
Placeto: Learning Generalizable Device
Placement Algorithms for Distributed Machine

Learning
By Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan,

Shreyan Gupta, Hongzi Mao, Mohammad Alizadeh

Asbjorn Lorenzen

November 20, 2024



Introduction to Placeto

▶ Goal: Automate device placement for distributed neural
network training.

▶ Problem: Previous methods lack generalizability and require
retraining for each new computation graph.

▶ Placeto Solution: Develop a generalizable placement policy
to predict placements for unseen computation graphs without
retraining.



Key Innovations of Placeto

▶ Graph Embeddings: Encodes structure of computation
graphs. Improvement from RNNs, which depend on node
labels and sequence

▶ Iterative Placement Policy: Sequentially improves
placement per node, unlike one-shot placements.



Why Generalizability?

▶ Challenges in Model Development: Frequent retraining is
too slow.

▶ ...especially when using temporary environments, or when
iteratively developing a model.

▶ Goal of Placeto: Create a policy, not just a placement.
Transferable to different computation graphs within the same
family.



Placeto’s Placement Improvement Steps

1. Iterative Node Placement: Processes the computation
graph node by node.

2. Placement Improvement Policy: Predicts optimal device
for each node iteratively.



Reinforcement Learning (RL) in Placeto

▶ Mapping Goal: Vertex (ops) → Device.

▶ Training via RL: Optimizes placements iteratively across
similar computation graphs.



Graph Embedding Techniques

▶ Forming the graph: Group adjacent ops together to create
vertices. Data passing between op groups becomes edges.

▶ Op group attributes: total runtime,

output tensor size, current placement,

is node current, is node done). Collected from
on-device measurements.

▶ Local neighborhood summarization: Aggregate
neighborhood data for each node. Let f , g be MLPs and xv
be data from vertex v . Perform message passing:

xv ← g

 ∑
u∈N(v)

f (xu)


Perform message passing for two groups: in-neighbors and
out-neighbors (incoming and outgoing data flow). Repeat k
times to propagate data through graph.



Graph Embedding Techniques

▶ Pooling summaries: Aggregate embeddings at each node to
create a summary of entire graph. Use similar function as
neighborhood summaries, but with 3 sets:
Sparents(v), Schildren(v), Sparallel(v).

h

 ∑
u∈Si (v)

l(xu)


Finally, concatenate the three aggregations. This is input to
policy network.



Markov Decision Process (MDP) Setup

▶ State s: Computation graph (embedding).

▶ Actions: Update node placements, transitioning to new
states.

▶ Rewards: Negative run time at final step or incremental
improvements between steps. Punish exceeding memory limit.

▶ Policy: Device placement based on graph embedding.



Training Process Overview

▶ RL Algorithm: Standard policy-gradient with graph sampling.

▶ Sampling graphs: Each episode, sample a graph G ∈ GT
from the training graphs, and compute placements on it.

▶ Generalization: Training parameters shared across episodes.
Because of the embeddings, they are sharable across graphs,
generalizing well to unseen graphs.



Experimental Setup

▶ Computation graphs: Use Tensorflow to generate
computation graph given any NN model.

▶ Real Models: Inception-V3, NMT, NASNet.

▶ Synthetic Datasets: Generates similar graphs, e.g. by
varying hyperparameters of other models or using automatic
model design (ENAS).

▶ Baseline Comparisons: Single GPU, Scotch (static mapper),
Human Expert, RNN-based approach.

▶ Simulating executions: Use a simulator instead of measuring
elapsed time on real hardware. Only use simulator for training
purposes.



Results and Evaluation

▶ Goal: Optimize performance (runtime of placement) and
training time. Evaluate on real models.

▶ Performance: Placeto performs slightly better than RNN
based approach, but requires up to 6.1× fewer placements
sampled.



Generalizability

▶ Synthetic data: Evaluated on synthetic graph families.

▶ Zero-Shot Testing: Placeto Zero-Shot closely matches
optimized performance.

▶ RNN Limitations: RNN Zero-Shot performs poorly due to
dependency on node indices.



Strengths

▶ Novel use of GNNs for device placement

▶ Finds improved placement significantly faster than earlier
approaches



Weaknesses

▶ Generalization is limited, and its limits are unclear from the
paper.

▶ Generalization is only tested on very similar graphs
(synthetically generated for solving the same problem)

▶ Generalization is trained on various graphs in the same
’family’. Should show generalization from one graph to
another similar graph.

▶ No proper definition of ’graph families’


