
A Distributed Multi-GPU System for
Fast Graph Processing

Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan Erez, and Alex Aiken

Background
- Graph processing limited by memory bandwidth
- → GPUs provide much higher memory bandwidth, but the memory hierarchy

is more complex
- We cannot reuse CPU systems

because of this difference
- We need a system that makes

use of the memory hierarchy in GPUs

Background

CPU-based approach:

Store graph in DRAM, and optimise data transfer between DRAM.

Current systems used push-based operations for updates (message passing in Pregel,
VertexMaps in Ligra).

GPU-based approach:

Distribute graph among GPU device memory, GPU shared memory, zero-copy memory, and
DRAM. Take advantage of locality in multi-GPU settings.

Push-based operations interfere with GPU optimisations (e.g. aggregating vertex updates).

Contributions

- Design and implementation of Lux, a distributed multi-GPU system
- Two execution models: Push for algorithmic efficiency, Pull for GPU

optimisation
- Novel dynamic repartitioning strategy with minimal overhead
- Performance models to aid with selecting best configurations

Overview of Lux

- Built for iterative computations on graphs
- Vertex properties mutable, but edge properties immutable
- Interface: init, compute, update

Pull updates from all in-neighbors

Order is non-deterministic

Compute must be able to run
concurrently

-> Grouping updates from all
in-neighbors allows for
GPU-specific optimisations
(e.g. locally aggregating updates
in shared memory)

Pull model

Push model

Each vertex pushes updates to
neighbors

Same calls to init and update, but
only compute on edges from
updated vertices

→ Algorithmic optimisations, but
requires synchronisation!

The Lux system

- Core idea: exploit locality in memory hierarchy:
- Zero-copy memory is visible to all GPUs and CPUs on a node

-> Use zero-copy memory for mutable data (vertex updates) to make them easily accessible
- Use shared memory to aggregate updatesk

- Use edge partitioning (divide edges equally)
- Each partition stores a set of contiguous vertices and all incoming edges

-> All edges that update a vertex are stored in the same partition
- Seek to balance edges across partitions - roughly |E|/x edges for each of the x GPUs
- Because of the ordering, GPUs only need to know first and last vertex of the partition!

- Maintain set of all remote vertices that publish updates to local vertices
- Send all updates to other compute nodes at the end of an iteration

Load balancing

- Moving partitions between GPUs is expensive compared to CPU systems
- We only need to know the first and the last vertex to describe the partition

- Core idea: Assume compute time is proportional to in-degree.
- After each iteration, we know the load of each partition
- Use this updated information to calculate new partitions
- Only modify partitions when gains are significant compared to the cost of

partitioning
- Use global partitioning first, local partitioning afterwards

Performance model

- Predict computation time to select best execution model and configuration for
a given application and graph

- Estimate time to load, compute, update, and transfer between nodes
- Core idea: Assume that all vertices take up the same memory, all edges

require the same computation time, etc.

Evaluation

Benchmarked on:

- PageRank (PR)
- Connected components (CC)
- Single source shortest path (SSSP)
- Betweenness centrality (BC)
- Collaborative filtering (CF)

Experimented with many parameters to get best performance in the compared
models

- Only done on graphs that fit into memory on 1 GPU
- Although Lux uses zero-copy memory, it is still very fast

- Recall that the shared memory systems have no overhead in terms of data
transfer and partitioning. Thus, to compete, Lux must speed up compute
dramatically. It does so by up to 30x

Load balancing

Price comparison

Criticism

- Requires immutable edges
- Focuses on static graphs - no support for dynamic graphs?
- Evaluation does not examine graphs exceeding GPU memory (spillover into

DRAM)
- Not radically different from gather-apply-scatter (Pregel and PowerGraph)
- Scalability could probably be improved, especially with multiple compute

nodes

Questions

