
Device Placement Optimisation with
Reinforcement Learning
Review

✳: Figure from paper /codebase

Problem Setting

Device Mappings

Neural Network Execution Devices

Images from Wikipedia

Device Mappings

Neural Network Execution Devices

Images from Wikipedia

Conceptual Model

Source Graph (Computation Dataflow Graph)

- Tensorflow computational graph
- Nodes are operations
- Edges represent data transfer, generally

tensors

Target Graph

- Nodes are execution devices (GPU, CPU, TPU

etc.).

- Edges are communication links (PCIe,

network links etc.)

Goal: find a placement – an injective mapping from nodes in the source graph to target graph

Option 1: Expert Designed

torch.nn.to(device=`cuda’)

- Time Consuming

- Relies primarily on intuition

- Possibly suboptimal

Option 2: Graph Partition Heuristics

- We expect more nodes in the source graph

relative to the target graph.

- Partition the source graph into different

partitions, with each partition mapping onto a

node in the target graph.

- Relies on heuristics (a cost model) for

partitioning, leading to poor results.

Mirhoseini et al. select software package Scotch
(Pellegrini, 2009) as a baseline.

Implementation relies on a collection of methods.
Scotch users have the option to manually tune
hyper-parameters.

Key Challenges

- Inaccurate and expensive cost model

- Exponential search space with number of nodes

- Dynamic and complex environment

Approach

Sequence-to-Sequence Placement Function

- Long Short Term Memory (LSTM) models is a type of recurrent neural network used for sequential tasks in
natural language processing.

- Model graph placement as a sequence-to-sequence translation task.
- Additional context-based attentional mechanism.

- The input sequence is the concatenated nodes of the source graph with tunable embeddings, output shape,
and one-hot encoded adjacent nodes to capture graph topology. Encoded into a sequence of embeddings
by encoder LSTM.

- An attentional decoder LSTM translates the embedded sequence into a sequence representing the partition
mapping.

✳

Objective

The goal is to find some placement which minimises the execution time. Due to possible interference, the
execution time is stochastic. Thus, optimise for the expectation.

Where pi is the placement function, R is the execution time, G is the source graph and P is the placement.

(Hack): The authors propose optimising the square-root of running time from empirical observations. This boosts
the training signal when execution time is low.

Optimisation

R (P|G) is unknown without an analytical form
(Modelling will result in aforementioned inaccuracies
with the cost model).

The gradient can be estimated via policy gradient.

Device Placement
Optimisation with
Reinforcement
Learning
Policy Gradient

Policy Gradient
The first term can be sampled. (Sampling many P from pi,

Monte-Carlo sampling)

There is a well known result that a P-dependent term can be

subtracted from R without introducing bias. The authors

subtract a simple moving average.

The second term has an analytical form (p is the

encoder-decoder)

Gradient descent!

Co-location

- Large numbers of operations cause exploding

/ vanishing gradients.

- Use heuristics to lower the number of

operations (co-location).

- Ex: If output of an operation X is consumed

only by Y, then X and Y are co-located

(merged).

- Specific rules for CNN and RNN.

- 50-500 fold reduction in experiments.

- Limitation Resolved: follow-on work by same
first author, “A hierarchical model for device
placement”.

-

- Classifier replaces heuristics for grouping
- Increased granularity significantly improves

performance on specific tasks

Distributed Training

✳

Distributed data collection / environment setup.

Controllers generate placements.

Workers test placements.

20 controllers, 4-8 workers each. 12-27 hours for

training.

Miscellaneous

Placement failure (sporadic, resource limits) are manually assigned large times. To avoid sudden large gradient
steps, after a certain point parameter updates on placement failure is disabled.

Why REINFORCE?

Why reinforcement learning?

Reinforcement learning has advantages dealing with sequences of actions and possibly delayed effects. There
are no (transition) sequences in the current formulation. Thus, the motivation for RL as a solution is uncertain,
compared to, for example, Bayesian Optimisation. Alternatively, the environment should be engineered in such
a way to benefit from reinforcement learning.

Experiments

Run-time comparison

✳

Recurrent Neural Network Language Model, Neural Machine Translation, InceptionV3

Trade-offs learnt between parallelism and costs of inter-device communication

Learns Device Properties

Non-trivial placement learnt for Neural MT Graph - colors represent devices

Transparent denotes CPU - learns specific capabilities of each device, as embeddings are handled by CPU, which are

computationally less expensive

✳

Learns Graph Properties

InceptionV3

Non-balanced computational load learnt: the
network has more dependencies so model
parallelism is not viable

However, this tradeoff allows it to reduce
communication costs.

✳

Speeds-up Full Training Process

27.8% speed-up in training time on Neural MT

RL placements balances workload better than
human expert. The imbalance of humans is more
significant without backpropagation, suggesting
factors not considered in design by experts.

Training speedup (19.7%) in InceptionV3

✳

Conclusion
Seminal work applying reinforcement learning to systems
optimisation.

Enables end-to-end optimisation and learning complex
tradeoffs.

Development of a domain specific sequence-to-sequence
architecture for device placement

Surpasses heuristics partitioning solvers and human experts

Weaknesses
Generalisability wrt. Computation graph (Addanki et al.
Placeto)

Generalisability wrt. Device and Hardware Available

Architecture and reinforcement learning algorithms are
outdated. (Orthogonal). I would expect recent work to use
GNNs (A graph placement methodology for fast chip design)
and PPO.

Architecture unable to adapt to larger number of nodes, hence
grouping heuristic. (A Hierarchical Mode for Device
Placement) supports larger computation graphs and
placements with higher granularity.

