
Sidharrth Nagappan (sn666)
University of Cambridge

Semi-Supervised Classification with
Graph Convolutional Networks

Kipf and Welling
University of Amsterdam

How to perform semi-supervised learning
on graph-structured data using both

node features and graph topology?

	CNNs: Performant on grid-like data (e.g., images) by applying convolutional filters to capture

local patterns.

	GCNs: Extend this concept to graphs by defining convolution-like operations that aggregate

information from a node’s neighbors.

High-Level Graph Neural Network

Message Passing

Each node’s embeddings is a
collective summary of it’s
neighbours’ embeddings.

G = (V, E)
Graph made up of
Vertices and Edges

Spectral and Spatial Graph Theory

Operate in the frequency domain

Leverage eigenvalues and
eigenvectors of Graph Laplacian

Not localised unless specifically
designed

Spectral Methods
Directly leverage graph’s structure

Aggregate + Transform information
from node neighbourhoods

Naturally local

Spatial Methods

Started from spectral methods

Used first-order approximation of
spectral convolution to
“resemble” spatial method

This Paper

Evolution of Graph Convolutions
Bruna et al. (2013) introduced Spectral Graph Convolutions

using Graph Fourier Transforms

Defferrard et al. (2016) used Chebyshev polynomials to
approximate spectral filters

 where N is the
number of nodes because of

expensive Eigen-
decomposition

O(N3)

O(K|E) — no need Eigen
decomposition

Kipf & Welling (2017) set K=1
First-order approximation

O(1|E) — only consider
immediate neighbours

By bridging spectral (operate in frequency domain) and spatial (operate
directly on graph), this paper provides way to run direct convolutions

without eigenvector computations.

This paper

Scales linearly with number
of graph edges/nodes

Mathematical Formulation
f(X, A) = σ (D̃−1/2ÃD̃−1/2XW)

Ã = A + In

Scary GCN equation - let’s break it down
quickly

Adjacency matrix with self-
loops

D̃ Degree matrix of A

X Input feature matrix

W Weight matrix

σ Non-linear activation function

Bear with me, let’s break it
down

Why Normalise the Adjacency Matrix?
If we aggregate information from neighbours without
normalisation, nodes with more neighbours will have

HUGE feature values.

Numerical instability/gradient issues and explosion

Normalisation

Aij = 1

Adjacency Matrix

Aij = 0
Records link between
nodes i and j.

Each entry records
degree of node i.

Degree Matrix

D = [
3 0 0
0 2 0
0 0 2]

Ã = D− 1
2 (A + I)D− 1

2

Proposed Normalisation

A + I
Add self-loops so each node is
connected to itself and retains it’s
own features as well

D− 1
2

Each node I, scale down
contribution from neighbours
proportionally to degree of node
and neighbours of node

Symmetrically multiplied on both sides:

Left-multiplying - scales down
contribution based on node receiving

information

Right-multiplying - scales down node
influence based on it’s own degree

Let’s work through the maths

A = [
0 1 1
1 0 0
1 0 0] A + I = [

1 1 1
1 1 0
1 0 1]

D = [
3 0 0
0 2 0
0 0 2] D− 1

2 =

1

3
0 0

0 1

2
0

0 0 1

2

Ã = D− 1
2 (A + I)D− 1

2 =

1

3
0 0

0 1

2
0

0 0 1

2

[
1 1 1
1 1 0
1 0 1]

1

3
0 0

0 1

2
0

0 0 1

2

Stacking GCN Layers

Aggregate information from
immediate neighbours

First Layer Second Layer

Aggregate information from
neighbours’ neighbours

L Layer

Aggregate information from
nodes up to L steps away

Z = softmax(Ã σ(ÃXW(0))W(1))
Equation of a 2-layer GCN

Widening Receptive Field
Stacking layers results in successive

multiplications by Ã

Results

Experimentation
GCNs tested on:

• Semi-supervised document classification in citation networks

• Entity classification in bipartite knowledge graphs

• Different graph propagation models

• Recall the evolution of graph convolutions from earlier

Citeseer

Nodes - documents
Edges - citations
Only 3.6% of the nodes
are labelled

Algorithms Outperformed

Label Propagation (LP)

Semi-supervised Embedding
(SemiEmb)

DeepWalk

Iterative Classification
Algorithm (ICA)

Planetoid

Published as a conference paper at ICLR 2017

6 RESULTS

6.1 SEMI-SUPERVISED NODE CLASSIFICATION

Results are summarized in Table 2. Reported numbers denote classification accuracy in percent. For
ICA, we report the mean accuracy of 100 runs with random node orderings. Results for all other
baseline methods are taken from the Planetoid paper (Yang et al., 2016). Planetoid* denotes the best
model for the respective dataset out of the variants presented in their paper.

Table 2: Summary of results in terms of classification accuracy (in percent).

