Scalability! But at what COST?

Jakub Bachurski (jkb55), 28 October 2024

Scalability

5.2 GraphX Performance

Scaling: In Figure 8 we evaluate the strong scaling per-
formance of GraphX running PageRank on the Twitter
follower graph. As we move from 8 to 32 machines (a
factor of 4) we see a 3x speedup. However as we move to
64 machines (a factor of 8) we only see a 3.5x speedup.
While this 1s hardly linear scaling, it is actually slightly

better than the 3.2x speedup reported by GraphLab [13].
The poor scaling performance of PageRank has been at-
tributed by [13] to high communication overhead relative

to computation for the PageRank algorithm.

[Gonzalez et al: GraphX, 2014]

2

But at what

COST?

(Configuration to Outperform a Single Thread)

Scalability scales 1) with carelessness

def mailn(num threads, thread 1dx):
1f thread 1dx ==
do work ()
time.sleep(10.0 / num threads)

Scalability scales down with carefulness

def mailn(num threads, thread 1dx):
1f thread 1dx ==
do work ()
time.sleep (10.0 / num threads)

Optimising a system breaks scalability
Authors’ example on Naiad [McSherry et al., 2012}

1000

seconds

100 ¥

1 10 100 300

Parallelisation Is hard...

Case in point: graph algorithms

« Think like a vertex» model

[Malewicz et al.: Pregel, 2010]

PageRank

Iterated vertex accumulation

a, 1_a+az

wEnt) deg U

Label propagation

Finding connected components... like a vertex

£ ~ —* min (z/”v, min fu)

)
uen(v)

Parallelisation is hard!

Most parallel systems need orders of magnitude
more resources to match a single-thread.

COST =10, 100

Going above and beyond

Improving memory layout

It’s always the memory

* Accessing data, especially in distributed systems, is really expensive

* Pre-processing work (Hilbert space-filling curve) = Performance gains!

|||||||||||||||||
|||||||||||||||||

4 3 13
1
1 2 16
Fig. 1. Fig. 2.

14

Abandon yer models!

A foolish consistency is the hobgoblin of little minds [Emerson]

 Move beyond the «think like a vertex» model [2010] and refer to literature

* Algorithms for connected components in near-linear time (vs quadratic)

 Find & union (disjoint sets) data structure [Galler and Fischer, 1964]

* Boruvka's algorithm [1926] — 1938, 1951, 1965, ...

 Much of existing literature won't fit recent simple models...

15

Parallelisation is really hard!

COST’ ~ 100, 1000, ..., +co

Results

Parallelisation overheads

Connected components

1000

/Va/'
W

100‘;

seconds

Union Find

N——

1 10 100 300
cores

18

Warm & cold benchmarking

PageRank
Cost per
- - Cold start
warm iteration
20T Vertex SSD 460 .
Cr
L Cf‘a ‘?,Ob
.,,10 | p”l%) ad
T |V Hilbert RAM = ' Vertex SSD
S 1 :
“ 4
100 1
 Hilbert RAM
: e — 50 . 4 : 4 Y
16 100 512 64 100 512
cores cores

(Reported data only)

19

Observations

And lessons

 Many distributed systems slower than single-threaded implementations
o Scalability # efficient use of resources

 Models (including metrics) constrain your thinking — in an un/helpful way?

20

Question your models!

Ask the right questions.

Thank you!

Questions?

