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How to perform semi-supervised learning 
on graph-structured data using both 

node features and graph topology? 



	CNNs: Performant on grid-like data (e.g., images) by applying convolutional filters to capture 

local patterns. 

	GCNs: Extend this concept to graphs by defining convolution-like operations that aggregate 

information from a node’s neighbors.



High-Level Graph Neural Network



Message Passing

Each node’s embeddings is a 
collective summary of it’s 
neighbours’ embeddings. 

G = (V, E)
Graph made up of 
Vertices and Edges



Spectral and Spatial Graph Theory

Operate in the frequency domain 

Leverage eigenvalues and 
eigenvectors of Graph Laplacian 

Not localised unless specifically 
designed

Spectral Methods
Directly leverage graph’s structure 

Aggregate + Transform information 
from node neighbourhoods 

Naturally local

Spatial Methods

Started from spectral methods 

Used first-order approximation of 
spectral convolution to 
“resemble” spatial method

This Paper



Evolution of Graph Convolutions
Bruna et al. (2013) introduced Spectral Graph Convolutions 

using Graph Fourier Transforms

Defferrard et al. (2016) used Chebyshev polynomials to 
approximate spectral filters

 where N is the 
number of nodes because of 

expensive Eigen-
decomposition

O(N3)

O(K|E) — no need Eigen 
decomposition

Kipf & Welling (2017) set K=1 
First-order approximation

O(1|E) — only consider 
immediate neighbours

By bridging spectral (operate in frequency domain) and spatial (operate 
directly on graph), this paper provides way to run direct convolutions 

without eigenvector computations. 

This paper

Scales linearly with number 
of graph edges/nodes



Mathematical Formulation
f(X, A) = σ (D̃−1/2ÃD̃−1/2XW)

Ã = A + In

Scary GCN equation - let’s break it down 
quickly

Adjacency matrix with self-
loops

D̃ Degree matrix of A

X Input feature matrix

W Weight matrix

σ Non-linear activation function



Bear with me, let’s break it 
down



Why Normalise the Adjacency Matrix?
If we aggregate information from neighbours without 
normalisation, nodes with more neighbours will have 

HUGE feature values.  

Numerical instability/gradient issues and explosion



Normalisation

Aij = 1

Adjacency Matrix

Aij = 0
Records link between 
nodes i and j.

Each entry records 
degree of node i.

Degree Matrix

D = [
3 0 0
0 2 0
0 0 2]

Ã = D− 1
2 (A + I)D− 1

2

Proposed Normalisation

A + I
Add self-loops so each node is 
connected to itself and retains it’s 
own features as well

D− 1
2

Each node I, scale down 
contribution from neighbours 
proportionally to degree of node 
and neighbours of node

Symmetrically multiplied on both sides: 

Left-multiplying - scales down 
contribution based on node receiving 

information 

Right-multiplying - scales down node 
influence based on it’s own degree

Let’s work through the maths

A = [
0 1 1
1 0 0
1 0 0] A + I = [

1 1 1
1 1 0
1 0 1]

D = [
3 0 0
0 2 0
0 0 2] D− 1

2 =

1

3
0 0

0 1

2
0

0 0 1

2

Ã = D− 1
2 (A + I)D− 1

2 =

1

3
0 0

0 1

2
0

0 0 1

2

[
1 1 1
1 1 0
1 0 1]

1

3
0 0

0 1

2
0

0 0 1

2



Stacking GCN Layers

Aggregate information from 
immediate neighbours

First Layer Second Layer

Aggregate information from 
neighbours’ neighbours

L Layer

Aggregate information from 
nodes up to L steps away

Z = softmax(Ã σ(ÃXW(0))W(1))
Equation of a 2-layer GCN

Widening Receptive Field 
Stacking layers results in successive 

multiplications by   Ã



Results



Experimentation
GCNs tested on: 

• Semi-supervised document classification in citation networks 

• Entity classification in bipartite knowledge graphs 

• Different graph propagation models 

• Recall the evolution of graph convolutions from earlier

Citeseer 

Nodes - documents 
Edges - citations 
Only 3.6% of the nodes 
are labelled



Algorithms Outperformed

Label Propagation (LP)

Semi-supervised Embedding 
(SemiEmb)

DeepWalk

Iterative Classification 
Algorithm (ICA)

Planetoid
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6 RESULTS

6.1 SEMI-SUPERVISED NODE CLASSIFICATION

Results are summarized in Table 2. Reported numbers denote classification accuracy in percent. For
ICA, we report the mean accuracy of 100 runs with random node orderings. Results for all other
baseline methods are taken from the Planetoid paper (Yang et al., 2016). Planetoid* denotes the best
model for the respective dataset out of the variants presented in their paper.

Table 2: Summary of results in terms of classification accuracy (in percent).

