BOLT: BRIDGING THE GAP BETWEEN AUTO-TUNERS AND HARDWARE-NATIVE PERFORMANCE Xing et. al. (2021)

Gabriel Mahler

Auto-tuners vs hardware-native libraries

Auto-tuners

- Structural tensor program optimization
- the search space

• Generate training sets of sample programs - use performance to navigate

Auto-tuners

- Strenghts:
 - platform generality

Auto-tuners

- Strenghts:
 - platform generality
- Weaknesses:
 - performance (vs. vendor libraries)

Workload(M,N,K)

Auto-tuners

- Strenghts:
 - Platform generality
- Weaknesses:
 - Performance (vs. vendor libraries)
 - Long search

- Modularized and composable
 - Templates initiated for different hardware and workloads

- Strenghts:
 - Performance superior to hardware-opaque auto-tuning

- Strenghts:
 - Performance superior to hardware-opaque auto-tuning
- Weaknesses:
 - Parameters too low-level

- Strengths:
 - Performance superior to hardware-opaque auto-tuning
- Weaknesses:
 - Parameters too low-level
 - Usually only for a part of a model

- - Deeper operator fusion (graph level)

- - Deeper operator fusion graph level
 - Automated template code generation operator level

- - Deeper operator fusion graph level
 - Automated template code generation operator level
 - (System-friendly models model level)

Pre-requisite: **Epilogue Fusion** (provided by CUTLASS)

- General Matrix Multiply (GEMM)/Convolution Kernels
- Epilogue Kernels (element-wise operators, data type conversion, data type conversion, broadcast vector over columns, partial reduction over columns)

Persistent Kernel

- Fuses GEMMs & Convolutions
- Eliminates activation storing & loading in global memory
- Eliminates kernel initializations

Persistent Kernel

- Requires:
 - GEMM: dimensional compatibility
 - Convolution: filter restrictions

Persistent Kernel

- Bolt:
 - Identifies opportunities to use persistent kernels
 - Generates new code using templates (using CUDA code)

Non-fused:

Epilogue fusion:

GEMM1	Bias	ReLU	
-------	------	------	--

Persistent kernel fusion:

GEMM1 Bi	ias ReLU	GEMM2	Bias	ReLU
----------	----------	-------	------	------

BYOC (bring your own codegen)

BYOC (bring your own codegen)

 Offload parts of code from the compiler (TVM) to templated libraries (CUTLASS)

"Light-weight performance profiler"

"Light-weight performance profiler"

Searches for best template parameters

"Light-weight performance profiler"

- Searches for best template parameters
 - Target hardware-informed

"Light-weight performance profiler"

- Searches for best template parameters
 - Target hardware-informed
 - Templated libraries whiteboxes
 - Further optimization possibilities

System-Friendly Models

• Epilogue fusion: explore activation functions

System-Friendly Models

- Epilogue fusion: explore activation functions
- Persistent kernel: model deepening with 1x1 convolutions

System-Friendly Models

- Epilogue fusion: explore activation functions
- Persistent kernel: model deepening with 1x1 convolutions
- Efficient tensor shapes: padding of unaligned tensors

Normalized speed

Evaluation

Workload (M,N,K)

Comparison: GEMMs

Comparison: Convolutions

Normalized speed

Evaluation

Workload ((H, W), (IC, OC), strides)

Comparison: end-to-end inference speed

Evaluation

Models

Evaluation

Comparison: end-to-end tuning speed

Models

- Integrated into TVM (CUTLASS)
 - <u>https://github.com/apache/tvm/pull/9261</u>
- Actively used by Bytedance

Critique

End-to-end testing only on convolution based models

Critique

- End-to-end testing only on convolution based models
- Limited fusion exploration

Critique

Critique

- End-to-end testing only on convolution based models
- Limited fusion exploration

• Paper not too accessible (eg. many unexplained abbreviations and names)