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How to perform semi-supervised learning
on graph-structured data using both
node features and graph topology?



CNNs: Performant on grid-like data (e.g., images) by applying convolutional filters to capture

local patterns.

GCNs: Extend this concept to graphs by defining convolution-like operations that aggregate

information from a node’s neighbors.
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High-Level Graph Neural Network

Input feature vectors
for each node
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Each node’s embeddings is a
collective summary of it’s
neighbours’ embeddings.




Spectral and Spatial Graph Theory

Spectral Methods Spatial Methods
Operate in the frequency domain Directly leverage graph’s structure
Leverage eigenvalues and Aggregate + Transform information
eigenvectors of Graph Laplacian from node neighbourhoods
Not localised unless specifically Naturally local
designed

This Paper

Started from spectral methods

Used first-order approximation of
spectral convolution to
“resemble” spatial method



Evolution of Graph Convolutions

: : O(N?) where N is the
Bruna et al. (2013) introduced Spectral Graph Convolutions numb(er O}HO des because of
using Graph Fourier Transforms expensive kigen-
decomposition

\4

Defferrard et al. (2016) used Chebyshev polynomials to O(K|E) — no need Eigen

, decomposition
approximate spectral filters
. . B O®1|E) — only consider
This paper Kipf & Welling (2017) set K=1 immediate neighbours

First-order approximation

By bridging spectral (operate in frequency domain) and spatial (operate

directly on graph), this paper provides way to run direct convolutions
Scales linearly with number

without eigenvector computations.
of graph edges/nodes



Mathematical Formulation

f(X,A) = o (D2 AD™2XW)

Scary GCN equation - let’s break it down

quickly
A — A )i Adjacency matrix with self- W' Weight matrix
= AT n ol
00pS
~ O Non-linear activation function

1), Degree matrix of A

X Input feature matrix



Bear with me, let’s break it
down



Why Normalise the Adjacency Matrix?

If we aggregate information from neighbours without
normalisation, nodes with more neighbours will have
HUGE feature values.

Numerical instability/gradient issues and explosion

D—1/2;4\D—1/2

Small weight



Adjacency Matrix
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Each entry records
degree of node i.

Proposed Normalisation
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Add self-loops so each node is
connected to itself and retains it’s
own features as well

Each node I, scale down
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and neighbours of node
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Symmetrically multiplied on both sides:

Left-multiplying - scales down
contribution based on node receiving

information

Right-multiplying - scales down node
influence based on it’s own degree
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Let’s work through the maths




Stacking GCN Layers

First Layer Second Layer L Layer
Aggregate information from Aggregate information from Aggregate information from
immediate neighbours neighbours’ neighbours nodes up to L steps away

Widening Receptive Field
Stacking layers results in successive

~J

multiplications by A

7 = softmax(A c(AXWO)yw)

Equation of a 2-layer GCN






Lxperimentation

GCNs tested on:

* Semi-supervised document classification in citation networks
* Entity classification in bipartite knowledge graphs
* Different graph propagation models

* Recall the evolution of graph convolutions from earlier

Citeseer

Nodes - documents
Edges - citations

Only 3.6% of the nodes
are labelled




Algorithms Outperformed

Label Propagation (LP) DeepWalk Planetoid
Semi-supervised Embedding  Iterative Classification
(SemiEmb) Algorithm (ICA)

Method Citeseer Cora Pubmed NELL
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [28] 59.6 59.0 71.1 26.7

LP [32] 45.3 68.0 63.0 26.5
DeepWalk [22] 43.2 67.2 65.3 58.1

ICA [18] 69.1 75.1 73.9 23.1
Planetoid™® [29] 64.7 (26s) 75.7 (13s) 77.2(25s) 61.9 (185s)
GCN (this paper)  70.3 (7s) 81.5 (4s) 79.0 (38s) 66.0 (48s)
GCN (rand. splits) 67.94+0.5 &80.14+0.5 789+£0.7 584+1.7




Comparing Propagation Models

Performance on
Citeseer
Make spectral convolution feasible K . . .
for large graphs by using polynomials E Tk(L)X®k ChebySheV Fllter Wlth 69 89,
instead of full Eigen-decomposition of . .
Laplacian — different values of K

First-order approximation of

Chebyshev _l _l
Does}llmt capture higher-order X®O + D 2 AD 2 X®1 1St Ol‘del‘ MOdel 683%

neighbourhood information

Use single parameter for the

entire layer 1 1 . 0
But treats self-loops and IN + D 2 AD 2 X@ Slngle Parameter MOdel 693 /0
neighbours contribution

uniformly

Add self-loops +

) . ~ | ~~ 1 . .
symmetric normalisation D_7 AD—7X® Flnal Pr()pagatl()n M()del

Balance simplicity and
efficiency

70%

Spectral convolutions without computational overhead



Accuracy

and Graph Scaling
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Optimal between 2~3 layers
Not much benefit when increasing > 7 layers



Memory Requirement

Full-batch gradient descent requires entire
graph in memory

Does not scale for large graphs

Directed Graphs

GCNs in paper for undirected graphs
only

Betting on Locality

Betting on local neighbourhoods being
sufficient to learn node representations

Not suitable for long range dependencies

Deeper Models Overfitting

Deeper models suffer from numerical instability

Experiments show GCN best in shallow settings
with less layers (like 2)

Limitations, Thoughts and Future Work

Implement Mini-Batch
Training

Support Directed and
Weighted Edges

Adaptive Neighbourhood
Selection

Residual Connections
to stabilise gradients



Laying the Groundwork + My Thoughts

Good:

* Incredibly seminal paper with 38,333 citations

* Open-Source Code available, unlike past theoretical work
* Laid the groundwork for various spatial methods later.

* GraphSAGE - Hamilton et al. (2017) - aggregate information from local neighbours via mean/LSTM
* Relational GCNs - Schlichtkrull et al. (2017)

* Graph Attention Networks (GATSs) - Velickovic et al. (2018) - attention mechanism used in neighbourhood
aggregation, adaptive weighting

Bad (minor though):
* Computational complexity reduction could have been made clearer

* Symmetric normalisation not as clearly explained — I needed to read several other articles to figure it out



l.ayer number comparison

“conveniently” left in appendix
&



Graph Convolutional Networks (GCN) by Kipf and Welling Spectral
Graph Attention Networks (GAT)  Spatial

Chebyshev Networks by Defferrard et al.  Spectral
GraphSAGE  Spatial

Graph Isomorphism Networks (GIN) Spatial

Spectral or Spatial Algorithms?



'T’hank you, questions?




