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Scalability

5.2 GraphX Performance

Scaling: In Figure 8 we evaluate the strong scaling per-
formance of GraphX running PageRank on the Twitter
follower graph. As we move from 8 to 32 machines (a
factor of 4) we see a 3x speedup. However as we move to
64 machines (a factor of 8) we only see a 3.5x speedup.
While this 1s hardly linear scaling, it is actually slightly

better than the 3.2x speedup reported by GraphLab [13].
The poor scaling performance of PageRank has been at-
tributed by [13] to high communication overhead relative

to computation for the PageRank algorithm.

[Gonzalez et al: GraphX, 2014]
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But at what

COST?

(Configuration to Outperform a Single Thread)




Scalability scales 1) with carelessness

def mailn(num threads, thread 1dx):
1f thread 1dx ==
do work ()
time.sleep(10.0 / num threads)




Scalability scales down with carefulness

def mailn(num threads, thread 1dx):
1f thread 1dx ==
do work ()
# time.sleep (10.0 / num threads)




Optimising a system breaks scalability
Authors’ example on Naiad [McSherry et al., 2012}
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Parallelisation Is hard...



Case in point: graph algorithms



« Think like a vertex» model

[Malewicz et al.: Pregel, 2010]




PageRank

Iterated vertex accumulation
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Label propagation

Finding connected components... like a vertex
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Parallelisation is hard!

Most parallel systems need orders of magnitude
more resources to match a single-thread.

COST =10, 100



Going above and beyond



Improving memory layout

It’s always the memory

* Accessing data, especially in distributed systems, is really expensive

* Pre-processing work (Hilbert space-filling curve) = Performance gains!
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Abandon yer models!

A foolish consistency is the hobgoblin of little minds [Emerson]

 Move beyond the «think like a vertex» model [2010] and refer to literature

* Algorithms for connected components in near-linear time (vs quadratic)

 Find & union (disjoint sets) data structure [Galler and Fischer, 1964]

* Boruvka's algorithm [1926] — 1938, 1951, 1965, ...

 Much of existing literature won't fit recent simple models...
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Parallelisation is really hard!

COST’ ~ 100, 1000, ..., +co



Results




Parallelisation overheads

Connected components
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Warm & cold benchmarking
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Observations

And lessons

 Many distributed systems slower than single-threaded implementations
o Scalability # efficient use of resources

 Models (including metrics) constrain your thinking — in an un/helpful way?
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Question your models!

Ask the right questions.



Thank you!

Questions?




