
Tensor Program 
Optimization with 

Probabilistic 
Programs

Authors: J. Shao, X. Zhou, S. 
Feng, B. Hou, R. Lai, H. Jin, 

W. Lin, M. Masuda, C. H. Yu, 
T. Chen

Presenter: Andrew Krapivin
1



Problem: Optimizing Tensor Programs

● Fancy model, but sloooowww
● Not efficient on target architecture!
● Goal: have compiler automatically optimize!

2



Approaches

3



Solution #0
● Hand tune each model/group of models (yikes!)
● Different for each hardware (yikes)!

4



Solution #1: DSL

● Manual, but with syntactic sugar
● Advantage: large optimization 

space (can do anything)
● Disadvantages:

○ Hard to find good variant!
○ Guess/manual test and eval

5



Solution #2: Automation!
● Fix some search space S of optimizations!
● Explore to find good program
● Advantage: no (less) manual work!
● Disadvantage: New hardware may have new optimizations!

(Learning to Optimize Tensor Programs, Ansor: Generating High-
Performance Tensor Programs for Deep Learning)

6



Example: Special Instructions!

● Difficult for programmer to add new optimization!

Start over/go back to manual DSL?

Authors: Not anymore!

7



The New Contribution: Metaschedule
Goal: flexibility of DSL, but with automation
● “Expressiveness, modularity, designed for learning”
Main idea: decouple search space from search algorithm
● Search space: possible optimized programs
● Search algorithm: finds good optimized program
Second idea: randomly sample parameters
● Probabilistic programming for optimizations

8



Transformations 
(Defining Search 
Space)

9



Search Space Definition: Program Transformations

● Define transformations (with parameters)
● Transformations composed to form optimized programs

10



Sampling Parameters (Second Idea)

● Parameters (tiling sizes, etc.) hard to know in advance
● Sample from a set of possible parameters 11



Composing 
Transformations

12



Modules: Manually Composing Transformations

● Ex: multilevel tiling (ex for different parts of memory hierarchy)
● Module: creating transformation from other transformations

13



Search: Sampling Parameters, Composing Transformations

● Evolutionary search
● Cost model (evaluation is expensive)
● This part follows previous paper (Ansor)
● Possible to “incorporate other ways”

14



Evaluation and My 
Thoughts

15



Metaschedule Evaluation

● Roughly: competitive with previous best, sometimes wins
● Not about performance, necessarily
● Still, doesn’t seem too interesting…

16



Crux of the argument: Composability and Tensor Cores

● Limiting suffering of grad students! 
○ Which (some of us) are soon to become

17



My Thoughts
Good:
● Competitive, in some cases much better performance
● Fast part written in C++, but programmer can write their own modules in Python
● Automated and extensible

Bad:
● No easily accessible source code
● Lack of details
● Why are previous approaches not extensive?
● Choice of possible parameters is still manual!
● How extensible is it actually?

○ Can we support sparse operators?
● How modular?

18



How Modular?

● To the right: use-tensor-
core

● Seems to explicitly 
require SSSRRSRS tiling 

● New GPU still has tensor 
cores but different 
arch/memory hierarchy?

19



Questions?

20


	Tensor Program Optimization with Probabilistic Programs
	Problem: Optimizing Tensor Programs
	Approaches
	Solution #0
	Solution #1: DSL
	Solution #2: Automation!
	Example: Special Instructions!
	The New Contribution: Metaschedule
	Transformations (Defining Search Space)
	Search Space Definition: Program Transformations
	Sampling Parameters (Second Idea)
	Composing Transformations
	Modules: Manually Composing Transformations
	Search: Sampling Parameters, Composing Transformations
	Evaluation and My Thoughts
	Metaschedule Evaluation
	Crux of the argument: Composability and Tensor Cores
	My Thoughts
	How Modular?
	Questions?

