X-Stream: Edge-centric Graph
Processing using Streaming Partitions

Authors: Amitabha Roy, Ivo Mihalilovic, Willy Zwaenepoel

R244 Session 3
30 October 2024

Background
« Large-scale graphs

« Standard Scale-Out approach

* Google Pregel
« PowerGraph

* Single Machine?
e Ligra |
e X-Stream

Existing Approach

« Scatter-Gather programming model

« Scatter: Propagate updates across edges

« Gather: Apply incoming updates

« Many graph problems can be
expressed Iin this model
« PageRank

vertex_ scatter (vertex v)
send updates over outgoing edges of v

vertex gather (vertex v)
apply updates from inbound edges of v

while not done
for all vertices v that need to scatter updates
vertex scatter (v)
for all vertices v that have updates
vertex gather (v)

Figure 1: Vertex-centric Scatter-Gather

3

Existing Approach — Vertex-Centric

Way fewer vertices than edges

Existing systems:
1. Sort edges of the graph based on the source vertex

2. Build an index for the edges

3. For each vertex:
« Perform a lookup through the index to obtain outgoing edges

Main Bottleneck

« Access Locality

» Sequential Access >>> Random Access

* 500x faster for HDDs
e 30x faster for SSDs
« Even main memory (2x faster)

« Great opportunity for performance gains
If sequential access Is leveraged

Two-tier Storage Hierarchy

* We can afford random lookups on Fast Storage mediums
« But Slow Storage mediums should only be accessed sequentially

* In-memory graphs:
e Fast Storage: CPU Cache
« Slow Storage: Main Memory

« Qut-of-core graphs:
« Fast Storage: Main Memory
« Slow Storage: HDDs/SSDs

Streaming Partitions

1. Subset of vertices (fits entirely into fast storage)

2. Subset of edges (streamed from slow storage)
« All edges whose source vertex is in the vertex set

3. Set of updates (streamed from slow storage)
« All updates whose destination vertex is in the vertex set

« Streaming Buffers (in fast storage)

P1

P2

P3

P4

Set of
vertices

Set of
edges

Sequential Scan

1. Edge Centric Scatter

Edges (sequential read)

\ A] 4 Al ©°°
VAVAW

AN

N\ i

__— Vertices (random read/write)

\ LA J\L/J oo
NS

Updates (sequential write)

2. Edge Centric Gather
Updates (sequential read)
\ L4y 4\L/4 ©oo
VAV
JARNIAN
Y Y »

AN i
———" Vertices (random read/write)

Figure 3: Streaming Memory Access

merged scatter/shuffle phase:
for each streaming partition s
while edges left in s
load next chunk of edges into input buffer
for each edge e in memory
edge_scatter (e) appending to output buffer
if output buffer is full or no more edges
in-memory shuffle output buffer
for each streaming partition p
append chunk p to update file for p

gather phase:
for each streaming partition p

read in vertex set of p

while updates left in p
load next chunk of updates into input buffer
for each update u in input buffer

edge_gather (u)
write vertex set of p

Figure 6: Disk Streaming Loop

In-memory

* To fully utilise the high streaming bandwidths of main memory,
parallelism is required

Thread 1| Thread 2 Thread P
I
|
|
Write l. 1ﬁeatﬂlwriLe.l 1Ree.u:| w tEl TR ad

o el e e

: I
|
|12...K|“12...K| soo
I
| | !
Slice 1] Slice2 | i slic

Figure 7: Slicing a Streaming Buffer

 Since the CPU Cache has limited storage, way more streaming
partitions are required

Evaluation

Pre-Sort (s) Runtime () Re-sort (5)
Twitter pagerank
X-Stream (1) none 39757+ 1.83 -
Graphchi (32) T52.32+£9.07 1175.12 £25.62 969.99
Netflix ALS
X-Stream (1) none T6.74 £0.16 -
Graphchi (14) 123.73 £ 4.06 138.68 £26.13 4502
RMAT2TWCC
X-Stream (1) none BOT.50+2.35 -
Graphchi (24) 214938 +41.35 2823994+ 704,99 1727.01
Twitter belief prop.

X-Stream (1) none 2665.64 £6.90 -
Graphchi (17) T42.424+13.50 458952 +322.28 1717.50

Figure 22: Comparison with Graphchi on SSD with 99%
Confidence Intervals. Numbers in brackets indicate X-
Stream streaming partitions/Graphchi shards (Note: re-

sorting is included in Graphchi runtime.)

Reads (MBps)

Writes (MBps)

BOO
BO0
400
200

BOO |

If

GO0
400
200

X-Stream Graphchi

I r&gm’iﬁME 15 aggregate: 141.04
mm |1 H H |I|

aggregate: 1?? 42 aggmgala 48.28

W |||.||I!. L0 [LEAW D0 GO LD

Figure 23: Disk Bandwidth

10

Evaluation

RMAT scale 25 graph, 16 threads

90 -+ WCC. | .
Pagerank - /

ad
LI

.- ~><h1 g
20 X KD I

16 64 256 1k 4k 16k 64k 256k 1M
Number of partitions

Processing time (s)

Figure 24: Effect of the Number of Partitions

Weaknesses

* Does not perform well with high-diameter graphs — too many
scatter-gather iterations required

 Evaluation for out-of-core graphs is quite limited

* No mention of fault tolerance

» “Wasted” edges problem

12

iters ratio wasted %%

memory

amazon(601 19 |[2.58 63
cit-Patents 21 1220 50
soc-livejournal| 13 | 2.13 57
dimacs-usa | 6263 | 1.94 95

ssd
Friendster 24 [L06 63
sk-2005 25 | 1.04 67
Twitter 16 | 1.04 35

disk
Friendster 24 | 1.04 63
sk-2005 25 |1.04 67
Twiller 16 | 1.04 55

yahoo-web

13

Edge-centric weakness

Threads Ligra (s) X-Stream (s) Ligra-pre (s)
BF5
1 11.10 168.50 1250.00
2 5.59 86.97 647.00
4 2.83 45.12 352.00
8 1.48 26.68 209.40
16 0.85 18.48 157.20
Pagerank
1 990.20 455.06 1264.00
2 510.60 241.56 654.00
4 269.60 129.72 355.00
8 145.40 83.42 211.40
16 79.24 50.06 160.20

14

Strengths

» Edge list does not need to be sorted

« Adaptable to various setups:

* In-memory or Out-of-Core
 CPU Cache, Main Memory, SSD, HDD

o Utilisation of I/0O bandwidth

15

	Slide 1: X-Stream: Edge-centric Graph Processing using Streaming Partitions
	Slide 2: Background
	Slide 3: Existing Approach
	Slide 4: Existing Approach – Vertex-Centric
	Slide 5: Main Bottleneck
	Slide 6: Two-tier Storage Hierarchy
	Slide 7: Streaming Partitions
	Slide 8
	Slide 9: In-memory
	Slide 10: Evaluation
	Slide 11: Evaluation
	Slide 12: Weaknesses
	Slide 13
	Slide 14: Edge-centric weakness
	Slide 15: Strengths

