
CIEL: a universal execution 
engine for distributed data-flow 

computing
Research Review



MapReduce: a programming paradigm



MapReduce example

• Task: summarize word occurrences in a thick book / database 
(100 TB)

• Split into chunks, assign to each worker
• Map: Each worker summarizes its own section

• Reduce: Add the number up



Merits

• Hadoop: an implementation
• The run-time system takes care of the details

• partitioning the input data
• scheduling the program’s execution across a set of machines
• handling machine failures
• managing the required inter-machine communication



Dryad

• Users pre-define a static data-flow graph (DAG)
• Dryad executes the vertices of the graph in some order



Issue: iterative algorithms

f(x) = f(x-1) + …
• Latency

• MayReduce and Dryad are good for throughput, not latency
• Overhead adds up for iterative tasks

• Restricted control flow
• Data flow is limited: a bipartite graph / static DAG specified before the job
• Cannot have “if previous job returns 1, execute this job”
• Cannot achieve data-dependent (dynamic) control flow



Idea: Building a Dynamic DAG

• We need a more expressive 
programming model and more 
powerful execution engine

• Tasks: something to do, may have 
dependencies / expected output

• Objects: tasks input/output, 
immutable

• References: concrete (link to 
object) or future (object not 
produced)



Turing-complete Scripting Language: 
SkyWriting



Synchronization

• CIEL tasks are non-blocking
• all synchronization (and data-

flow) must be made explicit in 
the dynamic task graph 



Task Execution

• Clients: set tasks
• Master: schedule tasks
• Worker: work on tasks

• Lazy evaluation: evaluate the output of 
root task until blocked



Evaluation: versatility

• MapReduce can be described in this language
• Many more tasks can be described in this paradigm

• k-means algorithm
• dynamic programming



System Design: latency & utilization

• Lazy evaluation: good for latency, but throughput is traded
• Streaming results before fully saving on local disk
• Scheduler considers object location when assigning tasks

• Tries to avoid inter-cluster communication

• Workers not using polling to get jobs



Evaluation: latency & utilization

Grep task: more workers, shorter task, 
greater % gain k-means task: higher utilization 

since polling is not used
k-means task: some Hadoop jobs 
are very slow due to non-local data



Task dispatch overhead
• If task dispatch is frequent, the overheads gets big
• Scheduler cannot dispatch tasks quickly enough

• The system is written in Python 2 – that’s the reason?

Smith-Waterman DP task: the utilization 
rate is noisy when problem size increases



Strengths and Weaknesses

• Strength:
• Versatile data flow supported
• Good short-task latency and utilization
• Transparent fault tolerance

• Weaknesses:
• Prototype software, not production-ready
• Need to learn a new language
• Scalability, job scheduler could be the bottleneck
• Does not prioritize throughput
• Coarse granularity: a whole machines considered as a single worker



Related Work

• OpenMP for HPC
• Good for workers that share memory

• Adding keywords to existing languages
• Cilk-NOW

• Declarative programming (with least fixed point operator)



How things have changed since then

• CPU: 1 (virtual) core / machine -> many cores
• RAM: 1.7G / machine -> much larger
• Network speed: 100 Mbps -> 100Gbps
• Machines more stable
• Python is still interpreted with GIL

• CIEL leaves multi-core utilization to the machine
• There might be other systems that can handle that (Tensorflow?)

• Overhead of MapReduce might have been much better
• CIEL runtime is still slow



Current challenges for such distributed 
systems (as of 2021)
• Communication burden
• Straggler effect



Impact

• From citation counts, not so great compared to Dryad, 
MapReduce and TensorFlow

• Other works have much better (industrial) support, while CIEL is more like 
a prototype

• Problem overstated? Users prefer to handle data flow by themselves?

• Dynamic DAG very characteristic
• Improvement to latency well recognized


	Test
	CIEL: a universal execution engine for distributed data-flow computing
	MapReduce: a programming paradigm
	MapReduce example
	Merits
	Dryad
	Issue: iterative algorithms
	Idea: Building a Dynamic DAG
	Turing-complete Scripting Language: SkyWriting
	Synchronization
	Task Execution
	Evaluation: versatility
	System Design: latency & utilization
	Evaluation: latency & utilization
	Task dispatch overhead
	Strengths and Weaknesses
	Related Work
	How things have changed since then
	Current challenges for such distributed systems (as of 2021)
	Impact



