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Abstract
Performing Deep Neural Network (DNN) computation on
hardware accelerators efficiently is challenging. Existing
DNN frameworks and compilers often treat the DNN op-
erators in a data flow graph (DFG) as opaque library func-
tions and schedule them onto accelerators to be executed
individually. They rely on another layer of scheduler, often
implemented in hardware, to exploit the parallelism available
in the operators. Such a two-layered approach incurs signif-
icant scheduling overhead and often cannot fully utilize the
available hardware resources. In this paper, we propose RAM-
MER, a DNN compiler design that optimizes the execution
of DNN workloads on massively parallel accelerators. RAM-
MER generates an efficient static spatio-temporal schedule
for a DNN at compile time to minimize scheduling overhead.
It maximizes hardware utilization by holistically exploiting
parallelism through inter- and intra- operator co-scheduling.
RAMMER achieves this by proposing several novel, hardware
neutral, and clean abstractions for the computation tasks and
the hardware accelerators. These abstractions expose a much
richer scheduling space to RAMMER, which employs several
heuristics to explore this space and finds efficient schedules.
We implement RAMMER for multiple hardware backends
such as NVIDIA GPUs, AMD GPUs, and Graphcore IPU.
Experiments show RAMMER significantly outperforms state-
of-the-art compilers such as TensorFlow XLA and TVM by
up to 20.1×. It also outperforms TensorRT, a vendor opti-
mized proprietary DNN inference library from NVIDIA, by
up to 3.1×.

1 Introduction

Deep neural network (DNN) is now a widely adopted ap-
proach for image classification, natural language process-
ing, and many other AI tasks. Due to its importance, many
computational devices, such as CPU, GPU, FPGA, and spe-
cially designed DNN accelerators have been leveraged to
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perform DNN computation. Efficient DNN computation on
these devices is an important topic that has attracted much
research attention in recent years [23, 28, 32, 40, 52]. One of
the key factors that affect the efficiency of DNN computa-
tion is scheduling, i.e. deciding the order to perform various
pieces of computation on the target hardware. The impor-
tance of scheduling in general is well known and has been
thoroughly studied [20, 39]. However, there is little work
discussing scheduling for DNN computation on hardware
devices specifically.

The computational pattern of a deep neural network is usu-
ally modeled as a data flow graph (DFG), where each node
corresponds to an operator, which represents a unit of com-
putation such as matrix multiplication, while an edge depicts
the dependency between operators. This representation natu-
rally contains two levels of parallelism. The first level is the
inter-operator parallelism, where operators that do not have
dependencies in the DFG may run in parallel. The second
level is the intra-operator parallelism, where an operator such
as matrix multiplication has inherent internal data parallelism
and can leverage hardware accelerators that can perform par-
allel computation, such as a GPU.

To exploit the two levels of parallelism, current practice
adopts a two-layered scheduling approach. An inter-operator
DFG layer scheduler takes the data flow graph and emits oper-
ators that are ready to be executed based on the dependencies.
In addition, an intra-operator scheduler takes an operator and
maps it to the parallel execution units in the accelerator. This
layering design has a fundamental impact on the system archi-
tectures of the existing DNN tool sets. For example, the DFG
layer scheduler is typically implemented in deep learning
frameworks such as TensorFlow [18] or ONNX Runtime [14].
The operator layer scheduler, on the other hand, is often hid-
den behind the operator libraries such as cuDNN [12] and
MKL-DNN [9], and sometimes implemented directly in hard-
ware, as is the case for GPUs.

While widely adopted by existing frameworks and acceler-
ators, such a two-layer scheduling approach incurs fundamen-
tal performance limitations. The approach works well only
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when the overhead of emitting operators is largely negligible
compared to the execution time of operators, and when there
is sufficient intra-operator parallelism to saturate all process-
ing units in an accelerator. This unfortunately is often not
the case in practice. DNN accelerators keep on increasing
performance at a much faster pace than CPUs, thus making
the operator emitting overhead more and more pronounced.
This is exacerbated for DNN inference workloads when the
batch size is small, which limits the intra-operator parallelism.
Moreover, the two-layer scheduling approach overlooks the
subtle interplay between the upper and lower layers: to op-
timize the overall performance, a system could reduce the
degree of intra-operator parallelism in order to increase the
level of inter-operator parallelism (§ 2).

