Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning

By Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi Mao, Mohammad Alizadeh

Asbjorn Lorenzen

November 20, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction to Placeto

- Goal: Automate device placement for distributed neural network training.
- Problem: Previous methods lack generalizability and require retraining for each new computation graph.
- Placeto Solution: Develop a generalizable placement policy to predict placements for unseen computation graphs without retraining.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Key Innovations of Placeto

 Graph Embeddings: Encodes structure of computation graphs. Improvement from RNNs, which depend on node labels and sequence

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Iterative Placement Policy: Sequentially improves placement per node, unlike one-shot placements.

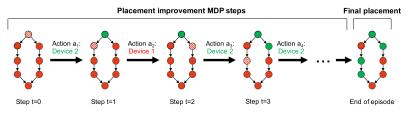
Why Generalizability?

- Challenges in Model Development: Frequent retraining is too slow.
- ...especially when using temporary environments, or when iteratively developing a model.
- Goal of Placeto: Create a policy, not just a placement. Transferable to different computation graphs within the same family.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Placeto's Placement Improvement Steps

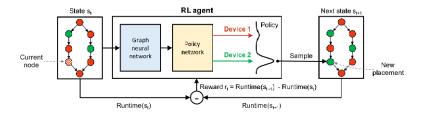
- 1. **Iterative Node Placement:** Processes the computation graph node by node.
- 2. **Placement Improvement Policy:** Predicts optimal device for each node iteratively.



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Reinforcement Learning (RL) in Placeto

- ► Mapping Goal: Vertex (ops) → Device.
- Training via RL: Optimizes placements iteratively across similar computation graphs.



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Graph Embedding Techniques

- Forming the graph: Group adjacent ops together to create vertices. Data passing between op groups becomes edges.
- Op group attributes: total_runtime, output_tensor_size, current_placement, is_node_current, is_node_done). Collected from on-device measurements.
- Local neighborhood summarization: Aggregate neighborhood data for each node. Let f, g be MLPs and x_v be data from vertex v. Perform message passing:

$$\mathbf{x}_{v} \leftarrow g\left(\sum_{u \in N(v)} f(\mathbf{x}_{u})\right)$$

Perform message passing for two groups: in-neighbors and out-neighbors (incoming and outgoing data flow). Repeat k times to propagate data through graph.

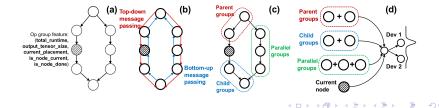
Graph Embedding Techniques

Pooling summaries: Aggregate embeddings at each node to create a summary of entire graph. Use similar function as neighborhood summaries, but with 3 sets:

 $S_{parents}(v), S_{children}(v), S_{parallel}(v).$

$$h\left(\sum_{u\in S_i(v)}l(\mathbf{x}_u)\right)$$

Finally, concatenate the three aggregations. This is input to policy network.



Markov Decision Process (MDP) Setup

- State s: Computation graph (embedding).
- Actions: Update node placements, transitioning to new states.
- Rewards: Negative run time at final step or incremental improvements between steps. Punish exceeding memory limit.

Policy: Device placement based on graph embedding.

Training Process Overview

- RL Algorithm: Standard policy-gradient with graph sampling.
- ► Sampling graphs: Each episode, sample a graph G ∈ G_T from the training graphs, and compute placements on it.
- Generalization: Training parameters shared across episodes. Because of the embeddings, they are sharable across graphs, generalizing well to unseen graphs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Experimental Setup

- Computation graphs: Use Tensorflow to generate computation graph given any NN model.
- Real Models: Inception-V3, NMT, NASNet.
- Synthetic Datasets: Generates similar graphs, e.g. by varying hyperparameters of other models or using automatic model design (ENAS).
- Baseline Comparisons: Single GPU, Scotch (static mapper), Human Expert, RNN-based approach.
- Simulating executions: Use a simulator instead of measuring elapsed time on real hardware. Only use simulator for training purposes.

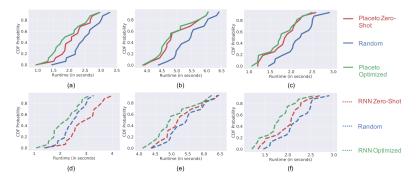
Results and Evaluation

- Goal: Optimize performance (runtime of placement) and training time. Evaluate on real models.
- Performance: Placeto performs slightly better than RNN based approach, but requires up to 6.1× fewer placements sampled.

	Placement runtime (sec)							Training time (# placements sampled)		Improvement	
Model	CPU only	Single GPU	#GPUs	Expert	Scotch	Placeto	RNN- based	Placeto	RNN- based	Runtime Reduction	Speedup factor
Inception-V3	12.54	1.56	2	1.28	1.54	1.18	1.17	1.6 K	7.8 K	- 0.85%	4.8 ×
			4	1.15	1.74	1.13	1.19	5.8 K	35.8 K	5%	6.1 \times
NMT	33.5	OOM	2	OOM	OOM	2.32	2.35	20.4 K	73 K	1.3 %	3.5 ×
			4	OOM	OOM	2.63	3.15	94 K	51.7 K	16.5 %	$0.55 \times$
NASNet	37.5	1.28	2	0.86	1.28	0.86	0.89	3.5 K	16.3 K	3.4%	4.7 ×
			4	0.84	1.22	0.74	0.76	29 K	37 K	2.6%	$1.3 \times$

Generalizability

- **Synthetic data:** Evaluated on synthetic graph families.
- Zero-Shot Testing: Placeto Zero-Shot closely matches optimized performance.
- RNN Limitations: RNN Zero-Shot performs poorly due to dependency on node indices.



Strengths

- Novel use of GNNs for device placement
- Finds improved placement significantly faster than earlier approaches

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Weaknesses

- Generalization is limited, and its limits are unclear from the paper.
- Generalization is only tested on very similar graphs (synthetically generated for solving the same problem)
- Generalization is trained on various graphs in the same 'family'. Should show generalization from one graph to another similar graph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

No proper definition of 'graph families'