Method Citeseer Cora Pubmed NELL

ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [28] 59.6 59.0 71.1 26.7
LP [32] 45.3 68.0 63.0 26.5
DeepWalk [22] 43.2 67.2 65.3 58.1
ICA [18] 69.1 75.1 73.9 23.1
Planetoid* [29] 64.7 (26s) 75.7 (13s) 77.2 (25s) 61.9 (185s)
GCN (this paper) 70.3 (7s) 81.5 (4s) 79.0 (38s) 66.0 (48s)
GCN (rand. splits) 67.9± 0.5 80.1± 0.5 78.9± 0.7 58.4± 1.7

We further report wall-clock training time in seconds until convergence (in brackets) for our method
(incl. evaluation of validation error) and for Planetoid. For the latter, we used an implementation pro-
vided by the authors3 and trained on the same hardware (with GPU) as our GCN model. We trained
and tested our model on the same dataset splits as in Yang et al. (2016) and report mean accuracy
of 100 runs with random weight initializations. We used the following sets of hyperparameters for
Citeseer, Cora and Pubmed: 0.5 (dropout rate), 5 · 10�4 (L2 regularization) and 16 (number of hid-
den units); and for NELL: 0.1 (dropout rate), 1 · 10�5 (L2 regularization) and 64 (number of hidden
units).

In addition, we report performance of our model on 10 randomly drawn dataset splits of the same
size as in Yang et al. (2016), denoted by GCN (rand. splits). Here, we report mean and standard
error of prediction accuracy on the test set split in percent.

6.2 EVALUATION OF PROPAGATION MODEL

We compare different variants of our proposed per-layer propagation model on the citation network
datasets. We follow the experimental set-up described in the previous section. Results are summa-
rized in Table 3. The propagation model of our original GCN model is denoted by renormalization

trick (in bold). In all other cases, the propagation model of both neural network layers is replaced
with the model specified under propagation model. Reported numbers denote mean classification
accuracy for 100 repeated runs with random weight matrix initializations. In case of multiple vari-
ables ⇥i per layer, we impose L2 regularization on all weight matrices of the first layer.

Table 3: Comparison of propagation models.

Description Propagation model Citeseer Cora Pubmed

Chebyshev filter (Eq. 5) K = 3 P
K

k=0 Tk(L̃)X⇥k

69.8 79.5 74.4
K = 2 69.6 81.2 73.8

1st-order model (Eq. 6) X⇥0 +D
� 1

2AD
� 1

2X⇥1 68.3 80.0 77.5
Single parameter (Eq. 7) (IN +D

� 1
2AD

� 1
2)X⇥ 69.3 79.2 77.4

Renormalization trick (Eq. 8) D̃
� 1

2 ÃD̃
� 1

2X⇥ 70.3 81.5 79.0

1st-order term only D
� 1

2AD
� 1

2X⇥ 68.7 80.5 77.8
Multi-layer perceptron X⇥ 46.5 55.1 71.4

3https://github.com/kimiyoung/planetoid

7

Comparing Propagation Models

Chebyshev Filter with
different values of K

K

∑
k=0

Tk(L̃)XΘk

XΘ0 + D− 1
2 AD− 1

2 XΘ1

(IN + D− 1
2 AD− 1

2) XΘ

D̃− 1
2 ÃD̃− 1

2 XΘ

1st Order Model

Single Parameter Model

Final Propagation Model

69.8%

68.3%

69.3%

70%

Performance on
Citeseer

Make spectral convolution feasible
for large graphs by using polynomials
instead of full Eigen-decomposition of
Laplacian

First-order approximation of
Chebyshev
Does not capture higher-order
neighbourhood information

Use single parameter for the
entire layer
But treats self-loops and
neighbours contribution
uniformly

Add self-loops +
symmetric normalisation
Balance simplicity and
efficiency

Spectral convolutions without computational overhead

Depth and Graph Scaling

Optimal between 2~3 layers
Not much benefit when increasing > 7 layers

Published as a conference paper at ICLR 2017

B EXPERIMENTS ON MODEL DEPTH

In these experiments, we investigate the influence of model depth (number of layers) on classification
performance. We report results on a 5-fold cross-validation experiment on the Cora, Citeseer and
Pubmed datasets (Sen et al., 2008) using all labels. In addition to the standard GCN model (Eq. 2),
we report results on a model variant where we use residual connections (He et al., 2016) between
hidden layers to facilitate training of deeper models by enabling the model to carry over information
from the previous layer’s input:

H
(l+1) = �

⇣
D̃

� 1
2 ÃD̃

� 1
2H

(l)
W

(l)
⌘
+H

(l)
. (14)

On each cross-validation split, we train for 400 epochs (without early stopping) using the Adam
optimizer (Kingma & Ba, 2015) with a learning rate of 0.01. Other hyperparameters are chosen as
follows: 0.5 (dropout rate, first and last layer), 5 · 10�4 (L2 regularization, first layer), 16 (number
of units for each hidden layer) and 0.01 (learning rate). Results are summarized in Figure 5.

Figure 5: Influence of model depth (number of layers) on classification performance. Markers
denote mean classification accuracy (training vs. testing) for 5-fold cross-validation. Shaded areas
denote standard error. We show results both for a standard GCN model (dashed lines) and a model
with added residual connections (He et al., 2016) between hidden layers (solid lines).

