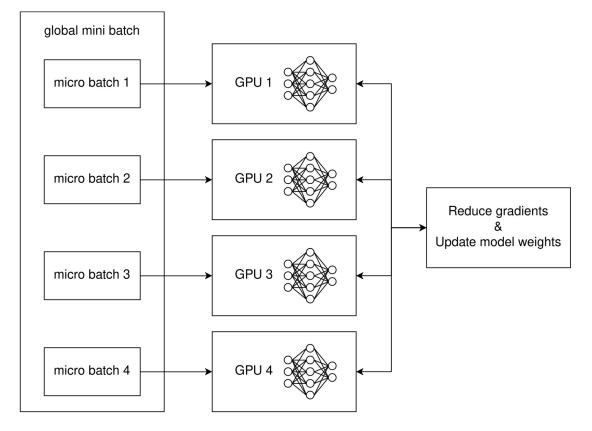
Algebraic Transformations



(b) A more complex algebraic transformation.

Figure 4: Example algebraic transformations. DWC stands for DepthwiseConv (i.e., depth-wise separable convolution).

Parallelism: Data parallelism



Cool, how do we apply them together?

- Simple approach:
 - Let's apply algebraic transformations first
 - Then parallelise!
- The reverse order doesn't work! (Why? 🤔)

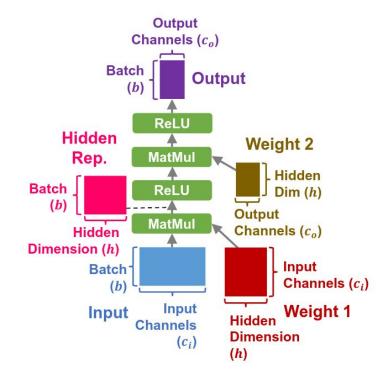


Figure 1: Computation graph for a 2-layer MLP.

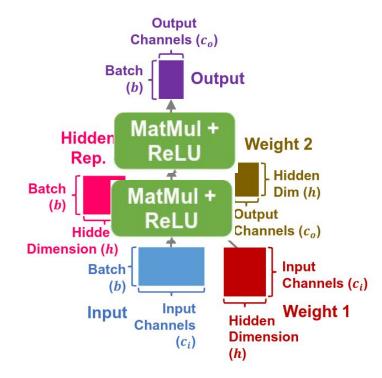


Figure 1: Computation graph for a 2-layer MLP.

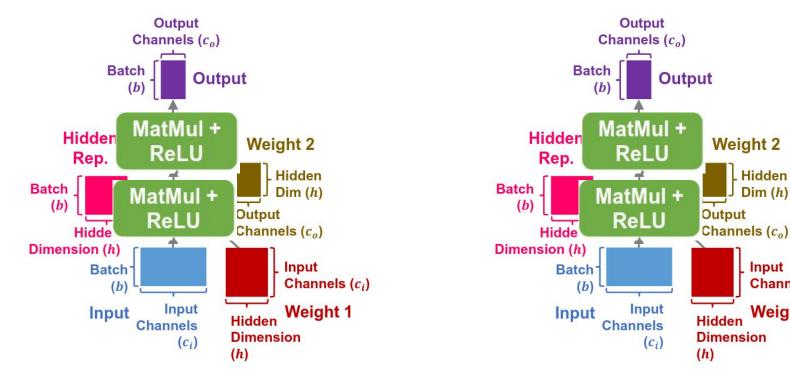


Figure 1: Computation graph for a 2-layer ML

Figure 1: Computation graph for a 2-layer MLP.

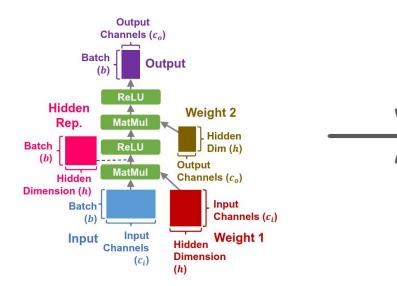
Hidden

Dim (h)

Input

Channels (c_i)

Weight 1



Co Co b/2 $\frac{b}{2}$ MatMul MatMul + ReLU ReLU b/2----A--}*b*/2 MatMul + MatMul i......... ReLU ReLU h**T**.... b/2-·b/2 AllReduce Required GPU 1 GPU 2 c_i c_i

(a) Sequential optimization.

Figure 1: Computation graph for a 2-layer MLP.

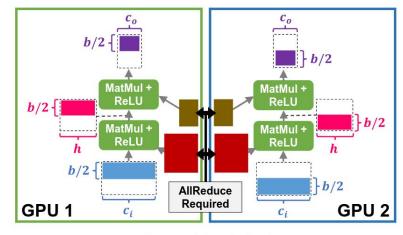
Communication cost?

