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nearoptimal cloud configurations with high accuracy and low overhead. CherryPick adaptively ...
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PROBLEM SETUP

e Big data applications (Spark, Hadoop, etc.)
e Goal: find the best cloud configuration given a

budget (SSS)
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FORMULATION

Cloud configuration: vector Z.

Example components of this vector:

e Number of VMs
e CPU speed (e.g. 2 GHz)
e etc.

(with caveats!)




For a workload w:

e P(&)is price (per unit time)
o T'(x;w) isthe running time
e C(2;w) = P(Z) x T(z; w)

min; C(z; w)

subject to some constraints e.g. max running time

T(%) < T,




Search-based (over )

e Brute-force
e Random search with budget
e Co-ordinate descent
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Modelling:

e Parametric modelling: Ernest

nt =00+ 01f1 +02f2+ ...
= Hand-chosen features f;
e Non-parametric modelling: GPs




BAYESIAN OPTIMISATION REFRESHER

e Choose prior: f ~ N(u, K)

e Random starting points: D

e [teratively:
= Compute predictive posterior p(fy|D)
= Pick & where max a(x)
» Update D




CHERRYPICK'S APPROACH

Search configuration space Z with BO.

mean of O(F

in estimation
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e GP prior: Matérn5/2 kernel
° k(fz, fj; O

271/)




Sufficiently bad prior + acquisition can make
convergence impossible!

P,




Blue: surrogate model. Black: true function.







Confidence intervals vary greatly.




ACQUISITION FUNCTION - MODIFIED El

e Expected improvement
» a(x) = El|u(x)|z, D], for
u(z) = f(Z,) — f(2)
= Closed form:
(f« = 1(2))®(2) + 0(2)$(Z)
e Modified:
« EI'(Z) = P[T(Z) < T,,] x EI(Z)




DISCRETIZED FEATURES

To reduce search space:

e Continuous features (1.2 GHz, 3.3 GHz) —
discrete (slow, fast)
e \iable due to closed form:

(fx = 1(2))2(2) + 0(Z)p(2)




DEALING WITH NOISE

e Multiplicative noise
= Observation: C'(z)(1 + €)
= log C(x) + log(1 + €) =~ logC(x) + €
e Presumably, added as k(x, x) + O'EI in BO
engine




—— True error log(1 + £)
Approximated error




IMPLEMENTATION
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RESULTS

"CherryPick has a 45-90% chance to find optimal
configurations"




CONTRAST W/ ERNEST

Big wins in search time:
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Random search is surprisingly good.
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Figure 8: Running cost of configurations
by CherryPick and random search.
The bars show 10th and 90th percentile.




Strengths

e More sample efficient than other approaches
= Consistently low search cost.
e More adaptable than Ernest
= More flexible (to VM instance types)
e Tunable option to trade-off search cost and
accuracy: El threshold




Weaknesses

Assumes a specific workload
Not significantly better than random search
Weak/lacking justification of modelling choices

= No mention of hyperparameter search or

fitting, e.g. MLE

= Multiplicative noise, whatif 0.2 < € < 1.0?
Up to 9x less search cost than exhaustive search,
but is that good enough?




Contrast to:

Practical bayesian optimization of machine learning algorithms [PDF] neurips.cc

J Snoek, H Larochelle... - Adwv: s in neural ..., 2012 - proceedings.neurips.cc

The use of machine learning algorithms frequently involves careful tuning of learning
parameters and model hyperparameters. Unfortunately, this tuning is often a “black art”

requiring expert experience, rules of thumb, or sometimes brute-force search. There is
therefore great appeal for automatic approaches that can optimize the performance of any
given learning algorithm to the problem at hand. In this work, we consider this problem
through the framework of Bayesian optimization, in which a learning algorithm's ...
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Great discussion on kernel hyperparameter choices.







