Pathways:
Asynchronous Distributed
Dataflow for ML

by Barham et al., 2022

Paul Barham, Aakanksha Chowdhery, Jeff Dean, Sanjay Ghemawat, Steven Hand, Dan Hurt, Michael Isard,
Hyeontaek Lim, Ruoming Pang, Sudip Roy, Brennan Saeta, Parker Schuh, Ryan Sepassi, Laurent El Shafey,
Chandramohan A. Thekkath, Yonghui Wu

[Paper link]

Presented by Andrzej Szablewski, as3623@cam.ac.uk
23/10/2024

https://www.cl.cam.ac.uk/%7Eey204/teaching/ACS/R244_2024_2025/papers/BARHAM_MLSYS_2022.pdf

Yesterday...

- Single Program Multiple Data paradigm (SPMD)

- All accelerators run the same computation and communicate collectively!

— DCN message

= d% i Enqueue (PCle)
oSt (C read i
Ctrlir N Y s & Completion (PCle)
\‘\‘ \‘ \ \‘ \‘— l’ OI Host
Dev 1 [1 | | i
[] Device compute
Devl [AT T () 20
Ctrir TN 4 R Receive
Host - QOOOCX (read® @ Wwait

[X] Collective operation

(a) JAX/PyTorch SPMD

Yesterday...

—» DCN message
i Enqueue (PCle)
? Completion (PCle)
O Hostop
[[] Device compute

(b) TF1 SPMD (c) TF1 non-SPMD I o i

Yesterday... and Today!

Single Program Multiple Data paradigm (SPMD)

All accelerators run the same computation and communicate collectively!

Large models struggle to scale using SPMD. Instead:
Pipelining
Use of sparsity (e.g. MoE)

Heterogeneous clusters
Multiple Program Multiple Data (MPMD)

Foundation models and model sharing

SPMD models and multi-controller (PyTorch, Tensorflow,
JAX)

- Low latency (dispatch over fast PCle) ¢
- Implementation fairly straightforward (ctrl+c, ctrl+v) &

- but...
- Poor flexibility! s

So, maybe single-controller systems?

- General distributed dataflow model (MPMD) ¢

- Virtualisation of resources ¢

- but...

- Dispatch over slower Data Center Network (DCN) @3

- Still important to have SPMD ability -> Gang-scheduling &

The Challenge

Low latency + workload flexibility

Solution!

Sharded dataflow graph + Asynchronous operations

Pathways Programming Model

- XLA computations -- “compiled functions”

- Resources known beforehand (input/output shapes, types, etc.)
- Each compiled function maps to a single (sharded) node in the dataflow graph

- Functions can be placed on specific virtual devices with desired network
topology and other constraints
- Pathways automatically handles data movement and resharding

Pathways System Architecture

- Resource Manager

- Client

- Coordination

- Gang-scheduled
dynamic dispatch

- Parallel async dispatch

- Data management

(] Host (many per island)
Resource Manager (global)

Pathways System Architecture Scheduler (per island)

[J Executor (per device)

- Client

- Coordination ra I

- Gang-scheduled
dynamic dispatch
- Parallel async dispatch

- Resource Manager
Datacenter Network (RDMA)
A A A

VA
4‘.:

v

A

e

- Data management ok tad
Accelerator
Slices with

private T
interconnects
o

Mod\el Cc{nponents

Pathways System Architecture

< Datacenter Network (RDMA) > : Gang scheduling
A =

A

[T} Host (many per island)

§f Resource Manager (global) glioesr:i':lr

3 Scheduler (perisiand) priv EEFEEE]
[0 Executor (per device) interco::;eects .‘.‘.‘-“.‘. .J
ok i coooooo)

Mod}:I Components

(] Host (many per island)
Resource Manager (global)

Resource Manager & Client Scheduler (per island)

[J Executor (per device)

< Datacenter Network (RDMA) >
- Accelerators grouped in islands * 4 i& ¢ 9
- Virtualisation of resources s L

A

e

- one-to-one virtual to physical

- Dynamic scaling of the system

- Single-controller allows @ L
pause/resume and migration
Accelerator
Slices with

private T
interconnects
o

Mod\el Cénponents

Resource Manager & Client

- Client registers computations
and get them compiled

- Creates device-agnostic IR

- Sharded buffer for instruction
and data buffers

(] Host (many per island)
Resource Manager (global)

Scheduler (per island)
[J Executor (per device)

Datacenter Network (RDMA)

@

oo

Accelerator
Slices with
private
interconnects

A
vay wiy

%ﬁ A

e
rgﬁ:@:@ﬁ:@:ﬂ
\

Mod\el Cc{nponents

Coordination and Gang-Scheduling

- Cross-host coordination using 1 Gang scheduling

Plaque -- closed-source (@) lCIient run program

sharded dataflow system
- Sparse, low-latency communication

- Plaque
- Async enquing the execution of
computation and network sends
- Communication with scheduler for
consistent ordering of fn execution

v
>
}!t

4

Ve
-

)

>

v

Y
)’
-t
)!Q
RN

- Centralised scheduler per island

..
Y P . .
-
| e A) e W > . *
3 3 i * - "

WL T @

managing all computation
- Simple FIFO allocation

Time

\J

Parallel Asynchronous Dispatch

| Client run program

stall

Host
Dev

Host
Dev

Client }—(run program

Host

Dev

Host
Dev

Host

Dev

Host

: ICI
Save |/
LI | ..‘
(a) Sequential dispatch

Dev

(b) Parallel dispatch

Evaluation

- Single-controller dispatch overheads
- set of mini-benchmarks

- Multi-tenancy
- Large scale model performance (real machine learning workloads)

- text-to-text transformer
- large language model

Single-Controller Dispatch Overheads

Trivial gang-scheduled computation
containing a single AllIReduce.

