Semi-Supervised Classification with Graph Convolutional Networks

Kipf and Welling University of Amsterdam

> Sidharrth Nagappan (sn666) University of Cambridge

How to perform semi-supervised learning on graph-structured data using both **node features** and **graph topology**?

CNNs: Performant on grid-like data (e.g., imaged local patterns.

GCNs: Extend this concept to graphs by defining information from a node's neighbors.

CNNs: Performant on grid-like data (e.g., images) by applying convolutional filters to capture

GCNs: Extend this concept to graphs by defining convolution-like operations that aggregate

High-Level Graph Neural Network

G = (V, E)Graph made up of

Vertices and Edges

Each node's embeddings is a collective summary of it's neighbours' embeddings.

Spectral and Spatial Graph Theory

Spectral Methods

Operate in the frequency domain

Leverage eigenvalues and eigenvectors of Graph Laplacian

Not localised unless specifically designed

Spatial Methods

Directly leverage graph's structure

Aggregate + Transform information from node neighbourhoods

Naturally local

Started from spectral methods

Used first-order approximation of

Evolution of Graph Convolutions

Bruna et al. (2013) introduced Spectral Graph Convolutions using Graph Fourier Transforms

- Defferrard et al. (2016) used Chebyshev polynomials to approximate spectral filters
- Kipf & Welling (2017) set K=1 This paper First-order approximation

By bridging spectral (operate in frequency domain) and spatial (operate directly on graph), this paper provides way to run direct convolutions without eigenvector computations.

 $O(N^3)$ where N is the number of nodes because of expensive Eigendecomposition

O(K|E) — no need Eigen decomposition

O(1|E) - only consider*immediate neighbours*

> Scales linearly with number of graph edges/nodes

Mathematical Formulation

 $f(X,A) = \sigma\left(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}XW\right)$

Scary GCN equation - let's break it down quickly

Weight matrix W

 $\boldsymbol{\mathcal{O}}$ Non-linear activation function

Bear with me, let's break it down

Why Normalise the Adjacency Matrix?

If we aggregate information from neighbours without normalisation, nodes with more neighbours will have HUGE feature values.

Numerical instability/gradient issues and explosion

 $\boldsymbol{D}^{-1/2} \widehat{\boldsymbol{A}} \boldsymbol{D}^{-1/2}$

Adjacency Matrix

 $A_{ij} = 1$ Records link between nodes *i* and *j*. $A_{ii} = 0$

Degree Matrix

$$D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Each entry records degree of node *i*.

Proposed Normalisation

- A + Iown features as well
- $D^{-\frac{1}{2}}$

Each node I, scale down contribution from neighbours proportionally to degree of node and neighbours of node

$$\tilde{A} = D^{-\frac{1}{2}}(A + I)$$

Symmetrically multiplied on both sides:

Left-multiplying - scales down contribution based on node receiving information

Right-multiplying - scales down node influence based on it's own degree

Normalisation

Add self-loops so each node is connected to itself and retains it's

$$)D^{-\frac{1}{2}}$$

Let's work through the maths

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad A + I = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
$$D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \longrightarrow D^{-\frac{1}{2}} = \begin{bmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & \frac{1}{\sqrt{3}} \end{bmatrix}$$

$$\tilde{A} = D^{-\frac{1}{2}}(A+I)D^{-\frac{1}{2}} = \begin{bmatrix} \frac{1}{\sqrt{3}} & 0 & 0\\ 0 & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1\\ 1 & 1 & 0\\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & 0\\ 0 & \frac{1}{\sqrt{2}}\\ 0 & 0 \end{bmatrix}$$

Stacking GCN Layers

First Layer

Second Layer

Aggregate information from immediate neighbours

Aggregate information from neighbours' neighbours

multiplications by \tilde{A}

Widening Receptive Field Stacking layers results in successive

Equation of a 2-layer GCN

L Layer

Aggregate information from nodes up to L steps away

 $Z = \operatorname{softmax}(\tilde{A} \sigma(\tilde{A} X W^{(0)}) W^{(1)})$

Results

Experimentation

GCNs tested on:

- Semi-supervised document classification in citation networks
- Entity classification in bipartite knowledge graphs
- Different graph propagation models
 - Recall the evolution of graph convolutions from earlier

Citeseer

Nodes - documents Edges - citations Only 3.6% of the nodes are labelled

Algorithms Outperformed

Label Propagation (LP)

Semi-supervised EmbeddingIterative Classification(SemiEmb)Algorithm (ICA)

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

DeepWalk

Planetoid

Comparing Propagation Models

Make spectral convolution feasible for large graphs by using polynomials instead of full Eigen-decomposition of Laplacian

First-order approximation of Chebyshev Does not capture higher-order neighbourhood information

 $X\Theta_0 + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta_1$

Use single parameter for the entire layer But treats self-loops and neighbours contribution uniformly

> Add self-loops + symmetric normalisation Balance simplicity and efficiency

 $\left(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}\right)X\Theta$

 $\frac{1}{2}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta$

Spectral convolutions without computational overhead

Performance on Citeseer

69.8%

70%

Chebyshev Filter with different values of K

1st Order Model 68.3%

Single Parameter Model69.3%

Final Propagation Model

Depth and Graph Scaling

Optimal between 2~3 layers Not much benefit when increasing > 7 layers

Limitations, Thoughts and Future Work

Memory Requirement

Full-batch gradient descent requires entire graph in memory

Does not scale for large graphs

Directed Graphs

GCNs in paper for undirected graphs only

Betting on Locality

Betting on local neighbourhoods being sufficient to learn node representations

Not suitable for long range dependencies

Deeper Models Overfitting

Deeper models suffer from numerical instability

Experiments show GCN best in shallow settings with less layers (like 2)

Implement Mini-Batch Training

Support Directed and Weighted Edges

Adaptive Neighbourhood Selection

Residual Connections to stabilise gradients

Laying the Groundwork + My Thoughts

Good:

- Incredibly seminal paper with **38,333 citations**
- **Open-Source Code** available, unlike past theoretical work
- Laid the groundwork for various spatial methods later.
 - GraphSAGE Hamilton et al. (2017) aggregate information from local neighbours via mean/LSTM
 - Relational GCNs Schlichtkrull et al. (2017)
 - Graph Attention Networks (GATs) Velickovic et al. (2018) attention mechanism used in neighbourhood aggregation, adaptive weighting

Bad (*minor though*):

- Computational complexity reduction could have been made clearer
- Symmetric normalisation not as clearly explained -I needed to read several other articles to figure it out

Layer number comparison "conveniently" left in appendix

Graph Convolutional Networks (GCN) by Kipf and Welling Spectral

Graph Attention Networks (GAT) **Spatial**

Chebyshev Networks by Defferrard et al. Spectral

GraphSAGE Spatial

Graph Isomorphism Networks (GIN) Spatial

Spectral or Spatial Algorithms?

Thank you, questions?

