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Bayesian Optimisation

Motivation

- Black box function

- Find a minimum/maximum/optimal/satisfactory point

- Expensive to probe

- Take a few samples until we are confident that we have
found (close to) optimal solutions

- If only we have can represent just about any function - - -



Gaussian Process

Think of a Gaussian Process as a distribution of functions
f: X =R



Gaussian Process

Think of a Gaussian Process as a distribution of functions
f: X =R

The input domain X can be just about anything. In most
application domains it is some R?



Gaussian Process

Think of a Gaussian Process as a distribution of functions
f: X =R

The input domain X can be just about anything. In most
application domains it is some R?

By convention, we use the following notation to denote a
Gaussian Process

GP(m(-), R(-;-))



Gaussian Process

100 Functions Sampled from a Gaussian Process and Confidence Interval
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Figure 1: Gaussian Process, m = 0, k = RBF, 100 Functions sampled



Gaussian Process

There are restriction to the functions we can sample: at each
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There are restriction to the functions we can sample: at each
point x; € X, the function

f06) ~ N (u(x), o(x)%), Yf € GP(m(-), k(-,-))




GP Kernels: gives you just about anything!

The RBF Kernel:
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The Brownian kernel:
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GP Kernels: gives you just about anything!

Linear kernel:
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Bayesian Optimization

Posterior Update with 1 Observed Points
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Bayesian Optimization

Posterior Update with 2 Observed Points
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Bayesian Optimisation

The goal is to find a point that fits our requirement in as little
experiments as possible...
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Bayesian Optimisation

The goal is to find a point that fits our requirement in as little
experiments as possible...

And be confident that we have found the optimal solution
when we stop searching...

14



Bayesian Optimisation Example 1/5
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Bayesian Optimisation Example 2/5
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Bayesian Optimisation Example 3/5
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Bayesian Optimisation Example 4/5
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Bayesian Optimisation Example 5/5
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Limitations of BO

- Convergence is hard when input dimension > 10/20/30

- How do we tweak the model if we actual know something
about the system?
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Structured Bayesian Optimisation




Structured BO

- Express domain knowledge as probability model

- Use standard BO techniques to sample unknown
parameters
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Structured BO
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Figure 3.1: Procedure of structured Bayesian optimisation.
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Structured BO: Semi-Parametric Model

(a) Parametric (Linear regression)
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vector.
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Case Study: Garbage Collector Latency

- Cares about 99% Percentile latency

- Input parameters: young generation flag ygs, survivor
ratio sr and max tenuring threshold mtt.

- Observation: rate of garbage collection is roughly
inversely proportional to eden size.

- Use Gaussian Process to model the difference.

2%



Case Study: GC Latency (cont.d)

}

class GCRateModel{

GCRateModel (){
// Prior distribution on the parameters
allocated_mbs_per_sec = uniform_draw(0.0, 5000.90);
gp.stdev(uniform_draw(3.9,30.0));
gp.linear_scales({uniform_draw(0.0, 15000.0),

uniform_draw(0.0, 20.0)});

gp.noise(uniform_draw(0.001, 0.01));

3

double parametric(int ygs, int sr){
//Compute the size of eden used by the JWM
double eden_size = ygs * sr / (sr + 2);
return allocated_mbs_per_sec / eden_size;

}

double predict(int ygs, int sr, int mtt) {
return gp.predict({ygs, sr, mtt}) + parametric(ygs, sr);
}

double observe(int ygs, int sr, int mtt, double observed_rate){
return gp.observe({ygs, sr, mtt},
observed_rate - parametric(ygs, sr));

}

double allocated_mbs_per_sec;
GaussianProcess gp;
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Case Study: GC Latency (cont.d)

Task is split into compartmentalized subtasks, each subtask
can be individually measured and evaluated.

GC Average Latency Predicted
GC Flags Duration Model Model Latency
GC Rate
Model

Figure 2: Dataflow of our garbage collection model

What's (poentitally )nice about it: in larger tasks, we can split
up the input parameter space*.
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Case Study: GC Latency (cont.d)

struct CassandraModel : public DAGModel<CassandraModel> {
void model(int ygs, int sr, int mtt){
// Calculate the size of the heap regions
double es = ygs * sr / (sr + 2.0);// Eden space’s size

double ss = ygs / (sr + 2.0); // Survivor space’s size
// Define the dataflow between semi-parametric models
double rate = output('rate", rate_model, es);

double duration = output("duration", duration_model,
es, ss, mtt);
double latency = output("latency”, latency_model,
rate, duration, es, ss, mtt);
}
ProbEngine<GCRateModel> rate_model;
ProbEngine<GCDurationModel> duration_model;
ProbEngine<LatencyModel> latency_model;
Y

int main() {
CassandraModel model;
// Observe a measurement
std: :unordered_map<std: :string, double> m;
m["rate"] = 0.40; m["duration"] = 0.15; m["latency"] = 15.1;
int ygs = 5000, sr = 7, mtt =
model.observe(m, ygs, sr, mtt);
/* Prints distributions (mean and stdev) of rate, duration
and latency with a larger young generation size (ygs)*/
std: :cout << model.predict(6000, sr, mtt) << std::endl;
// Print corresponding expected improvement of the latency
std: :cout << model.expected_improvement (
"latency", 15.1, 6000, sr, mtt) << std::endl;

Listing 2: The full Cassandra latency model.
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Results & Evaluation




Test 1: Garbage Collection

- Tunable Parameters:

- Young generation flag ygs
- Survivor ratio sr
- Max tenuring threshold mtt.
- Probability Model (Intermediate Results)

- GC Rate
- GC Duration
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Test 1: Garbage Collection Results
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Test 2: Distributed ML Training

- Input parameters:
- Machine configurations
- NN Architecture
- Batch Size
- Tunable Parameters:
- Subset of machines to use as workers
- Subset of machine to use as parameter server
- Partition of workload between machines
- Proability Model (Intermediate Results)
- Individual device compute time
- Individual machine compute time
- Communication Cost
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Test 2: Distributed ML Training (Cont.d)

inputs inputs

Figure 7.5: Top decompositions of the neural network case study.
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Test 2: Distributed ML Training (Cont.d)
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Figure 7: Normalized time per input (lower is better) of simple and optimized configurations on each experiment. Within cach
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Test 2: Distributed ML Training (Cont.d)
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Conclusion




Conclusion

- (+) Interesting way to address parameter size limit of BO

- (+) Interesting way to inject domain knowledge into BO
setting

- (+) Good arguments made on how this method addresses
the dimensionality challenge faced by BO

- (-) Paper is not self-complete: semi-parametric section,
DAG section poorly described in paper; more information
in thesis

- (-) Did not discuss the extra compute cost (if any) of this
method per iteration compared to standard BO
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Related Works




Grey Box Optimisations
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Grey Box Optimisations
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