Measuring throughput
-O - Separate call for each instruction

-C - Chained, 128 nodes,
single client call

-F - Fused, single node
single client call

104 :

Computations per second

109 -

103 5

102 3

@ JAX-F == JAX-O =% PW-O —¥- Ray-O
~t+— PW-F —&- Ray-F —4- Ray-C —¢- TF-O
—#— PW-C -B- TF-C ~—¢
2 4 8 16 32 64 128 256 512

Number of hosts

Single-Controller Dispatch Overheads

Smallest computation to match
throughput between

Pathways and JAX, masking the
single-controller overhead.

--0""',-,;,-,,.& --@- JAX [16 hosts (B)]
ey === JAX [512 hosts (A)]
o 103 - ‘*'.-, —+— Pathways [16 hosts (B)]
s ’fs, —»— Pathways [512 hosts (A)]
v I T g 3
s e
4 1 .,
b : ™
S 102 4 1
=] | *
] 1 B,
a |
E I I
8 | |
10? - 16 host | 512 host I
] convergence | convergence |
at2.39ms | at35ms I
1 I
LER LR Y Co A S LLL)] TR ORI LWL | s LR PELIRLEL 2L |
10! 10° 10! 102

Computation time (in ms)

Multi-Tenancy

Aggregated throughput when multiple clients concurrently
submit different Pathways programs

10° -

Computations per second
(=3
U

—o— PW (0.04) —%— PW (2.4) -=om
%= PW (0.33) =eeem JAX (0.04) -eee
—— PW (1.04) == JAX (0.33)

102

1 2 4 8 16 32 64
Number of clients

Figure 8. Aggregate throughput of concurrent programs (compute
times in ms). PATHWAYS time-multiplexes accelerators between
programs efficiently incurring no overhead to context switch.

256

(109 ms [150ms [290 s
| | [l | i \ il
|100 ms . P]150me > 200 me

| |

Figure 9. Traces of a sample of cores on PATHWAYS showing inter-
leaving of gang-scheduled concurrent programs with proportional-
share ratios of 1:1:1:1 (Upper) and 1:2:4:8 (Lower) between 4
clients.

Large Scale Model Performance

Text-to-text Transformer

|ldentical performance because realistic computations are large enough to mask
single-controller overheads!

Table 1. Training throughput (tokens/s) of Text-to-text Transformer
model configurations from (Raffel et al., 2019) on JAX multi-
controller and PATHWAYS.

Model Params TPU cores JAX PATHWAYS
T5-Base 270M 32 618k 618k
T5-Large 770M 5, 90.4k 00.4k
T5-3B 3B 512 282.8k 282.8k

T5-11B 11B 512 84.8k 84.8k

Large Scale Model Performance

3B Transformer-based language model (decoder-only)

Table 2. Training throughput (tokens/s) of 3B Transformer lan-
guage model, using SPMD or multiple pipeline stages, with C'
TPU cores in PATHWAYS. For pipeline-parallel models, there are
S stages and each batch is split into M p-batches.

Model configuration TPU cores PATHWAYS
Model-parallel (SPMD) 128 125.7k
Pipelining, S=4, M=16 128 133.7k
Pipelining, S=8, M=32 128 132.7k
Pipelining, S=16, M=64 128 131.4k

Pipelining, S=16, M=64 312 507.8k

Large Scale Model Performance

3B Transformer-based language
model (decoder-only)

Here pipeline has competitive
performance to SPMD.

Collective communication within
the SPMD computation incurs
higher overhead than pipeline
bubble overhead.

4 islands of 32 TPUs 16 pipeline stages in each direction,

/
o009 - o 9ee

D

DCN

O~0~-0-C
N
Forward Pipeline Backward Apply
pass "Bubble” pass gradients
.................::::::..-.:":....
= 64 microbatches

Figure 10. 3B Transformer model pipelined over 128 TPUs: PATH-
WAYS can efficiently train models over islands of TPUs connected
via DCN achieving the same throughput (131.4k tokens/sec) on
4 islands of 32 cores each on configuration (C) as using a single
island of 128 cores on configuration (B).

Final Thoughts and Further Research

Design impacted by the use of TPUs over GPUs -- fusing many computations into
a TPU kernel.
No software released and use of closed-source systems s

Room for further improvements in dynamic resource management

Fine-grained control flow -- selective parameter updates
Useful for MoE architectures with routing
Data-dependent data exchanges between nodes

Good news!

- Single-controller model allows simple access to much richer computation patterns

- Low-latency achieved with minimal overheads in real machine learning scenarios

Thank you!

