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Reinforcement Learning (Distributed, Multi-agent)
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Fig. 1: RL training loop with multiple agents



Heterogenous Training
PPO, DQN, Dreamer, MAPPO, MuZero ...
Heterogeneous deployment

A3C, IMPALA, self-play, CPU environments, GPU inference, distributed agents ...



Existing Solutions

Agent.act() Agent.act() Agent.act()
Python function Dataflow operators
MR s ——
Function call Message| ™ Function operator

Environment.step(
Python function

def step(action)
state,renard=..

Shared memory

Environment.step
Dataflow operators,

S—
m
=
-
)
=
3
®
=
n
—
1]
=

Agent.learn()
Python function

def learn(state,reward)
loss=..

Agent.lear, Agent.learn()
Dataflow operator

{0

(a) Function-based (b) Actor-based (c) Dataflow-based

Fig. 2: Types of RL system designs




Existing Solutions ( Function )

Example: CleanRL

Few abstractions
Direct implementation
Fixed distribution

Limited acceleration

global_step args. learning_starts
f global_step args.train_frequency ==
data = rb.sample(args.batch_size)
o_grad():

target_max, = target_network(data.next_observations).max(dim=1)

td_target data.rewards.flatten() + args.gamma * target_max * (1 data.dones.flatten())
old_val = g_network(data.observations).gather(1, data.actions).squeeze()

loss = F.mse_loss(td_target, old_val)

F global_step
writer.add_scalar("losses/td_loss", loss, global_step)
writer.a scalar("losses/q_values", old_val.mean().item(), global_step)
print("sps:", t(global_step (time.time() - start_time)))

writer.add_scalar("charts/SPS", int(global_step (time.time() - start_time)), global_step)

optimizer.zero_g
loss.backward()

optimizer.step()

global_step % args.target_network_frequency
f target_network_param, g_network_param in zip(target_network.parameters(), g_network.parameters()):
target_network_param.data.copy_(

args.tau * g_network_param.data + (1.0 args.tau) * target_network_param.data




Existing Solution (Agent)

Example: RLIib

Wrapper layer on top of
Ray

Distributed agents with
message passing

Difficult to reason with
low level API

Difficult to optimize
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Existing Solution (Dataflow)
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Contribution:
MindSporeRL



Compilation

Python Code using MSRL API

Distribution Policy

Fragmented Dataflow Graph

Deployment

A high level API decouples RL
logic from deployment.

Component APIs specify
algorithmic components with
natural boundaries (actors,
learners, trainers)

Interaction APIs offer
RL-specific functionality
(replay buffers)

The Python AST in inspected
and compiled into a
fragmented dataflow graph
(FDG).

Nodes are higher level
encapsulations of potentially
data-parallel components,
with defined communication
interfaces.

At runtime, a coordinator
generates and dispatches the
FDG from the source code and
a distribution policy.

A fragment optimizer fuses
fragment instances sharing an
execution backend before
submission.



MSRL API

Type

API

Description

Component

Agent, Actor, Learner, Trainer
Actor.act(...)
Learner.learn(...)
Trainer.train(...)

MSRL.agent_act(...)

MSRL.agent_learn(...)

MSRL.env_step(...)

MSRL.env_reset()

Abstract classes for components
Trajectory collection
DNN policy training
RL training loop

Invoke actor

Invoke learner

Execute environment

Reset environment

Interaction

MSRL.replay_buffer_insert(...)
MSRL.replay_buffer_sample()

Store trajectories in buffer
Sample trajectories from buffer

Tab. 2: MSRL APIs



MSRL API

Agent: actors and learners.
Actor: Trajectory collection by interaction with the environment.
Learner: DNN update logic.

Trainer: RL Training loop.



Fragmented Dataflow Graph

A dual-layer dataflow graph.

