MSRL: Distributed Reinforcement
Learning with Dataflow Fragments

Review

3¢ Figure from paper /codebase

Motivation

Reinforcement Learning

Agent

State, Reward Action
St Tt Qg

Environment]

Source : OpenAl SpinningUp

Reinforcement Learning (Distributed, Multi-agent)

7 Joint action A 7
l <a2,as,..an> | Actionas| Action ay |Action an
Step a * g
Envnronmentw Policy ' Meséége
nvironment 2| inference Agent 1 Agent 2 Agent n
Step e nvironment

Environment

Ste
execution @ (@ O% (@ p oI'i) cye
training

Environments Policy1 Policy 2 .- Policy n
State 1 T State 2.--- T State n
reward 1 | reward 2 | reward n

Fig. 1: RL training loop with multiple agents

Heterogenous Training
PPO, DQN, Dreamer, MAPPO, MuZero ...
Heterogeneous deployment

A3C, IMPALA, self-play, CPU environments, GPU inference, distributed agents ...

Existing Solutions

Agent.act() Agent.act() Agent.act()
Python function Dataflow operators
MR s ——
Function call Message| ™ Function operator

Environment.step(
Python function

def step(action)
state,renard=..

Shared memory

Environment.step
Dataflow operators,

S—
m
=
-
)
=
3
®
=
n
—
1]
=

Agent.learn()
Python function

def learn(state,reward)
loss=..

Agent.lear, Agent.learn()
Dataflow operator

{0

(a) Function-based (b) Actor-based (c) Dataflow-based

Fig. 2: Types of RL system designs

Existing Solutions (Function)

Example: CleanRL

Few abstractions
Direct implementation
Fixed distribution

Limited acceleration

global_step args. learning_starts
f global_step args.train_frequency ==
data = rb.sample(args.batch_size)
o_grad():

target_max, = target_network(data.next_observations).max(dim=1)

td_target data.rewards.flatten() + args.gamma * target_max * (1 data.dones.flatten())
old_val = g_network(data.observations).gather(1, data.actions).squeeze()

loss = F.mse_loss(td_target, old_val)

F global_step
writer.add_scalar("losses/td_loss", loss, global_step)
writer.a scalar("losses/q_values", old_val.mean().item(), global_step)
print("sps:", t(global_step (time.time() - start_time)))

writer.add_scalar("charts/SPS", int(global_step (time.time() - start_time)), global_step)

optimizer.zero_g
loss.backward()

optimizer.step()

global_step % args.target_network_frequency
f target_network_param, g_network_param in zip(target_network.parameters(), g_network.parameters()):
target_network_param.data.copy_(

args.tau * g_network_param.data + (1.0 args.tau) * target_network_param.data

Existing Solution (Agent)

Example: RLIib

Wrapper layer on top of
Ray

Distributed agents with
message passing

Difficult to reason with
low level API

Difficult to optimize

[
P PO def training_step(...):

/ EnvRunnerGroup ’/ LearnerGroup K}
-

episodes = EnvRunnerGroup.sample()
LearnerGroup.update(episodes)
EnvRunnerGroup.sync_weights(src=LearnerGroup)

gym.vector

~

n EnvRunners % /

m Learners ot

RLModule

(inference-only)

RLModule

(complete)

i

(&

Existing Solution (Dataflow)

'8 ';’, [warp_drive.ProcessWrapper -[warp_drive.training.utils.perform_auto_vertical_scaling()]
X S ®© i
Example: WarpDrive £- x i
- ¥ 1
g E [torch.distributed.DistributedDataParallel] : >[warp_drive.training.utils.perform_distributed_training()]
. . x i
erte COde USIng - : : (observations, actions, rewards)
(] : 7 i . 3 .
bespoke dataflow 3 ‘ ~
. . § " [torch.Model } { warp_drive.training.Trainer] (warp_ilnve.Env\Atlrapper]
implementations z3 step(, reset(
2' & i A) x
Fixed distribution 5| | _ ;
ca [warp_drive.managers.CUDAEnvironmentReset] 5 o :
22| | £3 env.ENV_NAME
59 : oz
a s { warp_drive.managers.CUDASampler] o * ! initial
(7] : i data
A | ;_push
. v
% 2 [warp_drive.managers.function_manager] [warp_drive.managers.data_manager]
-
A A A i initial
H H i i data
x v T T T T T T T T T T TTTTTTTTTTTTTTY push
8) o I @
oF : ¥ : og A
g] [warp_drive.cuda_includes.reset] [warp_drive.cuda_includes.random] g L [env.CUDA_ENV_NAME_step]
== =
o E o5 7
() “-... Users Provide

Contribution:
MindSporeRL

Compilation

Python Code using MSRL API

Distribution Policy

Fragmented Dataflow Graph

Deployment

A high level API decouples RL
logic from deployment.

