
MSRL: Distributed Reinforcement
Learning with Dataflow Fragments
Review

✳: Figure from paper /codebase

Motivation

Reinforcement Learning

Source: OpenAI SpinningUp

Reinforcement Learning (Distributed, Multi-agent)

✳

Heterogenous Training

PPO, DQN, Dreamer, MAPPO, MuZero …

Heterogeneous deployment

A3C, IMPALA, self-play, CPU environments, GPU inference, distributed agents …

Existing Solutions

✳

Existing Solutions (Function)

Example: CleanRL

Few abstractions

Direct implementation

Fixed distribution

Limited acceleration

Existing Solution (Agent)

Example: RLlib

Wrapper layer on top of
Ray

Distributed agents with
message passing

Difficult to reason with
low level API

Difficult to optimize

Existing Solution (Dataflow)

Example: WarpDrive

Write code using
bespoke dataflow
implementations

Fixed distribution

Contribution:
MindSporeRL

Deployment

At runtime, a coordinator
generates and dispatches the
FDG from the source code and
a distribution policy.

A fragment optimizer fuses
fragment instances sharing an
execution backend before
submission.

Python Code using MSRL API

A high level API decouples RL
logic from deployment.

Component APIs specify
algorithmic components with
natural boundaries (actors,
learners, trainers)

Interaction APIs offer
RL-specific functionality
(replay buffers)

Fragmented Dataflow Graph

The Python AST in inspected
and compiled into a
fragmented dataflow graph
(FDG).

Nodes are higher level
encapsulations of potentially
data-parallel components,
with defined communication
interfaces.

Compilation Distribution Policy

MSRL API

✳

MSRL API

Agent: actors and learners.

Actor: Trajectory collection by interaction with the environment.

Learner: DNN update logic.

Trainer: RL Training loop.

Fragmented Dataflow Graph

A dual-layer dataflow graph.

Nodes are fragments: higher level abstraction of a component. Each fragment can have a lower level bespoke
dataflow implementation. Fragment allocation supports computation of different devices (and optimisation)

Two dimensions of optimisation affects device utilisation

- Fragment granularity
- Fragment co-location

✳

Fragmented Dataflow Graph

✳

Distribution Policy

A distribution policy governs how MSRL distributes and executes a given RL policy.

Allocation, replication, and co-location of fragments.

Advantage: Since no single distribution policy is optimal in all cases, the choice provides greater
execution flexibility.

After distribution, the fragment optimiser can transform the FDG AST before submission to the DNN
executor engine, such as batching tensors.

✳

Computationally expensive environment,
small DNN

Lots of data, can’t fit onto a single GPU

Experiments (Ray)

a)

Proximal Policy Optimisation (PPO), 320
environments distributed evenly among actors. A
single learner trains the DNN.

Time dominated by environment computation.

Speedup: FDG Optimisation performs fusion ,
where multiple policy inference is combined into a
single step on the GPU. In contrast, Ray performs
inference sequentially.

✳

Experiments (Ray)

b)

A3C. Multiple copies of agents execute their own
copy of the environment.

Speedup: the distribution policy can exploit
customize DL engine asynchronous send / receive
operations to avoid data copies between CPU and
GPU. i.e. compared to Ray, the communication
policy between nodes is more flexible.

✳

Experiments (WarpDrive)

GPU only training on tag environment.

Speedup from improved compiler optimisation
compared to handwritten CUDA code.

Furthermore, fragments can scale to multiple GPUs
(WarpDrive cannot).

✳

Experiments (Distribution)

Dependent on the algorithm and configuration
bottleneck, different distribution policies work well.

Communication overhead and parallelism
properties are unique.

Potential for automatic optimisation of DP.

✳

Experiments (Scalability)

MSRL approach does not bottleneck with increased
number of data-intensive agents. It is able to take
advantage of distributed training resources.

✳

Opinion

Expressivity

High-level API sufficiently covers a large range of
algorithms. However, control over fragments is limited by
the API boundaries and compiler.

But this is a training framework …

Does it cover:
- Safety checks?
- RLHF? (Probably not, MindSpore has an independent

library)
- Custom data sources / replay buffer storage?
- Logging / metric integration?
- Configuration management?

✳

Training Backend

- As a training paradigm, much of the empirical improvements actually comes from reliance on
MindSpore DNN framework

- Optimisations and distributions only work with shared MindSpore dataflow normalisation framework as
underlying.

- Did not see examples of “containerised” fragments - would development of such fragments actually be
easy?

Engineering and Community

MSRL advertises as a practical training framework, not just a research project.

Limited mentions in both Chinese and Western communities.

Last version update January. No significant changes since. No active issues or pull requests.

Implementation likely not industrial quality. For example, there is only a limited test suite.

Summary

Strengths:

- Decouples RL logic and deployment via the
FDG computation model

- Enables flexibility and further optimisation

Weaknesses:

- Expressivity does not cover non-RL modules
- Limited uptake by the community / as an

industrial tool
- Requires single backend for majority of

optimisations
- Experiments shown in paper cover only small

subset of scenarios, no large scale
benchmarking found as in other similar
systems