For the datasets considered here, best results are obtained with a 2- or 3-layer model. We observe
that for models deeper than 7 layers, training without the use of residual connections can become
difficult, as the effective context size for each node increases by the size of its K th-order neighbor-
hood (for a model with K layers) with each additional layer. Furthermore, overfitting can become
an issue as the number of parameters increases with model depth.

14

Published as a conference paper at ICLR 2017

6.3 TRAINING TIME PER EPOCH

Figure 2: Wall-clock time per epoch for random
graphs. (*) indicates out-of-memory error.

Here, we report results for the mean training
time per epoch (forward pass, cross-entropy
calculation, backward pass) for 100 epochs on
simulated random graphs, measured in seconds
wall-clock time. See Section 5.1 for a detailed
description of the random graph dataset used
in these experiments. We compare results on
a GPU and on a CPU-only implementation4 in
TensorFlow (Abadi et al., 2015). Figure 2 sum-
marizes the results.

7 DISCUSSION

7.1 SEMI-SUPERVISED MODEL

In the experiments demonstrated here, our method for semi-supervised node classification outper-
forms recent related methods by a significant margin. Methods based on graph-Laplacian regular-
ization (Zhu et al., 2003; Belkin et al., 2006; Weston et al., 2012) are most likely limited due to their
assumption that edges encode mere similarity of nodes. Skip-gram based methods on the other hand
are limited by the fact that they are based on a multi-step pipeline which is difficult to optimize.
Our proposed model can overcome both limitations, while still comparing favorably in terms of ef-
ficiency (measured in wall-clock time) to related methods. Propagation of feature information from
neighboring nodes in every layer improves classification performance in comparison to methods like
ICA (Lu & Getoor, 2003), where only label information is aggregated.

We have further demonstrated that the proposed renormalized propagation model (Eq. 8) offers both
improved efficiency (fewer parameters and operations, such as multiplication or addition) and better
predictive performance on a number of datasets compared to a naı̈ve 1st-order model (Eq. 6) or
higher-order graph convolutional models using Chebyshev polynomials (Eq. 5).

7.2 LIMITATIONS AND FUTURE WORK

Here, we describe several limitations of our current model and outline how these might be overcome
in future work.

Memory requirement In the current setup with full-batch gradient descent, memory requirement
grows linearly in the size of the dataset. We have shown that for large graphs that do not fit in GPU
memory, training on CPU can still be a viable option. Mini-batch stochastic gradient descent can
alleviate this issue. The procedure of generating mini-batches, however, should take into account the
number of layers in the GCN model, as the K th-order neighborhood for a GCN with K layers has to
be stored in memory for an exact procedure. For very large and densely connected graph datasets,
further approximations might be necessary.

Directed edges and edge features Our framework currently does not naturally support edge fea-
tures and is limited to undirected graphs (weighted or unweighted). Results on NELL however
show that it is possible to handle both directed edges and edge features by representing the original
directed graph as an undirected bipartite graph with additional nodes that represent edges in the
original graph (see Section 5.1 for details).

Limiting assumptions Through the approximations introduced in Section 2, we implicitly assume
locality (dependence on the K

th-order neighborhood for a GCN with K layers) and equal impor-
tance of self-connections vs. edges to neighboring nodes. For some datasets, however, it might be
beneficial to introduce a trade-off parameter � in the definition of Ã:

Ã = A+ �IN . (11)
4Hardware used: 16-core Intel R� Xeon R� CPU E5-2640 v3 @ 2.60GHz, GeForce R� GTX TITAN X

8

Scaling is decent Out of Memory!

Limitations, Thoughts and Future Work
Memory Requirement
Full-batch gradient descent requires entire
graph in memory

Does not scale for large graphs

Directed Graphs
GCNs in paper for undirected graphs
only

Betting on Locality
Betting on local neighbourhoods being
sufficient to learn node representations

Not suitable for long range dependencies

Deeper Models Overfitting
Deeper models suffer from numerical instability

Experiments show GCN best in shallow settings
with less layers (like 2)

Implement Mini-Batch
Training

Support Directed and
Weighted Edges

Adaptive Neighbourhood
Selection

Residual Connections
to stabilise gradients

Laying the Groundwork + My Thoughts
Good:

• Incredibly seminal paper with 38,333 citations

• Open-Source Code available, unlike past theoretical work

• Laid the groundwork for various spatial methods later.

• GraphSAGE - Hamilton et al. (2017) - aggregate information from local neighbours via mean/LSTM

• Relational GCNs - Schlichtkrull et al. (2017)

• Graph Attention Networks (GATs) - Velickovic et al. (2018) - attention mechanism used in neighbourhood
aggregation, adaptive weighting

Bad (minor though):

• Computational complexity reduction could have been made clearer

• Symmetric normalisation not as clearly explained — I needed to read several other articles to figure it out

Layer number comparison
“conveniently” left in appendix

🤔

Graph Convolutional Networks (GCN) by Kipf and Welling

Graph Attention Networks (GAT)

Chebyshev Networks by Defferrard et al.

GraphSAGE

Graph Isomorphism Networks (GIN)

Spectral

Spectral or Spatial Algorithms?

Spectral

Spatial

Spatial

Spatial

Thank you, questions?

