BOAT: Building Auto-Tuner with Structured
Bayesian Optimization

Author: Valentin Dalibard; Presenter: Xavier Chen (zc344)
November 13, 2024

Background: Bayesian Optimisation
Structured Bayesian Optimisation
Results & Evaluation

Conclusion

Related Works

Background: Bayesian Optimisation

Bayesian Optimisation

Motivation

Bayesian Optimisation

Motivation

- Black box function

Bayesian Optimisation

Motivation

- Black box function

- Find a minimum/maximum/optimal/satisfactory point

Bayesian Optimisation

Motivation

- Black box function
- Find a minimum/maximum/optimal/satisfactory point

- Expensive to probe

Bayesian Optimisation

Motivation

- Black box function

- Find a minimum/maximum/optimal/satisfactory point

- Expensive to probe

- Take a few samples until we are confident that we have
found (close to) optimal solutions

- If only we have can represent just about any function - - -

Gaussian Process

Think of a Gaussian Process as a distribution of functions
f: X =R

Gaussian Process

Think of a Gaussian Process as a distribution of functions
f: X =R

The input domain X can be just about anything. In most
application domains it is some R?

Gaussian Process

Think of a Gaussian Process as a distribution of functions
f: X =R

The input domain X can be just about anything. In most
application domains it is some R?

By convention, we use the following notation to denote a
Gaussian Process

GP(m(-), R(-;-))

Gaussian Process

100 Functions Sampled from a Gaussian Process and Confidence Interval

s
2
1
o
4
2
)
-
= = s 3 %
Disrbution of fx) at x = -2 Distribution of fx) st x = 0 Distribution of fx) t x = 3
. .
.
H ge £
B ML ; iw B MI‘L
A | | . I “l A - |
= e e s S B I T T S R R L N
) o w

Figure 1: Gaussian Process, m = 0, k = RBF, 100 Functions sampled

Gaussian Process

There are restriction to the functions we can sample: at each
point x; € X, the function

f06) ~ N (u(x), o(x)%), Yf € GP(m(-), k(-,-))

Gaussian Process

There are restriction to the functions we can sample: at each
point x; € X, the function

f06) ~ N (u(x), o(x)%), Yf € GP(m(-), k(-,-))

GP Kernels: gives you just about anything!

The RBF Kernel:

>
[
— =
= _
c
= o
= X
= 0]
y ~—~
c -
S <
m. |
m =
= +
-
+— N
0
= 2
SN .. —~
> oD X
o 2 =
> — >
") v T
Fes) 7
V [ea](aN]
an =
Ll N
@
= =
o S
4 —
o
O

min{x, x'}

)

, X
T

R(x

The Brownian kernel:

on
=
=
=
>
=
©
=
>
o
o)
©
=
(%]
.u
>
o
>
n
Q
=
o)
B
Q
c
—
Q
~
[a W
()

GP Kernels: gives you just about anything!

Linear kernel:

15 T T T T

10 | s

=10 L L Il

n

Bayesian Optimization

Posterior Update with 1 Observed Points

12

Bayesian Optimization

Posterior Update with 2 Observed Points

13

Bayesian Optimisation

The goal is to find a point that fits our requirement in as little
experiments as possible...

14

Bayesian Optimisation

The goal is to find a point that fits our requirement in as little
experiments as possible...

And be confident that we have found the optimal solution
when we stop searching...

14

Bayesian Optimisation Example 1/5

® Observations _/
10{ =+ True Objective Function /
/
5 /
\, /
——
\, /
N
-5 ._'.
=10
0.0 0.2 0.4 0.6 0.8 1.0

15

Bayesian Optimisation Example 2/5

—15

@® Observations l

10! =** True Objective Function /
= Surrogate Model [4

Acqusition function

Bayesian Optimisation Example 3/5

15

@® Observations -/

10{ — " True Objective Function /
—— Surrogate Model I 4

= Acqusition function

w
~

N 3
R oo =
= (<]
2
s
1
-10
\ —
0.0 02 04 06 0.8 10

Bayesian Optimisation Example 4/5

15
@® Observations _/
10/ =+ True Objective Function /
- Surrogate Model ,, 4
- Acqusition function .
5| ' /

Bayesian Optimisation Example 5/5

—5

@® Observations _I

10, = True Objective Function /
—— Surrogate Model ,' 4

—— Acqusition function

19

Limitations of BO

- Convergence is hard when input dimension > 10/20/30

- How do we tweak the model if we actual know something
about the system?

