An Inquiry into Machine Learning-based
Automatic Configuration Tuning Services on

Real-World Database Management Systems

Authors: Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari
Firorino, Bohan Zhang, Christian Bilien, Andrew Pavlo

R244 Session 6
20 November 2024

DBMS Configurations

DBMSs have hundreds of configuration parameters (knobs)

Parameters are not independent

Empirical knowledge required to set correct values
Default values are often bad

Configurations not standardised

Large high-dimensional space of configurations
* How do we find the global minima?
* NP-hard problem

(a) Dependencies

Existing Solutions

. gBMS Configuration Tuning tools created by vendors, e.g. Microsoft SQL
erver
* Only supports their own DBMS

» General Tools
» Lots of manual setup required

» Copy the entire DB

* Modify knobs
» Perform experiments on example workloads

» Other ML driven tools

 Manual
» Use experiences of human expert DB administrators to modify knobs

* Very slow process

6.0
B Workload #1
B Workload #2
40 W Workload #3

c)

Challenges

99th %-tile (se

0.0

Config #1 Config#2 Config #3

« Efforts wasted when new workload

arrives (c) Non-Reusable Configurations
600
* New versions g [TTMEA o A
£ 400}
g 200
2 ,,,,,,,,,,,,,,,,,,,,

oo 2004 2008 2012 2016
Release date

(d) Tuning Complexity

OtterTune

 Universal

Analysis W@ Planning

» Keeps track of data from
previous tuning sessions

* Builds experience from
previous runs

————————————————

Problem

 Evaluation performed on synthetic workloads

I Defautt I BufferPool+RedolLog
5 2000 | e = 2000
) 1514 —
279 1500 [A {255 13094318~ ~~=--~==--====-======== 279 1500
g’g 1062 1111 1136 g’g
© % 1000 [~ N o £ 1000
£ =
= 500 = 500
0 0
v5.6 vh.7 v8.0 v9.3 v10.1 vi2.3
(b) Postgres

(a) MySQL
Figure 2: DBMS Tuning Comparison - Throughput measurements for the TPC-C benchmark running on three versions of MySQL (v5.6, v5.7, v8.0) and

Postgres (v9.3, v10.1, v12.3) using the (1) default configuration, (2) buffer pool & redo log configuration, (3) GPR configuration, and (4) DDPG configuration

Problem

» Performance in production workloads not known
» Hard to obtain real-world production workloads

* Open-source DBs used
 Licensed enterprise DBs are used in real-world commercial settings

 This inquiry paper on OtterTune performs evaluation with:
« Societé Géneérale bank (real-world data)
« Oracle DB (enterprise DB)

Evaluation — OtterTune Algorithms

* TicketTracker: Internal ticket-tracking system like Jira
« 3M queries

 Authors of this paper implement three ML methods for
OtterTune:
« Gaussian Process Regression
* Deep Neural Network

« Deep Deterministic Policy Gradient (Reinforcement Learning)
« CDBTune

Evaluation — Setup

* Deploy VMs, each containing an instance of TicketTracker
 Write to a shared disk in the same DC
* Tuning Session: 150 iterations, each taking 1 hour

* 10-minute observation windows — 230K queries
« Uses Oracles Real Application Testing (RAT) system

» 3900 metrics collected in each tuning iteration

Weaknesses

* All VMs deployed on the same physical machine

 All write to a shared disk
« Unpredictable read/write performance

20000 |------------ . J— S——
M @ VMot

15000 |-----=========- Q@ 8- 8 VMO2

&
10000 |-------- B-F----- V§§+8gv§ylj Vo @ VMo3

O (W, Vv VMo4
5000 1= gy #Q Hgggs ﬂ&';@ o2 & VMO5
Apr May Jun Jul Aug Sep

Figure 8: Performance Variability — Performance for the TicketTracker
workload using the default configuration on multiple VMs over six months.

DB Time (sec)

10

Solution?

* Generate optimised configurations:
« Run 3 Tuning Sessions (1 for each algorithm)

* Run the workload consecutively using:
1. Baseline Configuration
2. Gaussian Process
3. DNN
4. DDPG

* Repeat this 3 times, and average out the time taken

* Repeat this on 3 different VMs (relative comparison)

11

Knob Name Default Best Observed

. DB_CACHE_SIZE 4 GB 20-30 GB
Xperiments DB_32K_CACHE_SIZE 10 GB 15 GB
OPTIMIZER_FEATURES_ENABLE v11.2.0.4 v12.2.0.1

Table 2: Most Important Knobs — The three most important knobs for
the TicketTracker workload with their default and best observed values.

* 40 knobs chosen (out of 400)
* Run tuning sessions for 10, 20, and 40 knobs

50 50

g g s
g g 40 QE) g 40 OE) "g 40
5 — 30 - E = 30 § = 30 |-
EQ 20 [- £8 20| g8 20 -
X 10 X 10 X 10

0 0 0

VM #1 VM #2 VM #3 VM #1 VM #2 VM #3 VM #1 VM #2 VM #3
(a) 10 Knobs (b) 20 Knobs (c) 40 Knobs

Figure 10: Tuning Knobs Selected by DBA (Per VM) - The performance improvement of the best configuration per algorithm running on separate VMs
relative to the performance of the SG default configuration measured at the beginning of the tuning session.

12

Experiments

* Overlap with the selection of expert DB admin:
« 5 out of 10 knobs
* 11 out of 20 knobs

I GrPR I oorG I ODPG++ B LHs
50
5 |5
ED e5 25
QE 2 E
o.m om
EQ EQ
B . e 25
-50 -50
VM #1 VM #2 VM #3 VM #1 VM #2 VM #3
(a) 10 Knobs (b) 20 Knobs

Figure 12: Tuning Knobs Ranked by OtterTune (Per VM) - The performance improvement of the best configuration per algorithm running on separate
VMs relative to the performance of the SG default configuration measured at the beginning of the tuning session.

13

Summary

 Human assistance still required:
1. To pick the most important knobs

2. To pick acceptable ranges for
knobs

* Tuning does lead to
improvements compared to just
using default values

« Evaluation is not set up properly
In the inquiry paper

6 LESSONS LEARNED

During the process of setting up and deploying OtterTune at SG
for this study, several issues arose that we did not anticipate. Some
of these were specific to SG’s operating environment and cloud
infrastructure. Several issues, however, are related to the broad field

14

