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Background: Bayesian Optimisation



Bayesian Optimisation

Motivation

• Black box function
• Find a minimum/maximum/optimal/satisfactory point
• Expensive to probe
• Take a few samples until we are confident that we have
found (close to) optimal solutions

• If only we have can represent just about any function · · ·
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Gaussian Process

Think of a Gaussian Process as a distribution of functions
f : X → R.

The input domain X can be just about anything. In most
application domains it is some Rd

By convention, we use the following notation to denote a
Gaussian Process

GP(m(·), k(·, ·))
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Gaussian Process

Figure 1: Gaussian Process, m = 0, k = RBF, 100 Functions sampled
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Gaussian Process

There are restriction to the functions we can sample: at each
point xi ∈ X , the function

f (xi) ∼ N (µ(xi), σ(xi)2), ∀f ∈ GP(m(·), k(·, ·))

Figure 2: Gaussian Process, m = 0, k = RBF, 20,000 Functions
sampled
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GP Kernels: gives you just about anything!

The RBF Kernel:

k(x, k′) = C exp− 1
2
K2(x − x′)2
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GP Kernels: gives you just about anything!

The Matern 3
2 kernel:

k(x, k′) ∼ (1+ |x − x′|) exp−|x − x′|
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GP Kernels: gives you just about anything!

The Brownian kernel:

k(x, x′) = min{x, x′}
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GP Kernels: gives you just about anything!

White noise

k(x, x′) =

1 if x = x′

0 otherwise
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GP Kernels: gives you just about anything!

Linear kernel:
k(x, x′) = xx′
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Bayesian Optimization

12



Bayesian Optimization
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Bayesian Optimisation

The goal is to find a point that fits our requirement in as little
experiments as possible...

And be confident that we have found the optimal solution
when we stop searching...
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Bayesian Optimisation Example 1/5
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Bayesian Optimisation Example 2/5
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Bayesian Optimisation Example 3/5
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Bayesian Optimisation Example 4/5
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Bayesian Optimisation Example 5/5
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Limitations of BO

• Convergence is hard when input dimension > 10/20/30
• How do we tweak the model if we actual know something
about the system?
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Structured Bayesian Optimisation



Structured BO

• Express domain knowledge as probability model
• Use standard BO techniques to sample unknown
parameters
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Structured BO
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Structured BO: Semi–Parametric Model

Figure 3: Prediction of runtime for inserting number into sorted
vector.
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Case Study: Garbage Collector Latency

• Cares about 99% Percentile latency
• Input parameters: young generation flag ygs, survivor
ratio sr and max tenuring threshold mtt.

• Observation: rate of garbage collection is roughly
inversely proportional to eden size.

• Use Gaussian Process to model the difference.
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Case Study: GC Latency (cont.d)
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Case Study: GC Latency (cont.d)

Task is split into compartmentalized subtasks, each subtask
can be individually measured and evaluated.

What’s (poentitally )nice about it: in larger tasks, we can split
up the input parameter space∗.
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Case Study: GC Latency (cont.d)
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Results & Evaluation



Test 1: Garbage Collection

• Tunable Parameters:
• Young generation flag ygs
• Survivor ratio sr
• Max tenuring threshold mtt.

• Probability Model (Intermediate Results)
• GC Rate
• GC Duration
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Test 1: Garbage Collection Results
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Test 2: Distributed ML Training

• Input parameters:
• Machine configurations
• NN Architecture
• Batch Size

• Tunable Parameters:
• Subset of machines to use as workers
• Subset of machine to use as parameter server
• Partition of workload between machines

• Proability Model (Intermediate Results)
• Individual device compute time
• Individual machine compute time
• Communication Cost
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Test 2: Distributed ML Training (Cont.d)
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Test 2: Distributed ML Training (Cont.d)
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Test 2: Distributed ML Training (Cont.d)
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Conclusion



Conclusion

• (+) Interesting way to address parameter size limit of BO
• (+) Interesting way to inject domain knowledge into BO
setting

• (+) Good arguments made on how this method addresses
the dimensionality challenge faced by BO

• (-) Paper is not self–complete: semi–parametric section,
DAG section poorly described in paper; more information
in thesis

• (-) Did not discuss the extra compute cost (if any) of this
method per iteration compared to standard BO
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Related Works



Grey Box Optimisations
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Grey Box Optimisations

• Astudillo & F., ”Bayesian Optimization of Composite
Functions”, ICML 2019

• Wu, Toscano-Palmerin, Wilson, F., “Practical Multi-fidelity
Bayesian Optimization of Iterative Machine Learning
Algorithms” UAI 2019

• Toscano-Palmerin, F. ”Bayesian Optimization with
Expensive Integrands”, in submission, arxiv 1803.08661

• Wu, Poloczek, Wilson, Frazier, ”Bayesian Optimization with
Gradients” NIPS 2017

• Poloczek, Wang, F., “Multi-Information Source
Optimization” Neural Information Processing Systems NIPS
2017
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