
Naiad: A Timely Dataflow 
System

Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, Martín Abadi 

A Paper Review by:
Luca Choteborsky



Background Context

A new type of application
- Iterative processing on 

real-time data stream
- Supports interactive queries 

on fresh results

Existing Systems
- Streaming, Batch and 

Trigger-based
- Other systems could not 

guarantee all properties



Background Context

Earlier paper introduced differential dataflow framework 
- Changes to collections are described using a partial order
- This allows collections to change in multiple independent dimensions (e.g. 

loop indices or input vertices)

Implements differential dataflow in Naiad
- Extends the language of Naiad, the data-parallel runtime system
- Results in the amount of work performed being approximately proportional to 

the number of records that changed in the previous iteration



Background Context

Changes over the past years
- Large focus on ML training
- Movement to heterogeneous clusters



Problem Tackled

Wanted to implement a distributed system that achieved:
- High throughput
- Low latency 
- Ability for iterative and incremental computation

No other system existed 



Problem Tackled

Timely Dataflow

- A new computational model that 
modified dataflow 

- Attaches timestamps to messages 
(vector timestamps for loop iteration 
and an epoch number)

- Specific vertices in a loop (Ingress, 
Egress and Feedback) modify the 
vector timestamps



Problem Tackled 

Timely Dataflow (continued)
- Vertices will receive a notification that they have received all messages 

bearing a specific timestamp
- Each vertex also implements two callback functions:

- And from their context they may call:



Problem Tackled

Timely Dataflow (continued)
- To ensure correct delivery of notifications system must reason about 

impossibility of future messages bearing a given timestamp
- Each event has a timestamp and a location (referred to as a pointstamp)
- Uses structural constraints on timely dataflow graphs to induce an order on 

poinstamps know as could-result-in
- Presented a single-threaded scheduler to handle frontier of active 

pointstamps



Problem Tackled

Naiad: high-performance distributed implementation of timely dataflow
- Runs on a cluster that consists of a group of processes hosting workers that 

manage a partition of the timely dataflow vertices
- Uses specify logical timely dataflow graph of stages linked by typed 

connectors
- At run-time, logical graph is expanded to physical graph
- Uses specified partitioning functions to route messages
- Multiple workers coordinate (broadcasts) independent sets of events using a 

local view of the global state
- Tackled mitigating sources of micro-stragglers: networking, data structure 

contention and garbage collection



Problem Tackled



Problem Tackled

Evaluation
- Used microbenchmarks to evaluate baseline Naiad system performance



Problem Tackled

Evaluation
- Compared performance against existing systems when applied to applications 

drawn from the literature on batch, streaming and graph computation



Opinion of Paper

I mainly agree with the paper
- Agree with the need of a system to deliver high throughput, low latency and 

the ability for iterative and incremental computations
- I agree that the timely dataflow model has its merits
- I partially agree with the comment that combining existing systems could not 

yield the same performance, however proper evidence would have been nice



Opinion of Paper

Strengths
- Timely Dataflow is based on an already established computational model and 

gives crucial properties for parallel iterative computations
- Naiad can be applied to already existing data processing applications with 

exceptional performance
- Only Naiad can serve as the platform for sophisticated applications



Opinion of Paper

Weakness
- Lack of evaluation on different cluster architectures
- Does not mention how work is scheduled across heterogeneous architectures
- Uses a global checkpointing for fault tolerance; does not allow faulted 

processes to rejoin
- Vulnerable to micro-stragglers; only attempts to prevent them from occurring 

but does not handle recovery
- Potential memory inefficiencies: “Shared Arrangements” paper shares 

in-memory state between concurrent queries to address this problem



Opinion of Paper

Key Takeaway
- Timely dataflow is a promising computational model for building distributed 

systems
- Implementation of Naiad can be applied to already existing processing 

applications, competing with specialised systems
- Naiad’s programming language is highly expressive

Key Impact
- Well-established distributed data processing system; commonly used in 

benchmarks
- TensorFlow borrow Naiad’s vertices for branching and looping
- Additional frameworks have been added to Naiad (e.g. GraphLINQ)