Nodes are fragments: higher level abstraction of a component. Each fragment can have a lower level bespoke
dataflow implementation. Fragment allocation supports computation of different devices (and optimisation)

Two dimensions of optimisation affects device utilisation

- Fragment granularity
- Fragment co-location



- create_fragment(self, frag_file=N

'"Main function to create fragment.""

ast_source = self.generate_ast_from_py(self.sxrc_file)
ast_target = self.generate_ast_from_py(self.template)

ast_target = self.split_trainer_to_fragment(ast_target, ast_source)

parameter_list = self.interface_parser()
ast_target = self.insert_communication_states(
ast_target, ast_source, parameter_list, self.policy

)

if frag_file 1
frag_name = self.save_fragment(ast_target)

frag_name = frag_file. StIlp(

print(f"Import fragment from file: {frag_name}.")
fragment_module = importlib.import_ module(frag name)
actor = getattr(fragment_module, or")
learner = getattr(fragment_module, ‘Lw&rﬂel”)

fragment_list = []
if list(self.policy.topology.keys()
for _ in range(self.worker_num -

fragment_list.append(actor)
fragment_list.append(learner)

fragment list.append(learner)
for _ in range(self.worker_num - 1):
fragment_list.append(actor)
print("Fragments generated: ", fragment_list)
self.clean_files([self.template])
return fragment_list




Fragmented Dataflow Graph
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Fig. 3: Fragmented dataflow graph



Distribution Policy

A distribution policy governs how MSRL distributes and executes a given RL policy.
Allocation, replication, and co-location of fragments.

Advantage: Since no single distribution policy is optimal in all cases, the choice provides greater
execution flexibility.

After distribution, the fragment optimiser can transform the FDG AST before submission to the DNN
executor engine, such as batching tensors.



Computationally expensive environment,

small DNN
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Tab. 3: Sample distribution policies with deployments

Lots of data, can't fit onto a single GPU



Experiments (Ray)

a)

Proximal Policy Optimisation (PPO), 320
environments distributed evenly among actors. A
single learner trains the DNN.

Time dominated by environment computation.

Speedup: FDG Optimisation performs fusion,
where multiple policy inference is combined into a
single step on the GPU. In contrast, Ray performs
inference sequentially.
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(a) Episode time vs. GPUs (PPO) (b) Episode time vs. GPUs (A3C)
Fig. 6: Performance comparison with Ray



Experiments (Ray)

b)

A3C. Multiple copies of agents execute their own
copy of the environment.

Speedup: the distribution policy can exploit
customize DL engine asynchronous send / receive
operations to avoid data copies between CPU and
GPU. i.e. compared to Ray, the communication
policy between nodes is more flexible.

w ay P
g 10 g MSRL
» £ 300
= 100 o Ray
g £ 200
= 50 F g X% T
0 0
1 2 4 8 16 24 2 4 8 16 24
Number of GPUs Number of GPUs

(a) Episode time vs. GPUs (PPO) (b) Episode time vs. GPUs (A3C)
Fig. 6: Performance comparison with Ray



Experiments (WarpDrive)

GPU only training on tag environment.
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Fig. 7: Performance comparison with WarpDrive (PPO)



Experiments (Distribution)
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Experiments (Scalability)
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Fig. 10: Scalability with agent count (MAPPO)
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Opinion



Expressivity

Algorithm

High-level API sufficiently covers a large range of Heeram
algorithms. However, control over fragments is limited by
the API boundaries and compiler.

But this is a training framework ...

Does it cover:
Safety checks?

RLHF? (Probably not, MindSpore has an independent
library)

Custom data sources / replay buffer storage?
Logging / metric integration?

Configuration management?
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Training Backend

- As atraining paradigm, much of the empirical improvements actually comes from reliance on
MindSpore DNN framework

- Optimisations and distributions only work with shared MindSpore dataflow normalisation framework as
underlying.

- Did not see examples of “containerised” fragments - would development of such fragments actually be
easy?



Engineering and Community

MSRL advertises as a practical training framework, not just a research project.
Limited mentions in both Chinese and Western communities.
Last version update January. No significant changes since. No active issues or pull requests.

Implementation likely not industrial quality. For example, there is only a limited test suite.



Summary

Strengths: Weaknesses:
- Decouples RL logic and deployment via the - Expressivity does not cover non-RL modules
FDG computation model - Limited uptake by the community / as an
- Enables flexibility and further optimisation industrial tool

- Requires single backend for majority of
optimisations

- Experiments shown in paper cover only small
subset of scenarios, no large scale
benchmarking found as in other similar
systems



