
X-Stream: Edge-centric Graph
Processing using Streaming Partitions

Authors: Amitabha Roy, Ivo Mihailovic, Willy Zwaenepoel

R244 Session 3

30 October 2024

1

Background

• Large-scale graphs

• Standard Scale-Out approach
• Google Pregel

• PowerGraph

• Single Machine?
• Ligra

• X-Stream

2

Existing Approach

• Scatter-Gather programming model
• Scatter: Propagate updates across edges

• Gather: Apply incoming updates

• Many graph problems can be
expressed in this model

• PageRank

3

Way fewer vertices than edges

Existing systems:

1. Sort edges of the graph based on the source vertex

2. Build an index for the edges

3. For each vertex:
• Perform a lookup through the index to obtain outgoing edges

Existing Approach – Vertex-Centric

4

Main Bottleneck

• Access Locality

• Sequential Access >>> Random Access
• 500x faster for HDDs

• 30x faster for SSDs

• Even main memory (2x faster)

• Great opportunity for performance gains
if sequential access is leveraged

5

Two-tier Storage Hierarchy

• We can afford random lookups on Fast Storage mediums

• But Slow Storage mediums should only be accessed sequentially

• In-memory graphs:
• Fast Storage: CPU Cache
• Slow Storage: Main Memory

• Out-of-core graphs:
• Fast Storage: Main Memory
• Slow Storage: HDDs/SSDs

6

Streaming Partitions

1. Subset of vertices (fits entirely into fast storage)

2. Subset of edges (streamed from slow storage)
• All edges whose source vertex is in the vertex set

3. Set of updates (streamed from slow storage)
• All updates whose destination vertex is in the vertex set

• Streaming Buffers (in fast storage)

Set of

vertices

Set of

edges

P1

P2

P3

P4

…

7

S
e
q

u
e
n

ti
a
l
S

c
a
n

8

In-memory

• To fully utilise the high streaming bandwidths of main memory,
parallelism is required

• Since the CPU Cache has limited storage, way more streaming
partitions are required

9

Evaluation

10

Evaluation

11

Weaknesses

• Does not perform well with high-diameter graphs – too many
scatter-gather iterations required

• Evaluation for out-of-core graphs is quite limited

• No mention of fault tolerance

• “Wasted” edges problem

12

13

Edge-centric weakness

14

Strengths

• Edge list does not need to be sorted

• Adaptable to various setups:
• In-memory or Out-of-Core

• CPU Cache, Main Memory, SSD, HDD

• Utilisation of I/O bandwidth

15

	Slide 1: X-Stream: Edge-centric Graph Processing using Streaming Partitions
	Slide 2: Background
	Slide 3: Existing Approach
	Slide 4: Existing Approach – Vertex-Centric
	Slide 5: Main Bottleneck
	Slide 6: Two-tier Storage Hierarchy
	Slide 7: Streaming Partitions
	Slide 8
	Slide 9: In-memory
	Slide 10: Evaluation
	Slide 11: Evaluation
	Slide 12: Weaknesses
	Slide 13
	Slide 14: Edge-centric weakness
	Slide 15: Strengths

