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Background
- Graph processing limited by memory bandwidth
- — GPUs provide much higher memory bandwidth, but the memory hierarchy

is more complex
- We cannot reuse CPU systems
because of this difference
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Background

CPU-based approach:
Store graph in DRAM, and optimise data transfer between DRAM.

Current systems used push-based operations for updates (message passing in Pregel,
VertexMaps in Ligra).

GPU-based approach:

Distribute graph among GPU device memory, GPU shared memory, zero-copy memory, and
DRAM. Take advantage of locality in multi-GPU settings.

Push-based operations interfere with GPU optimisations (e.g. aggregating vertex updates).



Contributions

- Design and implementation of Lux, a distributed multi-GPU system

- Two execution models: Push for algorithmic efficiency, Pull for GPU
optimisation

- Novel dynamic repartitioning strategy with minimal overhead

- Performance models to aid with selecting best configurations



Overview of Lux

- Built for iterative computations on graphs
- Vertex properties mutable, but edge properties immutable
- Interface: init, compute, update



Pull model

Algorithm 1 Pseudocode for generic pull-based execution.

1: while not halt do

2: halt = true > halt is a global variable
a4 for all v € V do in parallel

4: init(v, v°'%)

5: for all w € N™ (v) do in parallel

6: compute(v, u®"?, (u,v))

7 end for

8: if update(v, v°'%) then

9: halt = false

10: end if

11: end for
12: end while

Pull updates from all in-neighbors
Order is non-deterministic

Compute must be able to run
concurrently

-> Grouping updates from all
in-neighbors allows for
GPU-specific optimisations

(e.g. locally aggregating updates
in shared memory)



Push model

Algorithm 2 Pseudocode for generic push-based execution.

1: while F' # {} do

16:
17:

for all v € V do in parallel

init(v, v°'?)
end for

> synchronize(V)

for all v € F do in parallel

for all v € N™(u) do in parallel

compute(v, u®?, (u, v))

end for

end for

F={}
for all v € V do in parallel
if update(v, v°'%) then
F =FU{v}
end if
end for

> synchronize(V)

18: end while

Each vertex pushes updates to
neighbors

Same calls to init and update, but
only compute on edges from
updated vertices

— Algorithmic optimisations, but
requires synchronisation!



The Lux system

- Core idea: exploit locality in memory hierarchy:
- Zero-copy memory is visible to all GPUs and CPUs on a node
-> Use zero-copy memory for mutable data (vertex updates) to make them easily accessible
- Use shared memory to aggregate updatesk

- Use edge partitioning (divide edges equally)
- Each partition stores a set of contiguous vertices and all incoming edges
-> All edges that update a vertex are stored in the same partition
- Seek to balance edges across partitions - roughly |E|/x edges for each of the x GPUs
- Because of the ordering, GPUs only need to know first and last vertex of the partition!

- Maintain set of all remote vertices that publish updates to local vertices
- Send all updates to other compute nodes at the end of an iteration



Load balancing

- Moving partitions between GPUs is expensive compared to CPU systems
- We only need to know the first and the last vertex to describe the partition

- Core idea: Assume compute time is proportional to in-degree.

- After each iteration, we know the load of each partition

- Use this updated information to calculate new partitions

- Only modify partitions when gains are significant compared to the cost of
partitioning

- Use global partitioning first, local partitioning afterwards



Performance model

- Predict computation time to select best execution model and configuration for
a given application and graph

- Estimate time to load, compute, update, and transfer between nodes

- Core idea: Assume that all vertices take up the same memory, all edges
require the same computation time, etc.



Evaluation

Benchmarked on:

- PageRank (PR)

- Connected components (CC)

- Single source shortest path (SSSP)
- Betweenness centrality (BC)

- Collaborative filtering (CF)

Experimented with many parameters to get best performance in the compared
models
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Figure 15: Performance comparison on a single GPU (lower is better).

Only done on graphs that fit into memory on 1 GPU
Although Lux uses zero-copy memory, it is still very fast
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Figure 16: The execution time for different graph processing frameworks (lower is better).

Recall that the shared memory systems have no overhead in terms of data
transfer and partitioning. Thus, to compete, Lux must speed up compute

dramatically. It does so by up to 30x
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Figure 17: The execution time for different Lux configurations (lower is better). x and y indicate the number of nodes and
the number of GPUs on each node.



Load balancing
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Figure 18: Performance comparison for different dynamic

repartitioning approaches. The horizontal line shows the
expected per-iteration run time with perfect load balancing.



Price comparison

Machines | Lonestart XStream | XStream | XStream
(4GPUs) | (8GPUs) | (16GPUs)
Machine Prices (as of May 2017)
CPUs [4, 3] | 15352 3446 3446 3446
DRAM [8] | 12784 2552 2552 2552
GPUs [7] 0 20000 40000 30000
Total 28136 25998 45998 85998
Cost Efficiency (higher is better)
PR (TW) 0.20 0.84 0.64 0.45
CC (TW) 0.18 0.26 0.21 0.14
SSSP(TW) |  0.14 0.25 0.20 0.10
BC(TW) 0.14 0.30 0.18 0.10
CF (NF) 0.85 1.07 0.68 0.58




Criticism

- Requires immutable edges

- Focuses on static graphs - no support for dynamic graphs?

- Evaluation does not examine graphs exceeding GPU memory (spillover into
DRAM)

- Not radically different from gather-apply-scatter (Pregel and PowerGraph)

- Scalability could probably be improved, especially with multiple compute
nodes



Questions



