Naiad: A Timely Dataflow
System

Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, Martin Abadi

A Paper Review by:
Luca Choteborsky

Background Context

A new type of application
- lterative processing on [
real-time data stream
- Supports interactive queries
on fresh results

User queries Low-latency query
are received

responses are delivered

joined with

Queries are
processed data

Existing Systems
- Streaming, Batch and
Trigger-based
- Other systems could not
guarantee all properties

Complex processing
incrementally re-
] ——————————— executes to reflect

data arrive changed data

‘ Updates to

Background Context

Earlier paper introduced differential dataflow framework
- Changes to collections are described using a partial order
- This allows collections to change in multiple independent dimensions (e.g.
loop indices or input vertices)

Implements differential dataflow in Naiad
- Extends the language of Naiad, the data-parallel runtime system
- Results in the amount of work performed being approximately proportional to
the number of records that changed in the previous iteration

Background Context

Changes over the past years
- Large focus on ML training
- Movement to heterogeneous clusters

Problem Tackled

Wanted to implement a distributed system that achieved:
- High throughput
- Low latency
- Ability for iterative and incremental computation

No other system existed

Problem Tackled

Timely Dataflow

A new computational model that
modified dataflow

Attaches timestamps to messages
(vector timestamps for loop iteration
and an epoch number)

Specific vertices in a loop (Ingress,
Egress and Feedback) modify the
vector timestamps

Streaming context]

Vertex
Ingress
Egress
Feedback

Input timestamp Output timestamp

(e,{(c1,---,Ck)) (e,{c1,---,Ck,0))
(e,{c1y---sckycrr1)) (e, {c1,---sck))
(e)<C17"'ack>) (e,<C1,...,Ck+1>)

Problem Tackled

Timely Dataflow (continued)
- Vertices will receive a notification that they have received all messages
bearing a specific timestamp
- Each vertex also implements two callback functions:

v.ONRECV (e : Edge, m : Message, ¢ : Timestamp)
v.ONNOTIFY (¢ : Timestamp).

- And from their context they may call:

this. SENDBY (e : Edge, m : Message, t : Timestamp)
this. NOTIFYAT(z : Timestamp).

Problem Tackled

Timely Dataflow (continued)
- To ensure correct delivery of notifications system must reason about

impossibility of future messages bearing a given timestamp

- Each event has a timestamp and a location (referred to as a pointstamp)

- Uses structural constraints on timely dataflow graphs to induce an order on
poinstamps know as could-result-in

- Presented a single-threaded scheduler to handle frontier of active
pointstamps

Problem Tackled

Naiad: high-performance distributed implementation of timely dataflow

Runs on a cluster that consists of a group of processes hosting workers that
manage a partition of the timely dataflow vertices

Uses specify logical timely dataflow graph of stages linked by typed
connectors

At run-time, logical graph is expanded to physical graph

Uses specified partitioning functions to route messages

Multiple workers coordinate (broadcasts) independent sets of events using a
local view of the global state

Tackled mitigating sources of micro-stragglers: networking, data structure
contention and garbage collection

Problem Tackled

Logical graph

Worker
1]

Progress tracking
protocol .

%

Process

|
)

Problem Tackled

Evaluation
- Used microbenchmarks to evaluate baseline Naiad system performance

g 70 T T T T T T 25 ; ; T T T ; %’_ 2(5) K . J) [i"]
S 60 Ideal - - - - . / e 95th/5th percentiles —— E a0} Word(\)lsgrg e i
5 5o | -NET Socket — - L = 2r Quartiles 1 © 3B S _F T
s Naiad —— S 5 X ® .

£ - S Median 5 30 E - -
3 g 15 £ 25} o 4
£ 2 s 20| A -
£ = ¢ 5[e]
[0 [0

‘g g % 10 | p'/"{ -1
g E 8 5L« .
3 ~ (% 0 W 1 | 1 1 1]
< 0 10 20 30 40 50 60

0 10 20 30 40 50 60

Number of computers Number of computers

Number of computers

(a) All-to-all exchange throughput (§5.1) (b) Global barrier latency (§5.2) (d) Strong scaling (85.4)

Problem Tackled

Evaluation
- Compared performance against existing systems when applied to applications
drawn from the literature on batch, streaming and graph computation

Naiad Pregel — = -1 NOTQ sorerars

0

O ' Naiad Vert S 9 1 8
) B aiad Vertex ---o---_| n - 2 i]
5 100 ¢ PowerGraph - -e - o 8 B il g 08 Gheckpolnt
2 F_ L : : ® 7 . a ! Logging — — -
e '3 ~1 Naiad Edge —— § S 6l --- i 2 06 L) i
- T RS R I - | [
= | e - > B _) B I = 4
8. 1o : gL el _I_ = i g ? . g B il 5 0.4 ! .
o ; B 2f Naiad — 4 B o2} 0.95 it o]
= : g 1 VW - -e - - & RO 1 10

1 1 I I @) I 1 1 1 1 I 0 R T IR OTT! BRI

0 10 20 30 40 50 60 0O 10 20 30 40 50 60 70 0.01 0.1 1 10

Number of computers Number of computers Response latency (s)

Opinion of Paper

| mainly agree with the paper
- Agree with the need of a system to deliver high throughput, low latency and
the ability for iterative and incremental computations
- | agree that the timely dataflow model has its merits
- | partially agree with the comment that combining existing systems could not
yield the same performance, however proper evidence would have been nice

Opinion of Paper

Strengths
- Timely Dataflow is based on an already established computational model and
gives crucial properties for parallel iterative computations

- Naiad can be applied to already existing data processing applications with
exceptional performance

- Only Naiad can serve as the platform for sophisticated applications

Opinion of Paper

Weakness

Lack of evaluation on different cluster architectures

Does not mention how work is scheduled across heterogeneous architectures
Uses a global checkpointing for fault tolerance; does not allow faulted
processes to rejoin

Vulnerable to micro-stragglers; only attempts to prevent them from occurring
but does not handle recovery

Potential memory inefficiencies: “Shared Arrangements” paper shares
in-memory state between concurrent queries to address this problem

Opinion of Paper

Key Takeaway
- Timely dataflow is a promising computational model for building distributed
systems
- Implementation of Naiad can be applied to already existing processing
applications, competing with specialised systems
- Naiad’s programming language is highly expressive

Key Impact
- Well-established distributed data processing system; commonly used in
benchmarks
- TensorFlow borrow Naiad’s vertices for branching and looping
- Additional frameworks have been added to Naiad (e.g. GraphLINQ)