To mitigate these limitations, we present RAMMER, a deep
learning compiler that takes a holistic approach to manage the
parallelism available in the DNN computation for scheduling.
It unifies the inter- and intra-operator scheduling through a
novel abstraction called rTask. rTask enables the scheduler to
break the operator boundary and allows fine-grained schedul-
ing of computation onto devices. Instead of the existing design
that breaks scheduling into two pieces managed by software
and hardware separately, RAMMER is a unified software-only
solution, which makes it less dependent on underlying hard-
ware and thus can be adopted by diverse DNN accelerators.
In RAMMER, we make the following design decisions.

First, to exploit the intra-operator parallelism through a
software compiler, RAMMER redefines a DNN operator as
an rTask-operator or rOperator. An rOperator consists of
multiple independent, homogeneous rTasks, each is a mini-
mum schedulable unit runs on a single execution unit of an
accelerator (e.g., a streaming multiprocessor SM in a GPU).
Thus, rTask as the fine-grained intra-operator information is
exposed to the RAMMER scheduler. RAMMER treats a DNN
as a data flow graph of rOperator nodes, hence it can still see
the coarse-grained inter-operator (DFG) dependencies.

Unfortunately, certain modern accelerators such as GPU do
not expose interfaces for intra-operator (i.e., rTask) schedul-
ing. To address this challenge, as a second design decision
RAMMER abstracts a hardware accelerator as a virtualized
parallel device (vDevice), which contains multiple virtualized
execution units (vEU). The vDevice allows several rTasks,
even from different operators, to run on a specified vEU in
a desired order. Moreover, a vEU can run a barrier rTask
that waits for the completion of a specified set of rTasks,
thus ensuring the correct execution of rTasks from dependent
operators. The vDevice maps a vEU to one of the physical
execution units in an accelerator to perform the actual com-
putation of rTasks.

Finally, fine-grained scheduling could incur significant run-
time overheads, even more so than the operator scheduling
overhead discussed previously. To address this issue, RAM-
MER moves the scheduling decision from runtime to compile
time. This is driven by the observation that most DNN’s DFG

is available at the compile time, and the operators usually
exhibit deterministic performance characteristics. Therefore,
the runtime performance can be obtained through compile
time profiling [45]. This not only avoids unnecessary runtime
overheads, but also allows a more costly scheduling policy to
fully exploit the inter- and intra- operator parallelism together.

RAMMER is compatible with optimizations developed in
existing DNN compilers. RAMMER can import a data-flow
graph from other frameworks like TensorFlow. Such a DFG
can be optimized with techniques employed by a traditional
graph optimizer such as [18]. An rOperator can also be opti-
mized by an existing kernel tuner [23]. Our experience shows
that, on top of existing optimizations, RAMMER can provide
significant additional performance improvement, especially
for DNN inference workloads.

RAMMER is hardware neutral. The abstractions proposed,
such as rTask, rOperator and vEU are applicable to any mas-
sively parallel computational devices with homogeneous exe-
cution units. This includes almost all the computational de-
vices proposed for DNN workloads. In this paper, in addi-
tion to describe in detail how RAMMER is implemented on
NVIDIA GPUs, we will also discuss our experience retarget-
ing RAMMER for several alternative computing devices.

We have implemented RAMMER with 52k lines of C++
code and open-sourced the code1. Our evaluation on 6 DNN
models shows that RAMMER significantly outperforms state-
of-the-art compilers like XLA and TVM on both NVIDIA and
AMD GPUs, with up to 20.1× speedup. RAMMER even out-
performs TensorRT [13], a vendor optimized DNN inference
library from NVIDIA, with up to 3.1× gain.