- Need to communicate gradients of the weights!

 $2(c_ih + hc_o)$

For MNIST: 813,056 * d

(d is the parameter size)



(a) Sequential optimization.

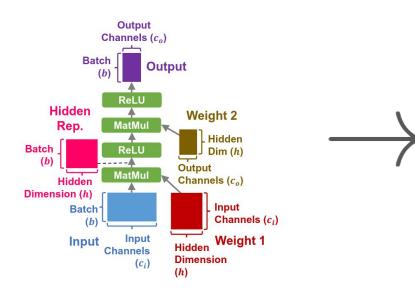
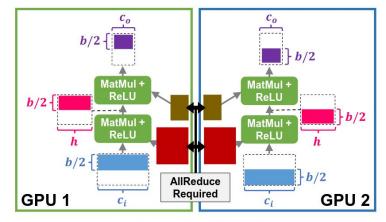
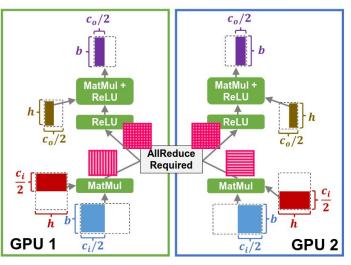


Figure 1: Computation graph for a 2-layer MLP.



(a) Sequential optimization.



(b) Joint optimization.

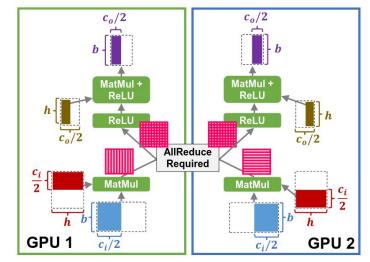
Communication cost?

- This time just communicate activations and their gradients!

For MNIST: 131,072 * d

(d is the parameter size)

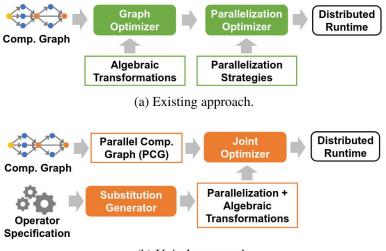
6x less!



(b) Joint optimization.

The approach

- Unified graph representation
 - Parallel Computation Graph
- Transformation generation + verification
- Joint optimisation

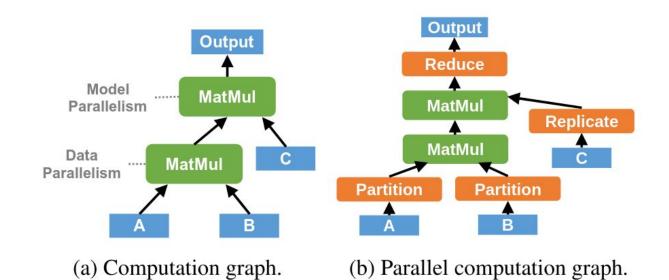


(b) Unity's approach.

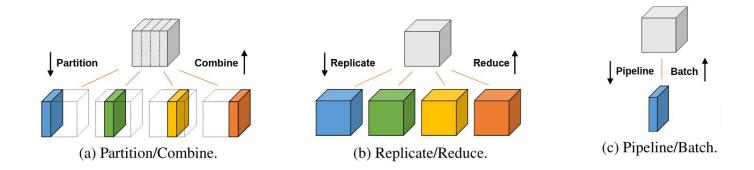
Figure 3: Comparing existing DNN frameworks and Unity.

Why Parallel Computation Graph?

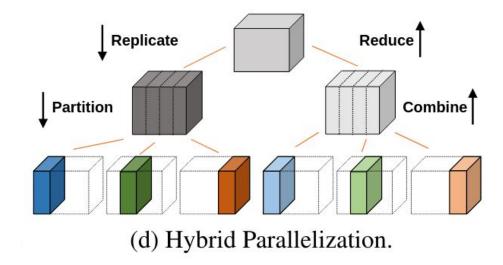
- Evolving an annotated CG may lead to invalid parallelisations
- CG does not capture communication cost directly

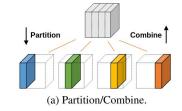


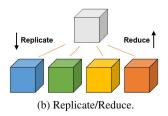
Parallelisation operations

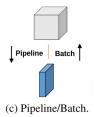


Parallelisation operations

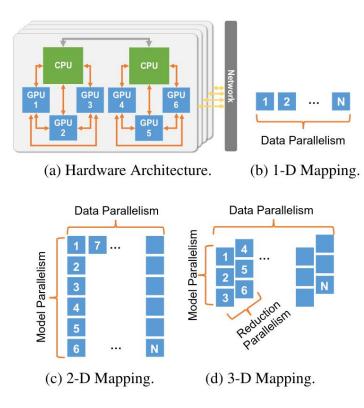








Machine mappings



Graph substitutions

- Unity generates all possible substitutions from a provided set of operators.
- Generated substitutions are formally verified!