Method Citeseer Cora Pubmed NELL

ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [28] 59.6 59.0 71.1 26.7
LP [32] 45.3 68.0 63.0 26.5
DeepWalk [22] 43.2 67.2 65.3 58.1
ICA [18] 69.1 75.1 73.9 23.1
Planetoid* [29] 64.7 (26s) 75.7 (13s) 77.2 (25s) 61.9 (185s)
GCN (this paper) 70.3 (7s) 81.5 (4s) 79.0 (38s) 66.0 (48s)
GCN (rand. splits) 67.9± 0.5 80.1± 0.5 78.9± 0.7 58.4± 1.7

We further report wall-clock training time in seconds until convergence (in brackets) for our method
(incl. evaluation of validation error) and for Planetoid. For the latter, we used an implementation pro-
vided by the authors3 and trained on the same hardware (with GPU) as our GCN model. We trained
and tested our model on the same dataset splits as in Yang et al. (2016) and report mean accuracy
of 100 runs with random weight initializations. We used the following sets of hyperparameters for
Citeseer, Cora and Pubmed: 0.5 (dropout rate), 5 · 10�4 (L2 regularization) and 16 (number of hid-
den units); and for NELL: 0.1 (dropout rate), 1 · 10�5 (L2 regularization) and 64 (number of hidden
units).

In addition, we report performance of our model on 10 randomly drawn dataset splits of the same
size as in Yang et al. (2016), denoted by GCN (rand. splits). Here, we report mean and standard
error of prediction accuracy on the test set split in percent.

6.2 EVALUATION OF PROPAGATION MODEL

We compare different variants of our proposed per-layer propagation model on the citation network
datasets. We follow the experimental set-up described in the previous section. Results are summa-
rized in Table 3. The propagation model of our original GCN model is denoted by renormalization

trick (in bold). In all other cases, the propagation model of both neural network layers is replaced
with the model specified under propagation model. Reported numbers denote mean classification
accuracy for 100 repeated runs with random weight matrix initializations. In case of multiple vari-
ables ⇥i per layer, we impose L2 regularization on all weight matrices of the first layer.

Table 3: Comparison of propagation models.

Description Propagation model Citeseer Cora Pubmed

Chebyshev filter (Eq. 5) K = 3 P
K

k=0 Tk(L̃)X⇥k

69.8 79.5 74.4
K = 2 69.6 81.2 73.8

1st-order model (Eq. 6) X⇥0 +D
� 1

2AD
� 1

2X⇥1 68.3 80.0 77.5
Single parameter (Eq. 7) (IN +D

� 1
2AD

� 1
2 )X⇥ 69.3 79.2 77.4

Renormalization trick (Eq. 8) D̃
� 1

2 ÃD̃
� 1

2X⇥ 70.3 81.5 79.0

1st-order term only D
� 1

2AD
� 1

2X⇥ 68.7 80.5 77.8
Multi-layer perceptron X⇥ 46.5 55.1 71.4

3https://github.com/kimiyoung/planetoid

7



Comparing Propagation Models

Chebyshev Filter with 
different values of K

K

∑
k=0

Tk(L̃)XΘk

XΘ0 + D− 1
2 AD− 1

2 XΘ1

(IN + D− 1
2 AD− 1

2 ) XΘ

D̃− 1
2 ÃD̃− 1

2 XΘ

1st Order Model

Single Parameter Model

Final Propagation Model

69.8%

68.3%

69.3%

70%

Performance on 
Citeseer

Make spectral convolution feasible 
for large graphs by using polynomials 
instead of full Eigen-decomposition of 
Laplacian 

First-order approximation of 
Chebyshev 
Does not capture higher-order 
neighbourhood information

Use single parameter for the 
entire layer 
But treats self-loops and 
neighbours contribution 
uniformly

Add self-loops + 
symmetric normalisation  
Balance simplicity and 
efficiency

Spectral convolutions without computational overhead



Depth and Graph Scaling

Optimal between 2~3 layers 
Not much benefit when increasing > 7 layers

Published as a conference paper at ICLR 2017

B EXPERIMENTS ON MODEL DEPTH

In these experiments, we investigate the influence of model depth (number of layers) on classification
performance. We report results on a 5-fold cross-validation experiment on the Cora, Citeseer and
Pubmed datasets (Sen et al., 2008) using all labels. In addition to the standard GCN model (Eq. 2),
we report results on a model variant where we use residual connections (He et al., 2016) between
hidden layers to facilitate training of deeper models by enabling the model to carry over information
from the previous layer’s input:

H
(l+1) = �

⇣
D̃

� 1
2 ÃD̃

� 1
2H

(l)
W

(l)
⌘
+H

(l)
. (14)

On each cross-validation split, we train for 400 epochs (without early stopping) using the Adam
optimizer (Kingma & Ba, 2015) with a learning rate of 0.01. Other hyperparameters are chosen as
follows: 0.5 (dropout rate, first and last layer), 5 · 10�4 (L2 regularization, first layer), 16 (number
of units for each hidden layer) and 0.01 (learning rate). Results are summarized in Figure 5.

Figure 5: Influence of model depth (number of layers) on classification performance. Markers
denote mean classification accuracy (training vs. testing) for 5-fold cross-validation. Shaded areas
denote standard error. We show results both for a standard GCN model (dashed lines) and a model
with added residual connections (He et al., 2016) between hidden layers (solid lines).