Our experience on RAMMER strongly suggests that the cur-
rent industry-prevalent practice of vendor supplying highly
optimized DNN operator implementations in a library form
(such as cuDNN and MKL-DNN) is sub-optimal. This prac-
tice will incur significant efficiency cost for DNN workloads.
The situation will become even worse in the coming years as
modern accelerators keep on increasing the available hard-
ware parallelism while new DNN architectures strive to save
computation by replacing larger operators with many smaller
ones [49,54]. We recommend vendors to supply optimized im-
plementations in other forms, such as our proposed rOperator
and vEU abstractions, in order to enable holistic optimization
that can fully utilize hardware resources.

2 Motivation

In this section, we highlight some results to illustrate the
limitation of the two-layer design of existing deep learning
frameworks. Without loss of generality, we experiment with
TensorFlow [18], a state-of-the-art DNN framework, on an
NVIDIA GPU, using the same settings as in §5.

1https://github.com/microsoft/nnfusion
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Figure 1: The average GPU utilization on different DNN
model with different batch size (BS). The utilization only
accounts for kernel execution, excluding other stages like
operator emitting.
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Figure 2: The average kernel time and end-to-end execution
time on different DNN model with different batch size (BS).

Hardware-managed intra-operator scheduling leads to
low GPU utilization. The two-layer design delegates the
intra-operator scheduling to the hardware scheduler in an ac-
celerator like GPU. Figure 1 shows that such an approach
could lead to low GPU utilization across different DNN mod-
els. When the batch size is 1, the GPU utilization could be
as low as 2% for Seq2Seq model. Even when the batch size
is increased to 16, the average GPU utilization across the 6
models is merely 40% 2. To improve the scheduling efficiency,
modern GPUs support the multi-streaming mechanism that
allows independent operators to run concurrently. However,
our measurement in §5 shows that multi-streaming often hurts
rather than improves the overall performance.

High inter-operator scheduling overheads. The two-
layer approach also incurs a higher inter-operator scheduling
overheads. Here, we regard the time not spent doing actual
computation in the GPU as the overhead for inter-operator
scheduling. This overhead includes various operations to sup-
port operator emitting, including kernel launching, context
initialization, communication between host and GPU, and so
on. The percentage shown above each bar in Figure 2 depicts
how much time the DNN model is not spent in the actual
GPU computation. From the figure it is clear that the over-
head of inter-operator scheduling is quite significant. When
batch size is 1, the average overhead is 55% across the 6 DNN

2Note that the LSTM’s GPU utilization is slightly higher when batch
size is 1 compared to that when batch size is 16, because TensorFlow uses
different kernel implementations of GEMM for different batch sizes.
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Figure 3: An illustration of (a) the inefficiency scheduling in
existing approach; and (b) an optimized scheduling plan.
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Figure 4: The profiled kernel time of all the operators in
ResNeXt model. Each data point ran 1,000 times

models. Increasing the batch size to 16 slightly improves the
situation, while the overhead is still not negligible (between
16% and 55%). Modern DNN compilers, including the one in
TensorFlow, employs a technique called kernel fusion [17,23],
which merges several DNN operators into a single one when
allowed. However, our results in §5 show that this technique
cannot reduce the overhead significantly.

Interplay between inter- and intra-operator scheduling.
Separating scheduling into two layers ignores the subtle in-
terplay between inter-operator and intra-operator scheduling,
which may lead to suboptimal performance. For example, Fig-
ure 3(a) shows two independent operators being scheduled
to a GPU. For operator 0, to maximize its performance, the
system may choose the fastest implementation with a high
degree of parallelism. Thus operator 0 could greedily span all
the parallel execution units (EUs) of an accelerator ( in this
case the streaming multiprocessors of the GPU), while each
EU may not be fully utilized. Since operator 0 occupies all
the EUs, operator 1 has to wait for available resource. A better
scheduler could reduce the degree of parallelism of operator 0
to increase the level of inter-operator parallelism, by mapping
operator 1 alongside operator 0, as illustrated by Figure 3(b).
We will discuss more details of this issue in §3.3 and §5.