Component APIs specify
algorithmic components with
natural boundaries (actors,
learners, trainers)

Interaction APIs offer
RL-specific functionality
(replay buffers)

The Python AST in inspected
and compiled into a
fragmented dataflow graph
(FDG).

Nodes are higher level
encapsulations of potentially
data-parallel components,
with defined communication
interfaces.

At runtime, a coordinator
generates and dispatches the
FDG from the source code and
a distribution policy.

A fragment optimizer fuses
fragment instances sharing an
execution backend before
submission.

MSRL API

Type

API

Description

Component

Agent, Actor, Learner, Trainer
Actor.act(...)
Learner.learn(...)
Trainer.train(...)

MSRL.agent_act(...)

MSRL.agent_learn(...)

MSRL.env_step(...)

MSRL.env_reset()

Abstract classes for components
Trajectory collection
DNN policy training
RL training loop

Invoke actor

Invoke learner

Execute environment

Reset environment

Interaction

MSRL.replay_buffer_insert(...)
MSRL.replay_buffer_sample()

Store trajectories in buffer
Sample trajectories from buffer

Tab. 2: MSRL APIs

MSRL API

Agent: actors and learners.
Actor: Trajectory collection by interaction with the environment.
Learner: DNN update logic.

Trainer: RL Training loop.

Fragmented Dataflow Graph

A dual-layer dataflow graph.

Nodes are fragments: higher level abstraction of a component. Each fragment can have a lower level bespoke
dataflow implementation. Fragment allocation supports computation of different devices (and optimisation)

Two dimensions of optimisation affects device utilisation

- Fragment granularity
- Fragment co-location

- create_fragment(self, frag_file=N

'"Main function to create fragment.""

ast_source = self.generate_ast_from_py(self.sxrc_file)
ast_target = self.generate_ast_from_py(self.template)

ast_target = self.split_trainer_to_fragment(ast_target, ast_source)

parameter_list = self.interface_parser()
ast_target = self.insert_communication_states(
ast_target, ast_source, parameter_list, self.policy

)

if frag_file 1
frag_name = self.save_fragment(ast_target)

frag_name = frag_file. StIlp(

print(f"Import fragment from file: {frag_name}.")
fragment_module = importlib.import_ module(frag name)
actor = getattr(fragment_module, or")
learner = getattr(fragment_module, ‘Lw&rﬂel”)

fragment_list = []
if list(self.policy.topology.keys()
for _ in range(self.worker_num -

fragment_list.append(actor)
fragment_list.append(learner)

fragment list.append(learner)
for _ in range(self.worker_num - 1):
fragment_list.append(actor)
print("Fragments generated: ", fragment_list)
self.clean_files([self.template])
return fragment_list

Fragmented Dataflow Graph

Fragment A (Actors)
|

L

gather

computational graph

actions

Fragment B (Environment)

Python functions
def step():
reward = env.step()

entry interface exit interface

send
trajectories

o I
CPU ﬁ

"[CUDA kernel

OO

entry interface

exit interface

10

GPU 3

o
|
m =
GPU 1 GPU 2
Fragment C (Learner)

broadcast
policy
parameters

exit interface

entry interface

GPU]@

Fig. 3: Fragmented dataflow graph

Distribution Policy

A distribution policy governs how MSRL distributes and executes a given RL policy.
Allocation, replication, and co-location of fragments.

Advantage: Since no single distribution policy is optimal in all cases, the choice provides greater
execution flexibility.

After distribution, the fragment optimiser can transform the FDG AST before submission to the DNN
executor engine, such as batching tensors.

Computationally expensive environment,

small DNN

DP-SingleLearnerCoarse

replicate: actor,env split: learner e.g., Acme [18], Sebulba [16]

Worker 1 Worker 2
(e @+_GPU CPU
Replay
buffer Environ
> ment
L Actor
Worker 3 Broadcast Gather Worker 4
crtl % 4 Gpu|(cpPu
. eplay
Environ &
ment :buffer : Replay
Actor r LLearner buffer

DP-MultiLearner

replicate: fused actor/learner, env

Worker 1 Worker 2
' N e 1
GPU CPU
E"V“";“:’ Actor buffer || buffer Actor Environ
ment e« ment
L I k'_d*. Learner Learner‘ » y
Worker 3 \ Alire duce/ Worker 4
(- B T
(GPU CPU
T e
ctor buffe er ctor ' Environ
ment R <-/V \Lbuk» ment
Ll B k. H Learner) |Learner .,“ :J 3

Tab. 3: Sample distribution policies with deployments

Lots of data, can't fit onto a single GPU

Experiments (Ray)

a)

Proximal Policy Optimisation (PPO), 320
environments distributed evenly among actors. A
single learner trains the DNN.

Time dominated by environment computation.

Speedup: FDG Optimisation performs fusion,
where multiple policy inference is combined into a
single step on the GPU. In contrast, Ray performs
inference sequentially.

