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Yesterday...

- Single Program Multiple Data paradigm (SPMD)

- All accelerators run the same computation and communicate collectively!
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Yesterday... and Today!

Single Program Multiple Data paradigm (SPMD)

All accelerators run the same computation and communicate collectively!

Large models struggle to scale using SPMD. Instead:
Pipelining
Use of sparsity (e.g. MoE)

Heterogeneous clusters
Multiple Program Multiple Data (MPMD)

Foundation models and model sharing



SPMD models and multi-controller (PyTorch, Tensorflow,
JAX)

- Low latency (dispatch over fast PCle) ¢
- Implementation fairly straightforward (ctrl+c, ctrl+v) &

- but...
- Poor flexibility! s



So, maybe single-controller systems?

- General distributed dataflow model (MPMD) ¢

- Virtualisation of resources ¢

- but...

- Dispatch over slower Data Center Network (DCN) @3

- Still important to have SPMD ability -> Gang-scheduling &



The Challenge

Low latency + workload flexibility



Solution!

Sharded dataflow graph + Asynchronous operations



Pathways Programming Model

- XLA computations -- “compiled functions”

- Resources known beforehand (input/output shapes, types, etc.)
- Each compiled function maps to a single (sharded) node in the dataflow graph

- Functions can be placed on specific virtual devices with desired network
topology and other constraints
- Pathways automatically handles data movement and resharding



Pathways System Architecture

- Resource Manager

- Client

- Coordination

- Gang-scheduled
dynamic dispatch

- Parallel async dispatch

- Data management
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Pathways System Architecture
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(] Host (many per island)
Resource Manager (global)

Resource Manager & Client Scheduler (per island)

[J Executor (per device)

< Datacenter Network (RDMA) >
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Resource Manager & Client

- Client registers computations
and get them compiled

- Creates device-agnostic IR

- Sharded buffer for instruction
and data buffers
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Coordination and Gang-Scheduling

- Cross-host coordination using 1 Gang scheduling

Plaque -- closed-source (@) lCIient run program

sharded dataflow system
- Sparse, low-latency communication

- Plaque
- Async enquing the execution of
computation and network sends
- Communication with scheduler for
consistent ordering of fn execution
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Parallel Asynchronous Dispatch
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Evaluation

- Single-controller dispatch overheads
- set of mini-benchmarks

- Multi-tenancy
- Large scale model performance (real machine learning workloads)

- text-to-text transformer
- large language model



Single-Controller Dispatch Overheads

Trivial gang-scheduled computation
containing a single AllIReduce.

Measuring throughput
-O - Separate call for each instruction

-C - Chained, 128 nodes,
single client call

-F - Fused, single node
single client call
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Single-Controller Dispatch Overheads

Smallest computation to match
throughput between

Pathways and JAX, masking the
single-controller overhead.
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Multi-Tenancy

Aggregated throughput when multiple clients concurrently
submit different Pathways programs
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Figure 8. Aggregate throughput of concurrent programs (compute
times in ms). PATHWAYS time-multiplexes accelerators between
programs efficiently incurring no overhead to context switch.
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Figure 9. Traces of a sample of cores on PATHWAYS showing inter-
leaving of gang-scheduled concurrent programs with proportional-
share ratios of 1:1:1:1 (Upper) and 1:2:4:8 (Lower) between 4
clients.



Large Scale Model Performance

Text-to-text Transformer

|ldentical performance because realistic computations are large enough to mask
single-controller overheads!

Table 1. Training throughput (tokens/s) of Text-to-text Transformer
model configurations from (Raffel et al., 2019) on JAX multi-
controller and PATHWAYS.

Model Params TPU cores JAX  PATHWAYS
T5-Base 270M 32 618k 618k
T5-Large 770M 5, 90.4k 00.4k
T5-3B 3B 512 282.8k 282.8k

T5-11B 11B 512 84.8k 84.8k




Large Scale Model Performance

3B Transformer-based language model (decoder-only)

Table 2. Training throughput (tokens/s) of 3B Transformer lan-
guage model, using SPMD or multiple pipeline stages, with C'
TPU cores in PATHWAYS. For pipeline-parallel models, there are
S stages and each batch is split into M p-batches.

Model configuration TPU cores PATHWAYS
Model-parallel (SPMD) 128 125.7k
Pipelining, S=4, M=16 128 133.7k
Pipelining, S=8, M=32 128 132.7k
Pipelining, S=16, M=64 128 131.4k

Pipelining, S=16, M=64 312 507.8k




Large Scale Model Performance

3B Transformer-based language
model (decoder-only)

Here pipeline has competitive
performance to SPMD.

Collective communication within
the SPMD computation incurs
higher overhead than pipeline
bubble overhead.

4 islands of 32 TPUs 16 pipeline stages in each direction,
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Figure 10. 3B Transformer model pipelined over 128 TPUs: PATH-
WAYS can efficiently train models over islands of TPUs connected
via DCN achieving the same throughput (131.4k tokens/sec) on
4 islands of 32 cores each on configuration (C) as using a single
island of 128 cores on configuration (B).



Final Thoughts and Further Research

Design impacted by the use of TPUs over GPUs -- fusing many computations into
a TPU kernel.
No software released and use of closed-source systems s

Room for further improvements in dynamic resource management

Fine-grained control flow -- selective parameter updates
Useful for MoE architectures with routing
Data-dependent data exchanges between nodes



Good news!

- Single-controller model allows simple access to much richer computation patterns

- Low-latency achieved with minimal overheads in real machine learning scenarios



Thank you!



