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Motivation



Reinforcement Learning

Source: OpenAI SpinningUp



Reinforcement Learning (Distributed, Multi-agent)

✳



Heterogenous Training

PPO, DQN, Dreamer, MAPPO, MuZero …

Heterogeneous deployment

A3C, IMPALA, self-play, CPU environments, GPU inference, distributed agents … 



Existing Solutions

✳



Existing Solutions ( Function )

Example: CleanRL

Few abstractions

Direct implementation

Fixed distribution

Limited acceleration



Existing Solution (Agent)

Example: RLlib

Wrapper layer on top of 
Ray

Distributed agents with 
message passing 

Difficult to reason with 
low level API

Difficult to optimize



Existing Solution (Dataflow)

Example: WarpDrive

Write code using 
bespoke dataflow 
implementations

Fixed distribution



Contribution: 
MindSporeRL



Deployment

At runtime, a coordinator 
generates and dispatches the 
FDG from the source code and 
a distribution policy. 

A fragment optimizer fuses 
fragment instances sharing an 
execution backend before 
submission.

Python Code using MSRL API

A high level API decouples RL 
logic from deployment.

Component APIs specify 
algorithmic components with 
natural boundaries (actors, 
learners, trainers)

Interaction APIs offer 
RL-specific functionality 
(replay buffers)

Fragmented Dataflow Graph

The Python AST in inspected 
and compiled into a 
fragmented dataflow graph 
(FDG).

Nodes are higher level 
encapsulations of potentially 
data-parallel components, 
with defined communication 
interfaces.

Compilation Distribution Policy



MSRL API

✳



MSRL API

Agent: actors and learners.

Actor: Trajectory collection by interaction with the environment.

Learner: DNN update logic.

Trainer: RL Training loop. 



Fragmented Dataflow Graph

A dual-layer dataflow graph.

Nodes are fragments: higher level abstraction of a component. Each fragment can have a lower level bespoke 
dataflow implementation. Fragment allocation supports computation of different devices (and optimisation)

Two dimensions of optimisation affects device utilisation

- Fragment granularity
- Fragment co-location



✳



Fragmented Dataflow Graph

✳



Distribution Policy

A distribution policy governs how MSRL distributes and executes a given RL policy.

Allocation, replication, and co-location of fragments.

Advantage: Since no single distribution policy is optimal in all cases, the choice provides greater 
execution flexibility.

After distribution, the fragment optimiser can transform the FDG AST before submission to the DNN 
executor engine, such as batching tensors.



✳

Computationally expensive environment, 
small DNN

Lots of data, can’t fit onto a single GPU



Experiments (Ray)

a)

Proximal Policy Optimisation (PPO), 320 
environments distributed evenly among actors. A 
single learner trains the DNN. 

Time dominated by environment computation.

Speedup:  FDG Optimisation performs fusion , 
where multiple policy inference is combined into a 
single step on the GPU. In contrast, Ray performs 
inference sequentially.

✳



Experiments (Ray)

b)

A3C. Multiple copies of agents execute their own 
copy of the environment.

Speedup: the distribution policy can exploit 
customize DL engine asynchronous send / receive 
operations to avoid data copies between CPU and 
GPU. i.e. compared to Ray, the communication 
policy between nodes is more flexible.

✳



Experiments (WarpDrive)

GPU only training on tag environment.

Speedup from improved compiler optimisation 
compared to handwritten CUDA code.

Furthermore, fragments can scale to multiple GPUs 
(WarpDrive cannot).

✳



Experiments (Distribution)

Dependent on the algorithm and configuration 
bottleneck, different distribution policies work well.

Communication overhead and  parallelism 
properties are unique. 

Potential for automatic optimisation of DP. 

✳



Experiments (Scalability)

MSRL approach does not bottleneck with increased 
number of data-intensive agents. It is able to take 
advantage of distributed training resources.

✳



Opinion



Expressivity

High-level API sufficiently covers a large range of 
algorithms. However, control over fragments is limited by 
the API boundaries and compiler.

But this is a training framework …

Does it cover: 
- Safety checks?
- RLHF? (Probably not, MindSpore has an independent 

library)
- Custom data sources / replay buffer storage?
- Logging / metric integration?
- Configuration management?

 

✳



Training Backend

- As a training paradigm, much of the empirical improvements actually comes from reliance on 
MindSpore DNN framework 

- Optimisations and distributions only work with shared MindSpore dataflow normalisation framework as 
underlying.

- Did not see examples of “containerised” fragments - would development of such fragments actually be 
easy?



Engineering and Community

MSRL advertises as a practical training framework, not just a research project.

Limited mentions in both Chinese and Western communities.

Last version update January. No significant changes since. No active issues or pull requests.

Implementation likely not industrial quality. For example, there is only a limited test suite.



Summary

Strengths:

- Decouples RL logic and deployment via the 
FDG computation model

- Enables flexibility and further optimisation

Weaknesses:

- Expressivity does not cover non-RL modules
- Limited uptake by the community / as an 

industrial tool
- Requires single backend for majority of 

optimisations
- Experiments shown in paper cover only small 

subset of scenarios, no large scale 
benchmarking found as in other similar 
systems