"
w / ay —
g 10 g MSRL
» £ 300
= 100 o Ray
g £ 200
= 90 F 100
0 0
1 2 4 8 16 24 2 4 8 16 24
Number of GPUs Number of GPUs

(a) Episode time vs. GPUs (PPO) (b) Episode time vs. GPUs (A3C)
Fig. 6: Performance comparison with Ray

Experiments (Ray)

b)

A3C. Multiple copies of agents execute their own
copy of the environment.

Speedup: the distribution policy can exploit
customize DL engine asynchronous send / receive
operations to avoid data copies between CPU and
GPU. i.e. compared to Ray, the communication
policy between nodes is more flexible.

w ay P
g 10 g MSRL
» £ 300
= 100 o Ray
g £ 200
= 50 F g X% T
0 0
1 2 4 8 16 24 2 4 8 16 24
Number of GPUs Number of GPUs

(a) Episode time vs. GPUs (PPO) (b) Episode time vs. GPUs (A3C)
Fig. 6: Performance comparison with Ray

Experiments (WarpDrive)

GPU only training on tag environment.

: . N s MSRL —%— " MSRL —¥—
Speedup from improved compiler optimisation g 150 | WarpDrive —&— g 150
compared to handwritten CUDA code. o 1004 o
E 5 E 100
= =
0 50
2 4 6 8 10 16 32 48 64 80 96 112128
. 4 4
Furthermore, fragments can scale to multiple GPUs Numibos o sgants (X101 Numborofagents (107)
(WarpDrive cannot). (a) Episode time vs. agents (b) Episode time vs. agents
(1 GPU) (n GPUs)

Fig. 7: Performance comparison with WarpDrive (PPO)

Experiments (Distribution)

: : B0 e T PPO a0 .
Dependent on the algorithm and configuration . i ok g 6o| EEO—& 2
. o - o 200 =
bottleneck, different distribution policies work well. € wop 2 40 o
£ o <<
= & 9 0
o _ a2 10 20 30 40 50 60 70 2 4 8 1624
Communication overhead and parallelism o — Mimbar st actors
properties are unique. (a) Training time vs. actors (PPO) (b) Episode time (PPO vs. A3C)
g 1000 § 2000 SingleLearnerCoarse
» 800 £ 1500 MultiLearner
[0 [}
= £ 1000
Potential for automatic optimisation of DP. o 0T F 5o
€ 200 ingleLearnerCoarse i- =
® 0 MultiLearner - "_E 0
o 100 200 300 400 500 600 @ 1 2 3 4 § 6
Number of environments Network latency (ms)
(c) Training time vs. envs (d) Training time vs. network

latency
Fig. 8: Impact of parameters on distribution policies

Experiments (Scalability)

. . 10000 MSAL » 100000
MSRL approach does not bottleneck with increased @ 1000 | sequental 2 10000
. . . 2 = 1000
number of data-intensive agents. It is able to take g 0 8 s
. . E 10 2
advantage of distributed training resources. F g w0
ol iR 18
2 4 8 16 32 64}_ 4 8 16 32 6
Number of agents Number of agents
(a) Training time per episode (b) Training throughput

Fig. 10: Scalability with agent count (MAPPO)

5000

4000

3000

2000

The reward value

1000

0

1 20 40 60 80 100
Number of episodes

Fig. 11: Statistical efficiency with environment count (PPO)

Opinion

Expressivity

Algorithm

High-level API sufficiently covers a large range of Heeram
algorithms. However, control over fragments is limited by
the API boundaries and compiler.

But this is a training framework ...

Does it cover:
Safety checks?

RLHF? (Probably not, MindSpore has an independent
library)

Custom data sources / replay buffer storage?
Logging / metric integration?

Configuration management?

RL
Version

>=0.1

>=0.1

>=0.1

>=0.2

>=0.3

>=0.5

Action Space
Discrete Continuous CPU

/

Device

GPU Ascend

Example
Environment

Training Backend

- As atraining paradigm, much of the empirical improvements actually comes from reliance on
MindSpore DNN framework

- Optimisations and distributions only work with shared MindSpore dataflow normalisation framework as
underlying.

- Did not see examples of “containerised” fragments - would development of such fragments actually be
easy?

Engineering and Community

MSRL advertises as a practical training framework, not just a research project.
Limited mentions in both Chinese and Western communities.
Last version update January. No significant changes since. No active issues or pull requests.

Implementation likely not industrial quality. For example, there is only a limited test suite.

Summary

Strengths: Weaknesses:
- Decouples RL logic and deployment via the - Expressivity does not cover non-RL modules
FDG computation model - Limited uptake by the community / as an
- Enables flexibility and further optimisation industrial tool

- Requires single backend for majority of
optimisations

- Experiments shown in paper cover only small
subset of scenarios, no large scale
benchmarking found as in other similar
systems

