CIEL: a universal execution
engine for distributed data-flow
computing

Research Review



MapReduce: a programming paradigm
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MapReduce example

e Task: summarize word occurrences in a thick book / database
(100 TB)

* Split into chunks, assign to each worker
* Map: Each worker summarizes its own section
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Merits

* Hadoop: an implementation

* The run-time system takes care of the details
* partitioning the input data
* scheduling the program’s execution across a set of machines
* handling machine failures
* managing the required inter-machine communication



Dryad

* Users pre-define a static data-flow graph (DAG)
* Dryad executes the vertices of the graph in some order



Issue: iterative algorithms

f(x) =f(x-1) +...

* Latency
* MayReduce and Dryad are good for throughput, not latency
* Overhead adds up for iterative tasks

* Restricted control flow
e Data flow is limited: a bipartite graph / static DAG specified before the job
* Cannot have “if previous job returns 1, execute this job”
* Cannot achieve data-dependent (dynamic) control flow



ldea: Building a Dynamic DAG

* We need a more expressive
programming model and more u
powerful execution engine

. Root task A
* Tasks: something to do, may have
dependencies / expected output |
» Objects: tasks input/output, —
immutable
=
* References: concrete (link to (f%fj;’;; —uz1

object) or future (object not
produced)

(a) Dynamic task graph



Turing-complete Scripting Language:
SKyWHriting  snction process chunienuni, prev resiis) (-

// Returns a reference to a partial result.
return spawn_exec(...);

}

function is_converged(curr_result, prev_result) {
// Execute native code for convergence test.
// Returns a reference to a boolean.
return spawn_exec(...) [0];

}

input_data = [ref("ciel://hostl137/chunk0"),
ref ("ciel://host223/chunkl"),

-1
curr = ...; // Initial guess at the result.

do {
prev = curr;
curr = [];
for (chunk in input_data) {
curr += process_chunk (chunk, prev);
!
} hhile (!«*is_converged (curr, prev));

return curr;



Synchronization

function process_chunk (chunk, prev_result) {
// Execute native code for chunk processing.
// Returns a reference to a partial result.

* CIEL tasks are non-blocking | metun spawn_exec(...);

¢ all. SynChronlzathn (and data' function is_converged(curr_result, prev_result) {

// Execute native code for convergence test.

flOW) mUSt be made eXpl|C|t In // Returns a reference to a boolean.

return *a + *Db; for (chunk in input_data) {

curr += process_chunk (chunk, prev);

. return spawn_exec(...) [0];
the dynamic task graph }

2 - spawn (f); ! ‘} input_data = [ref("ciel://host137/chunk0"),

b = spawn (g) ; i | ref ("ciel://host223/chunkl"),

return *a + *b; 1 ] -1

I " E curr = ...; // Initial guess at the result.
' ----------------- -~
)
(:::} _______ ,E Continuation of T i do |

! i prev = curr;
l I curr = [];
| |
: ;
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S } hhile (!*is_converged (curr, prev));

(c) Implicit continuation due to dereferencing
return curcr;



Task Execution

 Clients: set tasks
* Master: schedule tasks
* Worker: work on tasks J O \

\

* Lazy evaluation: evaluate the output of
root task until blocked

resut




Evaluation: versatility

* MapReduce can be described in this language

* Many more tasks can be described in this paradigm
* k-means algorithm
* dynamic programming



System Design: latency & utilization

* Lazy evaluation: good for latency, but throughput is traded
* Streaming results before fully saving on local disk

* Scheduler considers object location when assigning tasks
* Tries to avoid inter-cluster communication

* Workers not using polling to get jobs



Evaluation: latency & utilization
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Task dispatch overhead

* |[f task dispatch is frequent, the overheads gets big

* Scheduler cannot dispatch tasks quickly enough
* The system is written in Python 2 — that’s the reason?

Number of chunks

10 x 10

20 x 20

30 x 30

40 x 40

50 x 50

~

0 1654 4122
Time since start (s)

Smith-Waterman DP task: the utilization
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Strengths and Weaknesses

* Strength:
* Versatile data flow supported
* Good short-task latency and utilization
* Transparent fault tolerance

* Weaknesses:
* Prototype software, not production-ready
* Need to learn a new language
* Scalability, job scheduler could be the bottleneck
* Does not prioritize throughput
* Coarse granularity: a whole machines considered as a single worker



Related Work

* OpenMP for HPC

* Good for workers that share memory

* Adding keywords to existing languages
* Cilk-NOW
* Declarative programming (with least fixed point operator)



How things have changed since then

* CPU: 1 (virtual) core / machine -> many cores
* RAM: 1.7G / machine -> much larger

* Network speed: 100 Mbps -> 100Gbps

* Machines more stable

* Python is still interpreted with GIL

* CIEL leaves multi-core utilization to the machine
* There might be other systems that can handle that (Tensorflow?)

* Overhead of MapReduce might have been much better
* CIEL runtime is still slow



Current challenges for such distributed
systems (as of 2021)

 Communication burden
* Straggler effect



Impact

* From citation counts, not so great compared to Dryad,
MapReduce and TensorFlow

* Other works have much better (industrial) support, while CIEL is more like
a prototype
* Problem overstated? Users prefer to handle data flow by themselves?

* Dynamic DAG very characteristic
* Improvement to latency well recognized
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