
Authors: G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and G. Czajkowski

Year of Publication: 2010

Presenter: Hetong Shen

CRSid: HS899

Pregel: A System for Large-Scale Graph Processing

Department of Computer Science R244

Subject: Large Graph

• Main motivation: Web Graph and social networks

• Other topics of large graphs: transportation routes, citation relationships, etc.

• Graph Computing problems: min-cut, SSSP, etc.

Challenges for Large Graphs

• Efficient processing of large graphs is challenging due to their sizes:

• 1, poor locality of memory access

• 2, very little work per vertex

• 3, changing degree of parallelism over the course of execution

Existing Works

• Customize distributed infrastructure
• substantial implementation effort

• Existing distributed computing platform, such as MapReduce
• MapReduce expresses graph as a chained states
• More communication and serialization overhead
• More coordination needed

• Single-computer graph algorithm library, such as BGL and JDSL
• BGL: Boost Graph Library
• JDSL: Data Structures and Algorithms in JAVA
• Not scalable

• Existing parallel graph system, such as Parallel BGL
• No fault tolerance
• Not scalable as it holds remote cells

No scalable general-
purpose system for
implementing arbitrary
graph algorithms over
arbitrary graph
representations in a
large-scale distributed
environment!

Pregel

• Programs are expressed as a sequence of iterations

• A vertex can (see next page):
• Receive messages sent in the previous iteration

• Send messages to other vertices

• Modify its own state and edges

• Mutate graph topology

Model

• Input to Pregel: directed graph
• Vertex and edge: modifiable, user defined value
• Computations are done on vertices, not edges

• Sequence of iterations/Computations: Supersteps
• Invokes a user defined function for each vertex
• Read messages sent to vertex V in superstep S
• Send messages to other to be received at superstep S + 1
• Modify V and outgoing edges
• No order of execution is detected

• Superstep 0: all vertices are active
• Worker loop through active vertices
• When there is no work to do, the vertex is deactivated
• Must be an external message to reactive the deactivated vertex

Model (Continue) and Example

• Termination: all vertices are deactivated.

• Output: the set of values output by the vertices

• Very flexible

• directed graph

• a set of disconnected vertices

• Maximum Value Example

Architecture

• Graph divided into partitions (hash-based division/random division)

• Execute on a cluster of machines; one of them become master

• Master determines the number of partitions

• Master assign one or more partition to worker machine

• The master instructs each worker to execute supersteps

• As long as there are active vertices, the master directs the workers to
proceed, and each worker responds with the count of active vertices
for the next superstep

• Repeat the above step until halts

• Master instructs workers to save a portion of graph

Characteristic and Novelty of Pregel

• Vertex-centric computation

• Bulk synchronous parallel model (BSP)

• Pure message passing model, no shared memory

• Scalable, flexible, efficient, and (fault tolerant)!

Application - SSSP

• Find the shortest distance from
a source vertex s to every other
vertex in the graph

Result - SSSP Scale With Worker Tasks

• Binary tree

• Vertices = 1 billion

• Edges = 1 billion – 1

• Workers: 50 to 800

Result - SSSP Scale With Graph Size

• Binary tree

• Vertices = 1 billion to 50 billion

• Edges = (1 billion – 1) to (50 billions – 1)

• Workers = 800

Result – SSSP on Log Normal Random Graphs

• Random graph

• With log-normal distribution of
outdegrees

• Mean outdegree = 127.1

• Vertices = 10 million to 1 billion

• Edges = 1.27 billion to 127 billion

• Workers = 800

Strengths/Contributions of Pregel

• Production quality C++ API

• Flexible

• Lazy evaluation

• Scalable

• Sparse graph

• Communication over edges

• Fault tolerance

• Check points

• Confined recovery

Downsides of Pregel

• API cannot be changed with liberty

• Already a production infrastructure

• Only for sparse graph

• Challenges of High-Degree Vertices

• PowerGraph

• Barrier in synchronization

• Faster workers have to wait to
synchronize between supersteps

• Partition based on topology may have
better performance

• Currently, hash-based partitioning

Related Study – Parallel BGL

• Similarities
• Message Passing Abstraction

• Vertex-Centric Model

• Synchronization Mechanisms

Related Study – Parallel BGL (Continue)

Downside of Parallel BGL

• Property maps to hold information associated with vertices and edges in the graph

• Ex: the property map that access the distance of any vertex in the graph G

 property_map <Graph, vertex_distance_t>::type distance = get(vertex distance, G)

• Ghost cells to hold values associated with remote components

• Cache values for vertices in other processes

Pregel is better in a way that…

• Better with scaling: Pregel has an explicit message approach to acquiring remote information and
does not replicate remote values locally

Further Study - PowerGraph

• The graph with high degree vertices: Power-Law Graphs

• Ex: celebrity

PowerGraph!

• GAS Decomposition

• 3 Vertex partitioning
Strategies

Summary/Takeaway Message (Optional)

• Challenges - no efficient computations for large graphs

• Custom distributed infrastructure – cost too high

• Existing distributed computing platform – not for graph

• Single-computer graph algorithm libraries – limited scope

• Existing parallel graph systems - no fault tolerance

• Solution: Pregel

• A scalable general-purpose system for implementing arbitrary graph algorithms
over arbitrary graph representations in a large-scale distributed environment

• Related systems

• Parallel BGL (comparison)

• PowerGraph (advancement?)

	幻灯片 1: Pregel: A System for Large-Scale Graph Processing
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18

