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Yesterday…

- Single Program Multiple Data paradigm (SPMD)
- All accelerators run the same computation and communicate collectively! 



Yesterday…



Yesterday… and Today!

- Single Program Multiple Data paradigm (SPMD)
- All accelerators run the same computation and communicate collectively! 

- Large models struggle to scale using SPMD. Instead:
- Pipelining
- Use of sparsity (e.g. MoE)
- …

- Heterogeneous clusters
- Multiple Program Multiple Data (MPMD)

- Foundation models and model sharing



SPMD models and multi-controller (PyTorch, Tensorflow, 
JAX)

- Low latency (dispatch over fast PCIe) 🔥
- Implementation fairly straightforward (ctrl+c, ctrl+v) 🔥
- but…
- Poor flexibility! 😖



So, maybe single-controller systems?

- General distributed dataflow model (MPMD) 🔥
- Virtualisation of resources 🔥
- but…
- Dispatch over slower Data Center Network (DCN) 😖
- Still important to have SPMD ability -> Gang-scheduling 😖



The Challenge

Low latency + workload flexibility



Solution!

Sharded dataflow graph + Asynchronous operations



Pathways Programming Model

- XLA computations -- “compiled functions”
- Resources known beforehand (input/output shapes, types, etc.)
- Each compiled function maps to a single (sharded) node in the dataflow graph

- Functions can be placed on specific virtual devices with desired network 
topology and other constraints

- Pathways automatically handles data movement and resharding



Pathways System Architecture

- Resource Manager
- Client
- Coordination
- Gang-scheduled 

dynamic dispatch
- Parallel async dispatch
- Data management
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Pathways System Architecture



Resource Manager & Client

- Accelerators grouped in islands
- Virtualisation of resources

- one-to-one virtual to physical
- Dynamic scaling of the system
- Single-controller allows

 pause/resume and migration



Resource Manager & Client

- Client registers computations 
and get them compiled

- Creates device-agnostic IR
- Sharded buffer for instruction 

and data buffers 



Coordination and Gang-Scheduling

- Cross-host coordination using 
Plaque -- closed-source (😡) 
sharded dataflow system

- Sparse, low-latency communication
- Plaque

- Async enquing the execution of 
computation and network sends

- Communication with scheduler for 
consistent ordering of fn execution

- Centralised scheduler per island 
managing all computation

- Simple FIFO allocation



Parallel Asynchronous Dispatch



Evaluation

- Single-controller dispatch overheads
- set of mini-benchmarks

- Multi-tenancy
- Large scale model performance (real machine learning workloads)

- text-to-text transformer
- large language model



Single-Controller Dispatch Overheads

Trivial gang-scheduled computation 
containing a single AllReduce. 

Measuring throughput

-O - Separate call for each instruction

-C - Chained, 128 nodes, 
single client call

-F - Fused, single node
single client call



Single-Controller Dispatch Overheads

Smallest computation to match 
throughput between
Pathways and JAX, masking the 
single-controller overhead.



Multi-Tenancy
Aggregated throughput when multiple clients concurrently 

submit different Pathways programs



Large Scale Model Performance

Text-to-text Transformer

Identical performance because realistic computations are large enough to mask 
single-controller overheads!



Large Scale Model Performance

3B Transformer-based language model (decoder-only)



Large Scale Model Performance

3B Transformer-based language 
model (decoder-only)

Here pipeline has competitive 
performance to SPMD.

Collective communication within 
the SPMD computation incurs 
higher overhead than pipeline 
bubble overhead.



Final Thoughts and Further Research

- Design impacted by the use of TPUs over GPUs -- fusing many computations into 
a TPU kernel.

- No software released and use of closed-source systems 😖

- Room for further improvements in dynamic resource management
- Fine-grained control flow -- selective parameter updates

- Useful for MoE architectures with routing
- Data-dependent data exchanges between nodes



Good news!

- Single-controller model allows simple access to much richer computation patterns

- Low-latency achieved with minimal overheads in real machine learning scenarios



Thank you!


