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Problem: Optimizing Tensor Programs

● Fancy model, but sloooowww
● Not efficient on target architecture!
● Goal: have compiler automatically optimize!
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Approaches
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Solution #0
● Hand tune each model/group of models (yikes!)
● Different for each hardware (yikes)!
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Solution #1: DSL

● Manual, but with syntactic sugar
● Advantage: large optimization 

space (can do anything)
● Disadvantages:

○ Hard to find good variant!
○ Guess/manual test and eval
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Solution #2: Automation!
● Fix some search space S of optimizations!
● Explore to find good program
● Advantage: no (less) manual work!
● Disadvantage: New hardware may have new optimizations!

(Learning to Optimize Tensor Programs, Ansor: Generating High-
Performance Tensor Programs for Deep Learning)
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Example: Special Instructions!

● Difficult for programmer to add new optimization!

Start over/go back to manual DSL?

Authors: Not anymore!

7



The New Contribution: Metaschedule
Goal: flexibility of DSL, but with automation
● “Expressiveness, modularity, designed for learning”
Main idea: decouple search space from search algorithm
● Search space: possible optimized programs
● Search algorithm: finds good optimized program
Second idea: randomly sample parameters
● Probabilistic programming for optimizations
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Transformations 
(Defining Search 
Space)
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Search Space Definition: Program Transformations

● Define transformations (with parameters)
● Transformations composed to form optimized programs
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Sampling Parameters (Second Idea)

● Parameters (tiling sizes, etc.) hard to know in advance
● Sample from a set of possible parameters 11



Composing 
Transformations
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Modules: Manually Composing Transformations

● Ex: multilevel tiling (ex for different parts of memory hierarchy)
● Module: creating transformation from other transformations
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Search: Sampling Parameters, Composing Transformations

● Evolutionary search
● Cost model (evaluation is expensive)
● This part follows previous paper (Ansor)
● Possible to “incorporate other ways”
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Evaluation and My 
Thoughts

15



Metaschedule Evaluation

● Roughly: competitive with previous best, sometimes wins
● Not about performance, necessarily
● Still, doesn’t seem too interesting…
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Crux of the argument: Composability and Tensor Cores

● Limiting suffering of grad students! 
○ Which (some of us) are soon to become

17



My Thoughts
Good:
● Competitive, in some cases much better performance
● Fast part written in C++, but programmer can write their own modules in Python
● Automated and extensible

Bad:
● No easily accessible source code
● Lack of details
● Why are previous approaches not extensive?
● Choice of possible parameters is still manual!
● How extensible is it actually?

○ Can we support sparse operators?
● How modular?
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How Modular?

● To the right: use-tensor-
core

● Seems to explicitly 
require SSSRRSRS tiling 

● New GPU still has tensor 
cores but different 
arch/memory hierarchy?
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Questions?
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