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Background Context

Bayesian Optimization

Optimize black-box function

Surrogate Model: Uses GP to approximate the function

Acquisition Function: Guides where to sample next

Iterative Process: Updated model with each new sample from acquisition

Applications to High-Dimensional Functions
- Limited to low-dimensional problems due to its computational and statistical
challenges



Background Context

Addressed by assuming a simpler underlying structure
- Djolonga et al. (2013) assume a low-dimensional effective subspace
- Kandasamy et al. (2015) assume additive structure of the function, constituent
functions operate on disjoint low-dimensional subspaces
- Fully optimising the decomposition is intractable

Adapting the decomposition
- Maximise the GP marginal likelihood every certain number of iterations
- However, this maximisation is computationally intractable due to
combinatorial nature of the partitions of the feature space
- Instead used randomized search heuristics



Background Context

Changes over the past years
- There has been an increased interest modelling functions with a large number
of parameters
- Movement to more parallel architectures: multi-core, GPUs, clusters



Problem Tackled

Tackle BO on high-dimensional black-box functions
- Assume a latent additive structure in the function and infer it properly for more
efficient and effective BO
- Perform multiple evaluations in parallel to reduce the number of iterations
required by the method



Problem Tackled

Additive BO
- Wewanttofind  f(&")=maxf(z).

- Assume a latent decomposition of the feature dimensions into disjoint
subspaces. Further f can be decomposed into the following additive form

fz) = Z fm(z

- Assume each function is drawn mdependently from GP(0,k(™)



Problem Tackled

Additive BO
- The log data likelihood for D,
log p(Dn| {k™, A }mem) 2.1)
- —%(yT(Kn + o?I)" 'y +log |K,, + 0*I| + nlog2m)

- Can then infer the posterior mean and covariance function of the subfunction
p () = k™ (@) (K + 02 1)1y
k(™) (g4 ,x'Am) = k(™) (:vAm,:r’Am)
— k™ (A (K + 1) R (),

where k™ (z4m) = [k™) (zfm, 24 )] <.



Problem Tackled

Additive BO
- The authors use regret to evaluate the BO algorithms in the sequential and
the batch selection case

- For the sequential case
7t = maxgex f(x) — f(xt)

- For the batch selection case
7+ = maXzex ve(B] f(x) — f(Tep)

- The authors then looked at averaged accumulative regret and simple regret
Rr = % Zt T4 T = mintsr_p ’Ft



Key Solution

Learning Additive Structure
- Takes a Bayesian view on the task of learning the latent structure of the GP
kernel
- The decomposition of the input space is learnt simultaneously with
optimization
- Decomposition is sampled using 6 ~ Dir(a) 2; ~ MULTI(A)



Key Solution

Learning Additive Structure
- The authors then use Gibbs sampling to learn the posterior distribution for z
- Choose the decomposition among the samples that achieves the highest data
likelihood, then proceed with BO.
- Gibbs sampler draws z; according to

p(zj =m | 25, Dn; o) < p(Dn | 2)p(25 | 2-5)
< p(Dn | 2)(|Am| + am) o €™,



Key Solution

Diverse Batch Sampling

Selects a batch of B observations to be made in parallel, then the model is
updated with all simultaneously

Need an efficient strategy that encourages observations that are both
informative and non-redundant

Given a decomposition z, they define a separate Determinantal Point Process
(DPP) on each group of Al dimensions and sample a set of points in the
subspace.

As group sizes are upper-bounded by some constant, sampling from each
such DPP gives an exponential speedup



Key Solution

Combining Samples
- Combines samples from each group randomly without replacement

- Or greedily, define a quality function for each group, and combine samples to
maximise this function
- Then showed how the batched framework works with GP-UCB, by setting
both the acquisition function and quality function to
(F™) (@) = w (@) + B2 ot™ ()
- To ensure that points with high acquisition function values are selected, they
define a relevance region for each group m



Evaluation

Table 1. Empirical posterior of any two dimensions correctly be-

ing grouped together by Gibbs sampling.

DN 50 150 250 450

5 0.81 +£0.28 0.91+£0.19 1.00£0.03 1.00%+0.00
10 0.21+0.13 0.54+0.25 0.68+0.25 0.93+0.15
20 0.06 = 0.06 0.11 £0.08 0.20£0.12 0.71 £0.22
50 0.024+0.03 0.02+£0.02 0.03+0.03 0.06+0.04
100 0.01£0.01 0.01+0.01 0.01£0.01 0.0240.02

Table 2. Empirical posterior of any two dimensions correctly be-

ing separated by Gibbs sampling.

DN 50 150 250 450

2 0.30+0.46 0.30+0.46 0.90£+0.30 1.00=+0.00
5 0.87+0.17 0.80+0.27 0.60+0.32 0.50+0.34
10 0.88£+£0.05 0.89+0.06 0.89£0.07 0.94+0.07
20 0.94+0.02 0.94+0.02 0.944+£0.02 0.974+0.02
50 0.98+0.00 0.98+0.00 0.984+0.01 0.984+0.01
100 0.994+0.00 0.99+£0.00 0.994+0.00 0.99+0.00

N w H (6} (o2} ~ (o] © o
T T T T == ™Iy

—NP
FP

—PL-1

—PL2 ||
Gibbs

Wang et. al. 2017



Evaluation
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Evaluation
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Opinion of Paper

Agree
- The necessity of the paper
- The rational and techniques used
- The results of the paper and the subsequent explanations

Disagree
- Claims that performance increases with additional dimensions but graphs do
not show that



Opinion of Paper

Strengths

Extended application of BO to higher-dimensional problems

Proposed a dimensional decomposition technique that can be applied in
parallel to the optimisation

Proposed a batch sampler for high-dimensions using subspace
decompositions

Evaluated decomposition and batch samplers on artificial functions and on a
real-life function suspected to have a latent additive structure

Well-written



Opinion of Paper

Weakness

Only works on functions with latent (partial) additive structure
Did not evaluate performance on non-additive functions
Mostly theoretical so didn’t show real-world performance

Did not compare performance with existing systems



Opinion of Paper

Key Takeaway
- Propose two solutions for high-dimensional BO: inferring latent structure, and
combining it with batch BO
- Results of experiments demonstrate that proposed techniques are effective

Key Impact
- Has lead to paper expanding on scalability (Wang et al., 2018)
- Gibbs sampler learns also the kernel parameters
- Partitions input space for scalability using Mondrian forests
- Automatically generates batch queries



