Placeto: Learning Generalizable Device
Placement Algorithms for Distributed Machine
Learning

By Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan,
Shreyan Gupta, Hongzi Mao, Mohammad Alizadeh

Asbjorn Lorenzen

November 20, 2024

Introduction to Placeto

» Goal: Automate device placement for distributed neural
network training.

> Problem: Previous methods lack generalizability and require
retraining for each new computation graph.

» Placeto Solution: Develop a generalizable placement policy
to predict placements for unseen computation graphs without
retraining.

Key Innovations of Placeto

» Graph Embeddings: Encodes structure of computation
graphs. Improvement from RNNs, which depend on node
labels and sequence

> Iterative Placement Policy: Sequentially improves
placement per node, unlike one-shot placements.

Why Generalizability?

» Challenges in Model Development: Frequent retraining is
too slow.

P .. .especially when using temporary environments, or when
iteratively developing a model.

> Goal of Placeto: Create a policy, not just a placement.
Transferable to different computation graphs within the same
family.

Placeto’'s Placement Improvement Steps

1. Iterative Node Placement: Processes the computation

graph node by node.

2. Placement Improvement Policy: Predicts optimal device

for each node iteratively.

Placement improvement MDP steps

Final placement

Action a;: Action a,: Action a,: Action a,:
Device 2 Device 1 Device 2 Device 2
» »

> >

Step t=0 Step t=1 Step t=2 Step t=3

. -

End of episode

Reinforcement Learning (RL) in Placeto

» Mapping Goal: Vertex (ops) — Device.

» Training via RL: Optimizes placements iteratively across
similar computation graphs.

Stale s, RL agent Next state s,
Device 1 Policy
Graph Zalic
T neural [nel"'m‘:'k
Current netwark) Device 2 Sample |
node | " = | MNew
placement

AReward r, = Runtime(s, ;) - Runtime(s,}

Runtime(s,) Runtime(s,..)

Graph Embedding Techniques

>

>

Forming the graph: Group adjacent ops together to create
vertices. Data passing between op groups becomes edges.

Op group attributes: total runtime,
output_tensor_size, current_placement,
is_node_current, is_node_done). Collected from
on-device measurements.

Local neighborhood summarization: Aggregate
neighborhood data for each node. Let f, g be MLPs and x,,
be data from vertex v. Perform message passing:

X, — g Z f(xy)

ueN(v)

Perform message passing for two groups: in-neighbors and
out-neighbors (incoming and outgoing data flow). Repeat k
times to propagate data through graph.

Graph Embedding Techniques

» Pooling summaries: Aggregate embeddings at each node to
create a summary of entire graph. Use similar function as
neighborhood summaries, but with 3 sets:

Sparents (V)a Schildren (V) s Sparallel (V) .

Wl D ()

ueS;(v)

Finally, concatenate the three aggregations. This is input to
policy network.

(@) Top-down (b) A, ()

message
passin

Op group feature:
(total_runtime,
output_tensor_size,
current_placement,
is_node_current,
is_node_done)

{Parallel
{aroups
Bottom-up ¢ |

message
passing

child, ()
groups 2

Markov Decision Process (MDP) Setup

» State s: Computation graph (embedding).

> Actions: Update node placements, transitioning to new
states.

> Rewards: Negative run time at final step or incremental
improvements between steps. Punish exceeding memory limit.

» Policy: Device placement based on graph embedding.

Training Process Overview

» RL Algorithm: Standard policy-gradient with graph sampling.
» Sampling graphs: Each episode, sample a graph G € Gr
from the training graphs, and compute placements on it.

» Generalization: Training parameters shared across episodes.
Because of the embeddings, they are sharable across graphs,
generalizing well to unseen graphs.

Experimental Setup

> Computation graphs: Use Tensorflow to generate
computation graph given any NN model.

» Real Models: Inception-V3, NMT, NASNet.

> Synthetic Datasets: Generates similar graphs, e.g. by
varying hyperparameters of other models or using automatic
model design (ENAS).

» Baseline Comparisons: Single GPU, Scotch (static mapper),
Human Expert, RNN-based approach.

» Simulating executions: Use a simulator instead of measuring
elapsed time on real hardware. Only use simulator for training
purposes.

Results and Evaluation

» Goal: Optimize performance (runtime of placement) and
training time. Evaluate on real models.

» Performance: Placeto performs slightly better than RNN
based approach, but requires up to 6.1x fewer placements

sampled.
Placement runtime Training time Tmprovement
(sec) (# placements sampled)
CPU Single .) i RNN- 3 RNN- Runtime Speedup
Model oy ey | #OPUs Expert Scowh Placeto i,y | Placeto based Reduction _ factor
IR 2 128 154 118 117 | 16K 78K C085% 48 x
tion-’ 2. .
rieeption 4 115 174 113 119 | 58K 358K 5% 6.1 x
2 0OM 0OM 232 235 | 204K 73K 13% 35
NMT 35 0OM
4 0OM 0OM 263 315 | 94K 517K 165% 055 x
2 086 128 086 089 | 35K 163K 34% 47 %
NASNet 75 128
4 0.84 1.22 0.74 0.76 29K 37K 2.6% 1.3 x

Generalizability

0.0

Synthetic data: Evaluated on synthetic graph families.

Zero-Shot Testing: Placeto Zero-Shot closely matches
optimized performance.
RNN Limitations: RNN Zero-Shot performs poorly due to
dependency on node indices.

10

(a)

3
Runtime (in seconds)

(d)

15 20 25 30
Runtime (in seconds)

DF Probability

=

a.

0

45 50 55 60

(e)

10

15 2.0 25
Runtime (in seconds)

(c)

(U]

— Placeto Zero-

Shot

Random

— Placeto

Optimized

- RNN Zero-Shot

** Random

RNN Optimized

Strengths

» Novel use of GNNs for device placement

» Finds improved placement significantly faster than earlier
approaches

Weaknesses

» Generalization is limited, and its limits are unclear from the
paper.

» Generalization is only tested on very similar graphs
(synthetically generated for solving the same problem)

» Generalization is trained on various graphs in the same
"family’. Should show generalization from one graph to
another similar graph.

» No proper definition of 'graph families’

