
R244 - CHERRYPICK

R244 - Chris Tomy - 2024/11/20

PROBLEM SETUP
Big data applications (Spark, Hadoop, etc.)
Goal: find the best cloud configuration given a
budget ($$$)

FORMULATION

Cloud configuration: vector .

Example components of this vector:

Number of VMs
CPU speed (e.g. 2 GHz)
etc.

(with caveats!)

→x

For a workload :

 is price (per unit time)
 is the running time

subject to some constraints e.g. max running time

w

P(→x)
T (→x; w)
C(→x; w) = P(→x) × T (→x; w)

min
→x C(→x; w)

T (→x) ≤ Tm

Search-based (over)

Brute-force
Random search with budget
Co-ordinate descent

→x

Modelling:

Parametric modelling: Ernest

Hand-chosen features
Non-parametric modelling: GPs

t = θ0 + θ1f1 + θ2f2 + …
fi

BAYESIAN OPTIMISATION REFRESHER
Choose prior:
Random starting points:
Iteratively:

Compute predictive posterior
Pick where
Update

f ∼ N(μ, K)
D

p(f⋆|D)
→x max α(→x)

D

CHERRYPICK'S APPROACH

Search configuration space with BO.→x

COVARIANCE KERNEL
GP prior: Matérn5/2 kernel
k(→xi, →xj; σ2, ν)

IMPORTANCE OF COVARIANCE

Sufficiently bad prior + acquisition can make
convergence impossible!

Blue: surrogate model. Black: true function.

RBF hyperparameters example:

Confidence intervals vary greatly.

ACQUISITION FUNCTION - MODIFIED EI
Expected improvement

, for

Closed form:

Modified:

α(→x) = E[u(→x)|→x, D]
u(→x) = f(→x⋆) − f(→x)

(f⋆ − μ(→x))Φ(Z) + σ(→x)ϕ(Z)

EI ′(→x) = P [T (→x) ≤ Tm] × EI(→x)

DISCRETIZED FEATURES

To reduce search space:

Continuous features (1.2 GHz, 3.3 GHz)
discrete (slow, fast)
Viable due to closed form:

→

(f⋆ − μ(→x))Φ(Z) + σ(→x)ϕ(Z)

DEALING WITH NOISE
Multiplicative noise

Observation:

Presumably, added as in BO
engine

C(→x)(1 + ϵ)
log C(→x) + log(1 + ϵ) ≈ log C(→x) + ϵ

k(x, x) + σ2
ϵ I

IMPLEMENTATION

RESULTS

"CherryPick has a 45-90% chance to find optimal
configurations"

CONTRAST W/ ERNEST

Big wins in search time:

Random search is surprisingly good.

Strengths

More sample efficient than other approaches
Consistently low search cost.

More adaptable than Ernest
More flexible (to VM instance types)

Tunable option to trade-off search cost and
accuracy: EI threshold

Weaknesses

Assumes a specific workload
Not significantly better than random search
Weak/lacking justification of modelling choices

No mention of hyperparameter search or
fitting, e.g. MLE
Multiplicative noise, what if ?

Up to 9x less search cost than exhaustive search,
but is that good enough?

0.2 < ϵ < 1.0

Contrast to:

Great discussion on kernel hyperparameter choices.