20

Structured Bayesian Optimisation

Structured BO

- Express domain knowledge as probability model

- Use standard BO techniques to sample unknown
parameters

21

Structured BO

Configuration @® Structured Predicted
Space _ Probabilistic Model Performance

Performance &
Runtime properties

Objective
Function

Figure 3.1: Procedure of structured Bayesian optimisation.

22

Structured BO: Semi-Parametric Model

(a) Parametric (Linear regression)
4

4 4
3 3t
w @
=2 2
o2 22
€ €
- [
1} 1
00 1000 2000 00 1000 2000
Vector size Vector size

(b) Non-parametric (Gaussian process)

3
@
2
o2
£
= Ground Truth

1 Model Observation ||

—— Predicted Time
QD 1000 2000
Vector size

Figure 3: Prediction of runtime for inserting number into sorted

vector.

23

Case Study: Garbage Collector Latency

- Cares about 99% Percentile latency

- Input parameters: young generation flag ygs, survivor
ratio sr and max tenuring threshold mtt.

- Observation: rate of garbage collection is roughly
inversely proportional to eden size.

- Use Gaussian Process to model the difference.

2%

Case Study: GC Latency (cont.d)

}

class GCRateModel{

GCRateModel (){
// Prior distribution on the parameters
allocated_mbs_per_sec = uniform_draw(0.0, 5000.90);
gp.stdev(uniform_draw(3.9,30.0));
gp.linear_scales({uniform_draw(0.0, 15000.0),

uniform_draw(0.0, 20.0)});

gp.noise(uniform_draw(0.001, 0.01));

3

double parametric(int ygs, int sr){
//Compute the size of eden used by the JWM
double eden_size = ygs * sr / (sr + 2);
return allocated_mbs_per_sec / eden_size;

}

double predict(int ygs, int sr, int mtt) {
return gp.predict({ygs, sr, mtt}) + parametric(ygs, sr);
}

double observe(int ygs, int sr, int mtt, double observed_rate){
return gp.observe({ygs, sr, mtt},
observed_rate - parametric(ygs, sr));

}

double allocated_mbs_per_sec;
GaussianProcess gp;

25

Case Study: GC Latency (cont.d)

Task is split into compartmentalized subtasks, each subtask
can be individually measured and evaluated.

GC Average Latency Predicted
GC Flags Duration Model Model Latency
GC Rate
Model

Figure 2: Dataflow of our garbage collection model

What's (poentitally)nice about it: in larger tasks, we can split
up the input parameter space*.

26

Case Study: GC Latency (cont.d)

struct CassandraModel : public DAGModel<CassandraModel> {
void model(int ygs, int sr, int mtt){
// Calculate the size of the heap regions
double es = ygs * sr / (sr + 2.0);// Eden space’s size

double ss = ygs / (sr + 2.0); // Survivor space’s size
// Define the dataflow between semi-parametric models
double rate = output('rate", rate_model, es);

double duration = output("duration", duration_model,
es, ss, mtt);
double latency = output("latency”, latency_model,
rate, duration, es, ss, mtt);
}
ProbEngine<GCRateModel> rate_model;
ProbEngine<GCDurationModel> duration_model;
ProbEngine<LatencyModel> latency_model;
Y

int main() {
CassandraModel model;
// Observe a measurement
std: :unordered_map<std: :string, double> m;
m["rate"] = 0.40; m["duration"] = 0.15; m["latency"] = 15.1;
int ygs = 5000, sr = 7, mtt =
model.observe(m, ygs, sr, mtt);
/* Prints distributions (mean and stdev) of rate, duration
and latency with a larger young generation size (ygs)*/
std: :cout << model.predict(6000, sr, mtt) << std::endl;
// Print corresponding expected improvement of the latency
std: :cout << model.expected_improvement (
"latency", 15.1, 6000, sr, mtt) << std::endl;

Listing 2: The full Cassandra latency model.