Joint optimisation

Given:

- a PCG,
- a set of operator-level machine mappings,
- a set of PCG substitutions,

Find:

- a sequence of PCG substitutions
- and a machine mapping for the PCG,

minimising the per-iteration training time.

Joint optimisation

Three-level search:

- 1. Graph splitting
- 2. Substitution selection
- 3. Optimised machine mappings

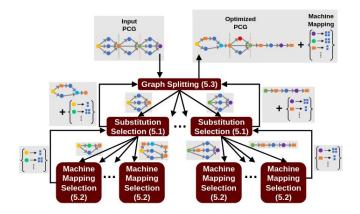
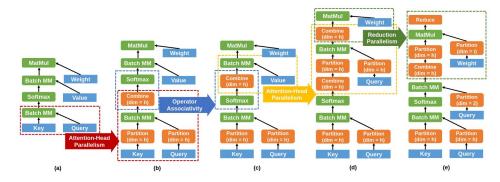
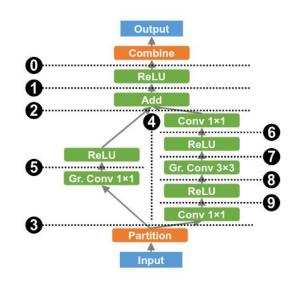


Figure 12: High-level depiction of Unity's hierarchical search.





Evaluation

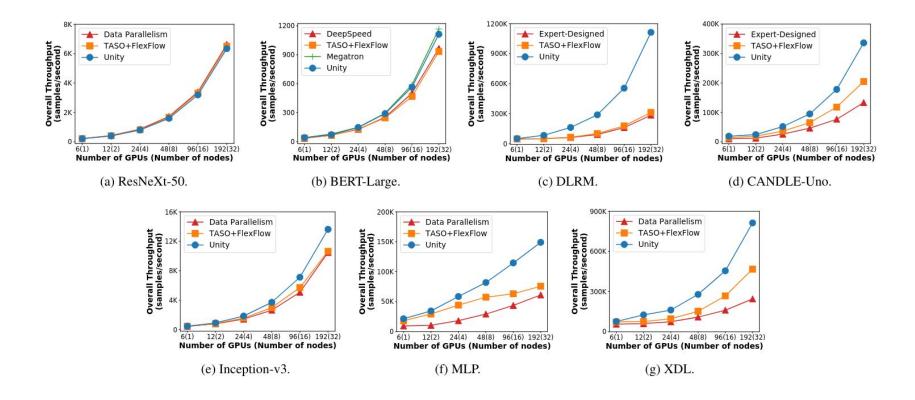
7 real-world neural architectures

- language models, image classifiers, etc.

Unity outperforms other optimisation methods!

- search-based
- expert-crafted (e.g. DeepSpeed)

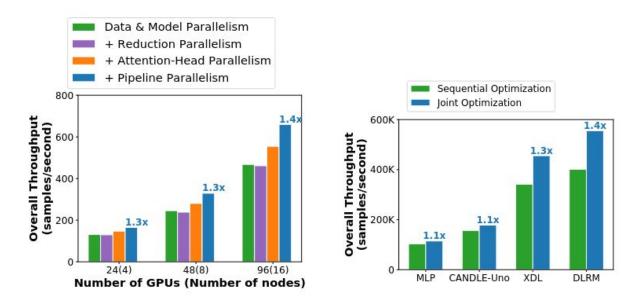
Evaluation



Evaluation

Hybrid strategies and operator-specific dimensions are critical!

Improvement up to 1.4x



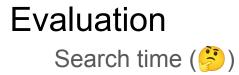


Table 2: Search algorithm ablation study. "Scaled" numbers are relative to the 2 GPU time with all optimizations enabled.

	All		w/o Split		w/o Cache+Split	
	Time	Scaled	Time	Scaled	Time	Scaled
6 GPUs (1 nodes)	57s	$1 \times$	4m 01s	$4.3 \times$	37m 01s	38.5×
12 GPUs (2 nodes)	1m 47s	$1.9 \times$	11m 15s	$16.8 \times$	>1h	n/a
24 GPUs (4 nodes)	3m 00s	$3.1 \times$	> 1h	n/a	> 1h	n/a
48 GPUs (8 nodes)	5m 55s	6.1×	> 1h	n/a	> 1h	n/a

Limitations and Future Work

- NN architectures which do not exhibit nice parallelisable structure
- Other types of optimisations
- No reasoning about the memory usage!
- Simple cost model
- Simple support for pipeline parallelism (no of interleaving pipeline-parallel and non pipeline-parallel operators.)

Thank you!