
Pathways:
Asynchronous Distributed 

Dataflow for ML 
by Barham et al., 2022

Paul Barham, Aakanksha Chowdhery, Jeff Dean, Sanjay Ghemawat, Steven Hand, Dan Hurt, Michael Isard, 
Hyeontaek Lim, Ruoming Pang, Sudip Roy, Brennan Saeta, Parker Schuh, Ryan Sepassi, Laurent El Shafey, 

Chandramohan A. Thekkath, Yonghui Wu

Presented by Andrzej Szablewski, as3623@cam.ac.uk
23/10/2024

[Paper link]

https://www.cl.cam.ac.uk/%7Eey204/teaching/ACS/R244_2024_2025/papers/BARHAM_MLSYS_2022.pdf


Yesterday…

- Single Program Multiple Data paradigm (SPMD)
- All accelerators run the same computation and communicate collectively! 



Yesterday…



Yesterday… and Today!

- Single Program Multiple Data paradigm (SPMD)
- All accelerators run the same computation and communicate collectively! 

- Large models struggle to scale using SPMD. Instead:
- Pipelining
- Use of sparsity (e.g. MoE)
- …

- Heterogeneous clusters
- Multiple Program Multiple Data (MPMD)

- Foundation models and model sharing



SPMD models and multi-controller (PyTorch, Tensorflow, 
JAX)

- Low latency (dispatch over fast PCIe) 🔥
- Implementation fairly straightforward (ctrl+c, ctrl+v) 🔥
- but…
- Poor flexibility! 😖



So, maybe single-controller systems?

- General distributed dataflow model (MPMD) 🔥
- Virtualisation of resources 🔥
- but…
- Dispatch over slower Data Center Network (DCN) 😖
- Still important to have SPMD ability -> Gang-scheduling 😖



The Challenge

Low latency + workload flexibility



Solution!

Sharded dataflow graph + Asynchronous operations



Pathways Programming Model

- XLA computations -- “compiled functions”
- Resources known beforehand (input/output shapes, types, etc.)
- Each compiled function maps to a single (sharded) node in the dataflow graph

- Functions can be placed on specific virtual devices with desired network 
topology and other constraints

- Pathways automatically handles data movement and resharding



Pathways System Architecture

- Resource Manager
- Client
- Coordination
- Gang-scheduled 

dynamic dispatch
- Parallel async dispatch
- Data management



Pathways System Architecture

- Resource Manager
- Client
- Coordination
- Gang-scheduled 

dynamic dispatch
- Parallel async dispatch
- Data management



Pathways System Architecture



Resource Manager & Client

- Accelerators grouped in islands
- Virtualisation of resources

- one-to-one virtual to physical
- Dynamic scaling of the system
- Single-controller allows

 pause/resume and migration



Resource Manager & Client

- Client registers computations 
and get them compiled

- Creates device-agnostic IR
- Sharded buffer for instruction 

and data buffers 



Coordination and Gang-Scheduling

- Cross-host coordination using 
Plaque -- closed-source (😡) 
sharded dataflow system

- Sparse, low-latency communication
- Plaque

- Async enquing the execution of 
computation and network sends

- Communication with scheduler for 
consistent ordering of fn execution

- Centralised scheduler per island 
managing all computation

- Simple FIFO allocation



Parallel Asynchronous Dispatch



Evaluation

- Single-controller dispatch overheads
- set of mini-benchmarks

- Multi-tenancy
- Large scale model performance (real machine learning workloads)

- text-to-text transformer
- large language model



Single-Controller Dispatch Overheads

Trivial gang-scheduled computation 
containing a single AllReduce. 

Measuring throughput

-O - Separate call for each instruction

-C - Chained, 128 nodes, 
single client call

-F - Fused, single node
single client call



Single-Controller Dispatch Overheads

Smallest computation to match 
throughput between
Pathways and JAX, masking the 
single-controller overhead.



Multi-Tenancy
Aggregated throughput when multiple clients concurrently 

submit different Pathways programs



Large Scale Model Performance

Text-to-text Transformer

Identical performance because realistic computations are large enough to mask 
single-controller overheads!



Large Scale Model Performance

3B Transformer-based language model (decoder-only)



Large Scale Model Performance

3B Transformer-based language 
model (decoder-only)

Here pipeline has competitive 
performance to SPMD.

Collective communication within 
the SPMD computation incurs 
higher overhead than pipeline 
bubble overhead.



Final Thoughts and Further Research

- Design impacted by the use of TPUs over GPUs -- fusing many computations into 
a TPU kernel.

- No software released and use of closed-source systems 😖

- Room for further improvements in dynamic resource management
- Fine-grained control flow -- selective parameter updates

- Useful for MoE architectures with routing
- Data-dependent data exchanges between nodes



Good news!

- Single-controller model allows simple access to much richer computation patterns

- Low-latency achieved with minimal overheads in real machine learning scenarios



Thank you!