27

Results & Evaluation

Test 1: Garbage Collection

- Tunable Parameters:

- Young generation flag ygs
- Survivor ratio sr
- Max tenuring threshold mtt.
- Probability Model (Intermediate Results)

- GC Rate
- GC Duration

28

Test 1: Garbage Collection Results

N
S

EEm Cassandra default|
== Optimized

¥~ OpenTuner!
&~ Spearmint

—}— BOAT

-
7]

000000000

99th Percentile Latency (ms)
Best 99th percentile latency (ms)

10 NI
10 o T
L TN Db s
s 5
L'y B 0 %5 10 15 20 25 30
YCSB core workload Iteration

29

Test 2: Distributed ML Training

- Input parameters:
- Machine configurations
- NN Architecture
- Batch Size
- Tunable Parameters:
- Subset of machines to use as workers
- Subset of machine to use as parameter server
- Partition of workload between machines
- Proability Model (Intermediate Results)
- Individual device compute time
- Individual machine compute time
- Communication Cost

30

Test 2: Distributed ML Training (Cont.d)

inputs inputs

Figure 7.5: Top decompositions of the neural network case study.

31

Test 2: Distributed ML Training (Cont.d)

GoogleNet AlexNet SpeechNet
16.0 Normalization
f» 8.0 7.81 3.62 0.11— factor (ms)
. £ 40
5 2 20 3‘\‘\60\. S —
2 © 4
£ 9 1o 10" oot i N 10 & 10" 10
3
16.
3 @ g g 5.88 295 0.08
E 2 4 —_—t
s 5 ‘2‘8 — Uniform
- 5 2 4 -
2 & 10 10T o0—0 = 5 GPUs
& 07 107 10 5 10 Uniform
© Devices
E o8 5.35 2.39 0.07
> 8
= £ 40 Optimized
2 20 = S 1%\0\‘ z’ﬁtﬁ',:; W’iconfiguratwon
& 1 Tt 0
10] 107 10 1o* 1o 2 2 10 # Workers

26 27 28 29 28 29 210 211 213 214 215 216
Batch size (# of inputs)

Figure 7: Normalized time per input (lower is better) of simple and optimized configurations on each experiment. Within cach
sub-graph, results are normalized by the best achieved time per input. This is always the one of the optimized configuration on
the largest batch size (the lower right point of each sub-graph). The normalization factor, i.e. the best time per input, is shown
at the top right of each sub-graph in milli ds. For each opti guration, we report the number of workers used.

32

Test 2: Distributed ML Training (Cont.d)

Best SGD iteration time (s)

100
50

10}

e

-+ OpenTuner||
+ Spearmint
-+ BOAT

-]

B—S—0—0-0-0-—a

Mi%

||H|||||mm_

10 15 20 25 30
lteration

33

Conclusion

Conclusion

- (+) Interesting way to address parameter size limit of BO

- (+) Interesting way to inject domain knowledge into BO
setting

- (+) Good arguments made on how this method addresses
the dimensionality challenge faced by BO

- (-) Paper is not self-complete: semi-parametric section,
DAG section poorly described in paper; more information
in thesis

- (-) Did not discuss the extra compute cost (if any) of this
method per iteration compared to standard BO

34

Related Works

Grey Box Optimisations

] | Treats the box as black _] 4~ Random
\;g.‘ e |
. —&— El
- & PES
0 —$— Random-CF
= —4— PI-CF
[0) -
e 1] —4— EICF
<
S -2 ‘
2 i
_3 B 1
_4 4
_5 -
0 20 40 60 80 100
function evaluations

35

Grey Box Optimisations

- Astudillo & F, "Bayesian Optimization of Composite
Functions” ICML 2019

- Wu, Toscano-Palmerin, Wilson, F, “Practical Multi-fidelity
Bayesian Optimization of Iterative Machine Learning
Algorithms” UAI 2019

- Toscano-Palmerin, F. "Bayesian Optimization with
Expensive Integrands”, in submission, arxiv 1803.08661

- Wu, Poloczek, Wilson, Frazier, "Bayesian Optimization with
Gradients” NIPS 2017

- Poloczek, Wang, F, “Multi-Information Source

Optimization” Neural Information Processing Systems NIPS
2017

36

	Background: Bayesian Optimisation
	Structured Bayesian Optimisation
	Results & Evaluation
	Conclusion
	Related Works

