
RAY

R244 - Chris Tomy - 2024/10/23

REFRESHER ON RL

Goal: learn a policy

How?

Generate trajectories based on a policy

Update the policy

π : S → A

[(s1, r1), … , (sn, rn)]

PROPERTIES OF RL TRAINING
def rollout(policy, env):
 trajectory = []
 state = env.init()
 while env.running():
 # policy computation requires GPU
 action = policy.compute(state)
 # task parallel with different computations:
 state, reward = environment.step(action)
 trajectory.append(state, reward)
 # trajectory length varies (hence varied duration)
 return trajectory

i.e. heterogeneous across:

Functionality: environment.step(action)
Duration: len(trajectory)
Resource types: policy.compute(state)

BSP IS INSUFFICIENT

Bulk Synchronous Parallel model generally expects:

Same computations
Same duration to complete

SO, WHAT IS RAY?

A compute cluster scheduler and task-parallel
programming API.

RAY PROGRAMMING MODEL

Basic task parallelism (futures)

@ray.remote
def example_task(n):
 # stateless and side-effect free function
 time.sleep(n)
 return n
non-blocking call:
results = [example_task.remote(i) for i in range(4)]
blocking call:
output = ray.get(results)

RAY'S ANSWER TO HETEROGENEITY
Nested remote functions (avoiding driver
bottleneck)
ray.wait - for duration variance
@ray.remote(num_gpus=n) - for different
resource types

RL APPLICATION

NOVEL CONTRIBUTION

Actor model on top of task-parallelism

Actor model

@ray.remote
class Button:
 # stateful class
 def __init__(self):
 self.presses = 0
 def press(self):
 self.presses += 1
 return self.presses

...

for _ in range(10):
 button.press().remote()

SYSTEM WALKTHROUGH

COMPONENTS
Driver - main process (user program)
Worker - stateless process
Actor - stateful process

SYSTEM/BACK-END
Global Control Store (GCS)
Bottom-up distributed scheduler
In-Memory Distributed Object Store

IMPLEMENTATION DETAILS
Distributed scheduler

Both single-threaded processes
Local scheduler heartbeats to global
scheduler with load info

Object store
Objects accessed through shared memory
Fast serial/deserialization with Apache Arrow

GCS
Uses Redis as a key-value store
Sharded and replicated

SCALABLE

(However, ambiguity on task.)

RESULTS ON RL

EFFECTIVENESS ON EVOLUTION
STRATEGIES

Since "hill-climbing" is scalable.

https://github.com/openai/gym/wiki/Humanoid-V1

https://github.com/openai/gym/wiki/Humanoid-V1

GENERAL CRITIQUES

"SOFT" REALTIME

Ray introduces overhead

GLOBAL STATE LIMITATIONS?

NO EVAL AGAINST BSP