For the datasets considered here, best results are obtained with a 2- or 3-layer model. We observe
that for models deeper than 7 layers, training without the use of residual connections can become
difficult, as the effective context size for each node increases by the size of its K th-order neighbor-
hood (for a model with K layers) with each additional layer. Furthermore, overfitting can become
an issue as the number of parameters increases with model depth.
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6.3 TRAINING TIME PER EPOCH

Figure 2: Wall-clock time per epoch for random
graphs. (*) indicates out-of-memory error.

Here, we report results for the mean training
time per epoch (forward pass, cross-entropy
calculation, backward pass) for 100 epochs on
simulated random graphs, measured in seconds
wall-clock time. See Section 5.1 for a detailed
description of the random graph dataset used
in these experiments. We compare results on
a GPU and on a CPU-only implementation4 in
TensorFlow (Abadi et al., 2015). Figure 2 sum-
marizes the results.

7 DISCUSSION

7.1 SEMI-SUPERVISED MODEL

In the experiments demonstrated here, our method for semi-supervised node classification outper-
forms recent related methods by a significant margin. Methods based on graph-Laplacian regular-
ization (Zhu et al., 2003; Belkin et al., 2006; Weston et al., 2012) are most likely limited due to their
assumption that edges encode mere similarity of nodes. Skip-gram based methods on the other hand
are limited by the fact that they are based on a multi-step pipeline which is difficult to optimize.
Our proposed model can overcome both limitations, while still comparing favorably in terms of ef-
ficiency (measured in wall-clock time) to related methods. Propagation of feature information from
neighboring nodes in every layer improves classification performance in comparison to methods like
ICA (Lu & Getoor, 2003), where only label information is aggregated.

We have further demonstrated that the proposed renormalized propagation model (Eq. 8) offers both
improved efficiency (fewer parameters and operations, such as multiplication or addition) and better
predictive performance on a number of datasets compared to a naı̈ve 1st-order model (Eq. 6) or
higher-order graph convolutional models using Chebyshev polynomials (Eq. 5).

7.2 LIMITATIONS AND FUTURE WORK

Here, we describe several limitations of our current model and outline how these might be overcome
in future work.

Memory requirement In the current setup with full-batch gradient descent, memory requirement
grows linearly in the size of the dataset. We have shown that for large graphs that do not fit in GPU
memory, training on CPU can still be a viable option. Mini-batch stochastic gradient descent can
alleviate this issue. The procedure of generating mini-batches, however, should take into account the
number of layers in the GCN model, as the K th-order neighborhood for a GCN with K layers has to
be stored in memory for an exact procedure. For very large and densely connected graph datasets,
further approximations might be necessary.

Directed edges and edge features Our framework currently does not naturally support edge fea-
tures and is limited to undirected graphs (weighted or unweighted). Results on NELL however
show that it is possible to handle both directed edges and edge features by representing the original
directed graph as an undirected bipartite graph with additional nodes that represent edges in the
original graph (see Section 5.1 for details).

Limiting assumptions Through the approximations introduced in Section 2, we implicitly assume
locality (dependence on the K

th-order neighborhood for a GCN with K layers) and equal impor-
tance of self-connections vs. edges to neighboring nodes. For some datasets, however, it might be
beneficial to introduce a trade-off parameter � in the definition of Ã:

Ã = A+ �IN . (11)
4Hardware used: 16-core Intel R� Xeon R� CPU E5-2640 v3 @ 2.60GHz, GeForce R� GTX TITAN X
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Limitations, Thoughts and Future Work
Memory Requirement
Full-batch gradient descent requires entire 
graph in memory 

Does not scale for large graphs

Directed Graphs
GCNs in paper for undirected graphs 
only

Betting on Locality
Betting on local neighbourhoods being 
sufficient to learn node representations 

Not suitable for long range dependencies

Deeper Models Overfitting
Deeper models suffer from numerical instability 

Experiments show GCN best in shallow settings 
with less layers (like 2)

Implement Mini-Batch 
Training

Support Directed and 
Weighted Edges

Adaptive Neighbourhood 
Selection

Residual Connections 
to stabilise gradients



Laying the Groundwork + My Thoughts
Good: 

• Incredibly seminal paper with 38,333 citations 

• Open-Source Code available, unlike past theoretical work 

• Laid the groundwork for various spatial methods later. 

• GraphSAGE - Hamilton et al. (2017) - aggregate information from local neighbours via mean/LSTM 

• Relational GCNs - Schlichtkrull et al. (2017) 

• Graph Attention Networks (GATs) - Velickovic et al. (2018) - attention mechanism used in neighbourhood 
aggregation, adaptive weighting

Bad (minor though): 

• Computational complexity reduction could have been made clearer 

• Symmetric normalisation not as clearly explained — I needed to read several other articles to figure it out



Layer number comparison 
“conveniently” left in appendix 

🤔



Graph Convolutional Networks (GCN) by Kipf and Welling 

Graph Attention Networks (GAT) 

Chebyshev Networks by Defferrard et al. 

GraphSAGE 

Graph Isomorphism Networks (GIN) 

Spectral

Spectral or Spatial Algorithms?

Spectral

Spatial

Spatial

Spatial



Thank you, questions?


