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Motivation

Large-scale graph-structured computation
is needed for many tasks1

• PageRank on the web topology
• Characterising trends in social networks
• Targeted advertising

• Very similar to Pregel’s2 motivations 2 years before

1Gonzalez, Low, et al., “PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs”.
2Malewicz et al., “Pregel: a system for large-scale graph processing”.
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Trends in graph processing frameworks

2005 2010

MapReduce

Pregel
GraphLab

PowerGraph

Ligra
GraphX

X-Stream

• Google building distributed systems in the 2000s
• Followed by work in quick succession 2012–2013 particularly at Carnegie Mellon then
Berkeley (GraphLab3, PowerGraph4, GraphX5)

• Less frequent publications after this

3Low et al., Distributed GraphLab: A Framework for Machine Learning in the Cloud.
4Gonzalez, Low, et al., “PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs”.
5Gonzalez, Xin, et al., “GraphX: Graph Processing in a Distributed Dataflow Framework”.
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Key idea

Leveraging the internal structure of real-world graphs

• Graphs in the real world are often of a specific shape
• Existing solutions don’t optimise for this, so sacrifice possible performance gains

⇒ Design graph-parallel abstractions with real-world graph shapes in mind
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Natural graphs

Figure 1: “The in and out degree distributions of
the Twitter follower network plotted in log-log
scale”a.

aGonzalez, Low, et al., “PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs”, Figure 1.

• ”Natural” graphs are common in
real-world data

• Defined as skewed power law
distributions P(d) ∝ d−α

• A few ”celebrities” with many in-edges

• The internet topology graph is α ≈ 2.2a

aM. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships
of the Internet topology”.
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Graph-parallel abstractions

• A vertex program Q over a sparse graph G = {V, E} is6:
• Executed concurrently on each vertex v ∈ V
• Able to interact with adjacent instances Q(u), ∃(u, v) ∈ E

• Constrains communications between vertices
• Basis of existing work by Pregel7 and GraphLab8

6Gonzalez, Low, et al., “PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs”, p. 2.
7Malewicz et al., “Pregel: a system for large-scale graph processing”.
8Low et al., Distributed GraphLab: A Framework for Machine Learning in the Cloud.
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Gather-Apply-Scatter model

PowerGraph then proposes a programming model combining desirable properties of
Pregel9 and GraphLab10:

1. Gather – Aggregate adjacent vertex and edge values at end of previous superstep
• gather(Du, D(u,v), Dv) → Accum
• sum(Accum left, Accum right) → Accum (must be associative and commutative)

2. Apply – Apply function to value of vertex
• apply(Du,Accum) → Dunew (must be sub-linear for natural graphs performance)

3. Scatter – Update adjacent edge values with vertex value at end of superstep
• scatter(Dunew, D(u,v), Dv) → (D(u,v)new, Accum)

Can emulate previous approaches with linear apply, but loses performance uplift
9Malewicz et al., “Pregel: a system for large-scale graph processing”.
10Low et al., Distributed GraphLab: A Framework for Machine Learning in the Cloud.
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Distributed graph placement

• Key factor in performance is how work is distributed across machines
• Pregel and GraphLab uses a balanced p-way edge cut, falling back to random

• Instead, PowerGraph uses a balanced p-way vertex cut
• ”Shatters” graph by few popular vertices, minimising traffic and unbalanced work
• This is approximated with a greedy algorithm to assign edges across machines
• This greedy algorithm is then run separately or together across machines

argmin
k

E

[∑
v∈V

|A(v)|
∣∣∣∣∣Ai,A(ei+1) = k

]

Figure 2: Greedy heuristic: the lowest expected number of replicas given current assigned edges11

11Gonzalez, Low, et al., “PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs”, Equation 5.13.
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Performance – work balance

Figure 3: “Standard deviation of worker
computation time across 8 distributed workers
for each abstraction on power-law fan-in and
fan-out graphs”a.

aGonzalez, Low, et al., “PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs”, Figure 9.

• Aim to spread computation evenly
• Variance in computation measures
placement effectiveness

• GraphLab and Pregel are imbalanced for
either highly skewed fan-in or fan-out
respectively

• PowerGraph is (comparatively) balanced
for both fan-in and fan-out
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Performance – communication

Figure 4: “Bytes communicated per iteration for
each abstraction on power-law fan-in and
fan-out graphs”a.

aGonzalez, Low, et al., “PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs”, Figure 9.

• Aim to minimise communication
between machines

• Data transferred per iteration measures
graph placement effectiveness

• GraphLab has consistently high traffic
• Asynchronous shared memory
coherence?

• Pregel has high traffic for highly skewed
fan-out only

• PowerGraph is (comparatively) low for
both fan-in and fan-out
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Performance – runtime

Figure 5: “Per iteration runtime of each
abstraction on synthetic power-law graphs”a.

aGonzalez, Low, et al., “PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs”, Figure 10.

• PowerGraph outperforms previous
approaches for highly skewed (α ≈ 1)

• Co-ordinated placement is faster
• Approaches converge for larger α
• Note convergence of Pregel is α ≈ 2.2,
the skew value of the internet topology
graph cited ealier...

• Runtime dominated by communication
rather than compute

• PageRank is not very computationally
intensive
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Criticism

Strengths:

+ Novel idea to leverage information about structure of real-world graphs
+ Theoretically justified and empirically measured performance uplift

Weaknesses:

− Weak justification for why Piccolo12 can proxy for Pregel
− Incomparable rows in Table 2 of performance results appendix

− Motivation weakened by real-world graph skewness being approximately the
convergence point of performance

Takeaway message:

• Drawing information from your problem domain can yield signicant benefits
12Power and Li, “Piccolo: Building fast, distributed programs with partitioned tables”.
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Conclusions

Existing work processes large graphs, we want to process real-world large graphs for
which these approaches struggle:

⇒ New Gather-Apply-Scatter programming model
⇒ New graph placement algorithm using vertex cuts and a greedy heuristic
⇒ Theoretically and empirically show new approach is more performant and efficient

than previous work
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Future work and impact

Possible avenues of future work:

• More directly comparable performance measurements between technologies
• Any common graph structures other than skewed power-law? How do these perform?
• Improve supported for serialisable asynchronous execution

Historical impact:

• PowerGraph later included back into GraphLab project, from which the Turi company
was formed – co-founded by first author Gonzalez

• Follow-up project GraphX, also by Gonzalez, later included in Apache Spark13

• Turi acquired by Apple Inc. in 2016 and developed into TuriCreate14, used until late
2023 for developing machine learning models

13GraphX - Spark 3.5.3 Documentation.
14apple/turicreate.
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criticism

Figure 6: “Relative performance of PageRank, triangle counting, and LDA on similar graphs.
PageRank runtime is measured per iteration. Both PageRank and triangle counting were run on the
Twitter follower network and LDA was run on Wikipedia. The systems are reported as number of
nodes by number of cores.”15.

15Gonzalez, Low, et al., “PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs”, Table 2.
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