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Background

• Large-scale graphs

• Standard Scale-Out approach
• Google Pregel

• PowerGraph

• Single Machine?
• Ligra

• X-Stream
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Existing Approach

• Scatter-Gather programming model
• Scatter: Propagate updates across edges

• Gather: Apply incoming updates

• Many graph problems can be 
expressed in this model

• PageRank
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Way fewer vertices than edges

Existing systems:

1. Sort edges of the graph based on the source vertex

2. Build an index for the edges

3. For each vertex:
• Perform a lookup through the index to obtain outgoing edges

Existing Approach – Vertex-Centric
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Main Bottleneck

• Access Locality

• Sequential Access >>> Random Access
• 500x faster for HDDs

• 30x faster for SSDs

• Even main memory (2x faster)

• Great opportunity for performance gains 
if sequential access is leveraged
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Two-tier Storage Hierarchy

• We can afford random lookups on Fast Storage mediums

• But Slow Storage mediums should only be accessed sequentially

• In-memory graphs:
• Fast Storage: CPU Cache
• Slow Storage: Main Memory

• Out-of-core graphs:
• Fast Storage: Main Memory
• Slow Storage: HDDs/SSDs
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Streaming Partitions

1. Subset of vertices (fits entirely into fast storage)

2. Subset of edges (streamed from slow storage)
• All edges whose source vertex is in the vertex set

3. Set of updates (streamed from slow storage)
• All updates whose destination vertex is in the vertex set

 

• Streaming Buffers (in fast storage)
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In-memory

• To fully utilise the high streaming bandwidths of main memory, 
parallelism is required

• Since the CPU Cache has limited storage, way more streaming 
partitions are required
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Evaluation
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Evaluation
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Weaknesses

• Does not perform well with high-diameter graphs – too many 
scatter-gather iterations required

• Evaluation for out-of-core graphs is quite limited

• No mention of fault tolerance

• “Wasted” edges problem
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Edge-centric weakness
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Strengths

• Edge list does not need to be sorted

• Adaptable to various setups:
• In-memory or Out-of-Core

• CPU Cache, Main Memory, SSD, HDD

• Utilisation of I/O bandwidth
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