RAY

Ray: A **distributed framework** for emerging {AI} applications <u>P Moritz</u>, <u>R Nishihara</u>, <u>S Wang</u>, <u>A Tumanov</u>... - ... USENIX symposium on ..., 2018 - usenix.org ... propose **Ray**, a general-purpose cluster-computing **framework** ... , **Ray** implements a unified interface that can express both task-parallel and actorbased computations. Tasks enable **Ray** ...

☆ Save ワワ Cite Cited by 1432 Related articles All 23 versions ≫

[PDF] usenix.org

R244 - Chris Tomy - 2024/10/23

REFRESHER ON RL

Goal: learn a policy $\pi:S o A$

How?

- Generate trajectories based on a policy $[(s_1, r_1), \ldots, (s_n, r_n)]$
- Update the policy

PROPERTIES OF RL TRAINING

```
def rollout(policy, env):
    trajectory = []
    state = env.init()
    while env.running():
        # policy computation requires GPU
        action = policy.compute(state)
        # task parallel with different computations:
        state, reward = environment.step(action)
        trajectory.append(state, reward)
    # trajectory length varies (hence varied duration)
    return trajectory
```


i.e. heterogeneous across:

- Functionality: environment.step(action)
- Duration: len(trajectory)
- Resource types: policy.compute(state)

BSP IS INSUFFICIENT

Bulk Synchronous Parallel model generally expects:

- Same computations
- Same duration to complete

SO, WHAT IS RAY?

A compute cluster scheduler and task-parallel programming API.

RAY PROGRAMMING MODEL

Basic task parallelism (futures)

```
@ray.remote
def example_task(n):
    # stateless and side-effect free function
    time.sleep(n)
    return n
# non-blocking call:
results = [example_task.remote(i) for i in range(4)]
# blocking call:
output = ray.get(results)
```

RAY'S ANSWER TO HETEROGENEITY

- Nested remote functions (avoiding driver bottleneck)
- ray.wait for duration variance
- @ray.remote(num_gpus=n) for different
 resource types

RLAPPLICATION

NOVEL CONTRIBUTION

Actor model on top of task-parallelism

Actor model

SYSTEM WALKTHROUGH

COMPONENTS

- Driver main process (user program)
- Worker stateless process
- Actor stateful process

SYSTEM/BACK-END

- Global Control Store (GCS)
- Bottom-up distributed scheduler
- In-Memory Distributed Object Store

IMPLEMENTATION DETAILS

- Distributed scheduler
 - Both single-threaded processes
 - Local scheduler heartbeats to global scheduler with load info
- Object store
 - Objects accessed through shared memory
 - Fast serial/deserialization with Apache Arrow
- GCS
 - Uses Redis as a key-value store
 - Sharded and replicated

SCALABLE

Figure 7: End-to-end scalability of the system is achieved in a linear fashion, leveraging the GCS and bottom-up distributed scheduler. Ray reaches 1 million tasks per second throughput with 60 m4.16xlarge nodes and processes 100 million tasks in under a minute. We omit $x \in \{70, 80, 90\}$ due to cost.

(However, ambiguity on task.)

RESULTS ON RL

EFFECTIVENESS ON EVOLUTION STRATEGIES

Since "hill-climbing" is scalable.

https://github.com/openai/gym/wiki/Humanoid-V1

GENERAL CRITIQUES

"SOFT" REALTIME

Time budget (ms)	30	20	10	5	3	2	1
% actions dropped	0	0	0	0	0.4	40	65
Stable walk?	Yes	Yes	Yes	Yes	Yes	No	No

Table 3: Low-latency robot simulation results

Ray introduces overhead

GLOBAL STATE LIMITATIONS?

NO EVAL AGAINST BSP