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Subject: Large Graph

 Main motivation: Web Graph and social networks

* Other topics of large graphs: transportation routes, citation relationships, etc.

 Graph Computing problems: min-cut, SSSP, etc.




Challenges for Large Graphs

* Efficient processing of large graphs is challenging due to their sizes:
e 1, poor locality of memory access
e 2, very little work per vertex
e 3, changing degree of parallelism over the course of execution
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Existing Works

Customize distributed infrastructure
* substantial implementation effort

Existing distributed computing platform, such as MapReduce
« MapReduce expresses graph as a chained states
e More communication and serialization overhead
* More coordination needed

Single-computer graph algorithm library, such as BGL and JDSL
e BGL: Boost Graph Library
e JDSL: Data Structures and Algorithms in JAVA
* Not scalable

Existing parallel graph system, such as Parallel BGL
e No fault tolerance
e Not scalable as it holds remote cells
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No scalable general-
purpose system for
implementing arbitrary
graph algorithms over
arbitrary graph
representations in a
large-scale distributed
environment!
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Pregel

* Programs are expressed as a sequence of iterations

* A vertex can (see next page):
* Receive messages sent in the previous iteration
* Send messages to other vertices
 Modify its own state and edges
 Mutate graph topology
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Model

* Input to Pregel: directed graph
* Vertex and edge: modifiable, user defined value
 Computations are done on vertices, not edges

* Sequence of iterations/Computations: Supersteps

* Invokes a user defined function for each vertex =
 Read messages sent to vertex V in superstep S Q\
* Send messages to other to be received at superstep S + 1 ?

 Modify V and outgoing edges
* No order of execution is detected

Vote to halt

e Superstep O: all vertices are active P A

 Worker loop through active vertices ([ Active ) (Inactive] )
. . . ‘L“\_‘_______,,r"/

* When there is no work to do, the vertex is deactivated Message received

* Must be an external message to reactive the deactivated vertex
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Model (Continue) and Example

Termination: all vertices are deactivated.

Output: the set of values output by the vertices
* Very flexible
e directed graph
* aset of disconnected vertices
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Architecture

* Graph divided into partitions (hash-based division/random division)
e Execute on a cluster of machines; one of them become master
 Master determines the number of partitions

* Master assign one or more partition to worker machine

* The master instructs each worker to execute supersteps

* Aslong as there are active vertices, the master directs the workers to
proceed, and each worker responds with the count of active vertices
for the next superstep

 Repeat the above step until halts

* Master instructs workers to save a portion of graph
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Characteristic and Novelty of Pregel

* \Vertex-centric computation
e Bulk synchronous parallel model (BSP)

* Pure message passing model, no shared memory

* Scalable, flexible, efficient, and (fault tolerant)!
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Application - SSSP

Find the shortest distance from
a source vertex s to every other
vertex in the graph
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class ShortestPathVertex
: public Vertex<int, int, int> {
void Compute(Messagelterator* msgs) {
int mindist = IsSource(vertex_id()) 7 0 : INF;
for (; !'msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());
if (mindist < GetValue()) {
*MutableValue() = mindist;
OutEdgelterator iter = GetOutEdgeIterator();
for (; 'iter.Done(); iter.Next())
SendMessageTo(iter.Target (),
mindist + iter.GetValue());
}
VoteToHalt () ;




Result - SSSP Scale With Worker Tasks

* Binary tree 180
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20 —0— iy

 Vertices = 1 billion
e Edges =1 billion-1
 Workers: 50 to 800

Runtime (seconds)

100 200 300 400 500 600 700 800

Number of worker tasks

Figure 7: SSSP—1 billion vertex binary tree: vary-
ing number of worker tasks scheduled on 300 multi-
core machines

UNIVERSITY OF

CAMBRIDGE



Result - SSSP Scale With Graph Size

* Binary tree 200

 Vertices = 1 billion to 50 billion 700

600
* Edges =(1 billion—1) to (50 billions — 1) 500
* Workers =800 400
300
200

100

Runtime (seconds)

5G 100G 15G 206G 25G 306G 356G 406G 456G 50G

Number of vertices

Figure 8: SSSP—binary trees: varying graph sizes
on 800 worker tasks scheduled on 300 multicore ma-
chines
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Result — SSSP on Log Normal Random Graphs

 Random graph 800
700
* With log-normal distribution of 2 600
outdegrees S 500
— 400
e Mean outdegree =127.1 £ 300
e Vertices =10 million to 1 billion 3 20
100

¢ Edges = 1'27 bllllon to 127 bllllon 100N 2000 3008 40080 500K 6000 TOOM S00M 900N 1G

° Workers = 800 Number of vertices
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Strengths/Contributions of Pregel Downsides of Pregel

* Production quality C++ API APl cannot be changed with liberty
* Flexible * Already a production infrastructure
* Lazy evaluation

e Scalable * Only for sparse graph
e Sparse graph * Challenges of High-Degree Vertices
* Communication over edges  PowerGraph
* Fault tolerance e Barrier in synchronization
* Check points * Faster workers have to wait to
* Confined recovery synchronize between supersteps

* Partition based on topology may have
better performance

e Currently, hash-based partitioning
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Related Study — Parallel BGL

e Similarities
 Message Passing Abstraction
* Vertex-Centric Model
* Synchronization Mechanisms

A simple, directed graph... distributed across 3 processors.
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Related Study — Parallel BGL (Continue)

Downside of Parallel BGL

* Property maps to hold information associated with vertices and edges in the graph
* Ex:the property map that access the distance of any vertex in the graph G
property _map <Graph, vertex_distance_t>::type distance = get(vertex distance, G)

* Ghost cells to hold values associated with remote components
e Cache values for vertices in other processes

\ 4

Pregel is better in a way that...

* Better with scaling: Pregel has an explicit message approach to acquiring remote information and
does not replicate remote values locally
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Further Study - PowerGraph

 The graph with high degree vertices: Power-Law Graphs
* Ex: celebrity

Assumed Structure PowerGraph!

* GAS Decomposition

* 3 Vertex partitioning

Strategies
* Small neighborhoods * Large Neighborhoods
« Similar degree vertices * Power-Law Degree
» Easy to partition + Difficult to partition
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Summary/Takeaway Message (Optional)

* Challenges - no efficient computations for large graphs
e Custom distributed infrastructure — cost too high
* Existing distributed computing platform — not for graph
* Single-computer graph algorithm libraries — limited scope
e Existing parallel graph systems - no fault tolerance
e Solution: Pregel

* Ascalable general-purpose system for implementing arbitrary graph algorithms
over arbitrary graph representations in a large-scale distributed environment

* Related systems
e Parallel BGL (comparison)
e PowerGraph (advancement?)
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