Opportunities. Given the fundamental limitations of the
two-layer design observed above, it is desirable to manage the
scheduling of inter and intra-operator together. However, a
naive implementation of this approach may incur even higher
overheads than the already significant inter-operator schedul-
ing overheads. Fortunately, most DNN’s DFG is available at
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Figure 5: System overview of DNN computation in (a) exist-
ing DNN frameworks, and (b) RAMMER, where each node
in a DFG is an rOperator that explicitly exposes the intra-
operator parallelism through rTask; Rather than dynamically
scheduling each rOperator, RAMMER compiles the DFG into
a static execution plan called rProgram (composed of rTasks)
and maps it to hardware by a software device abstraction
called vDevice.

the compile time, and the operators often exhibit deterministic
performance, therefore, their execution times can be obtained
through compile time profiling [45]. For example, Figure 4
shows the averaged GPU kernel time and the variance of all
the operators in the ResNeXt [49] model. The kernel run-time
weighted average of standard deviations among all operators
is only 7%. This allows us to move the scheduling from run-
time to compile-time, by generating an offline schedule plan
to reduce runtime overhead.

3 RAMMER’s Design

The observations in §2 motivate RAMMER, a DNN compiler
framework that manages both inter and intra-operator schedul-
ing. Figure 5 shows the key differences between an existing
deep learning framework and RAMMER. First, the input to
RAMMER is a data-flow graph where a node is an rOperator,
rather than a traditional operator. An rOperator explicitly ex-
poses rTask, a fine-grained computation unit that could run on
a parallel execution unit in an accelerator. We discuss details
of rTask in §3.1. Second, instead of separating the two-layer
scheduling between software and hardware, RAMMER intro-
duces rTask-aware DFG compiler to manage the inter and
intra-operator scheduling in one place. The rTask-aware DFG
compiler will generate a static execution plan for runtime
execution. Often, it is not efficient or not possible to pack
the entire DNN computation in a single accelerator device
invocation. Therefore, the execution plan is breaking into

1 interface Operator { void compute(); };
2 interface rOperator {
3 void compute_rtask(size_t rtask_id);
4 size_t get_total_rtask_num();
5 };

Figure 6: The execution interfaces of traditional operator and
rOperator. More details in §4.

multiple rPrograms, each contains a piece of computation
to be carried out on the hardware. Instead of emitting one
operator at a time for an accelerator, RAMMER emits an rPro-
gram at a time. The details of the rTask-aware DFG compiler
will be discussed in §3.3. To carry out the execution plan,
RAMMER abstracts a hardware accelerator as a virtualized
parallel device (vDevice), which includes multiple virtualized
execution units (vEUs). The vDevice provides the scheduling
and synchronization capabilities at the rTask level so that
the rProgram can be mapped to the corresponding vEUs at
compile time. The vEUs, together with the vDevice will be
mapped to the hardware at runtime. We introduce virtualized
device in §3.2.

3.1 rOperator
An rOperator is defined as a group of independent, homoge-
neous rTasks (short for RAMMER task), where an rTask is
the minimum computation unit in an operator to be executed
on a processing element of the accelerator device. The con-
cept of rTask naturally aligns with the parallel architecture of
DNN accelerators, e.g., the SIMD architecture of GPU. To
maximize efficiency, the computation on such an accelera-
tor needs to be divided into multiple parallel (homogeneous)
tasks. Each of these parallel tasks can be represented by an
rTask, thereby exposing the intra-operator parallelism not
only to the underlying hardware, but to the RAMMER compiler.
Given that an rTask is logically identical to a parallel task,
RAMMER relies on external tools to partition an rOperator
into rTasks (e.g., TVM [23]). In another word, RAMMER uses
external heuristics to decide a reasonable granularity of rTask.

As a concrete example, a matrix multiplication operator can
be divided into multiple homogeneous rTasks, each computes
a tile of the output matrix, while the tiling strategy is assumed
to be given. If a complicated DNN operator can hardly be
divided into independent homogeneous rTasks (e.g., Separa-
bleConv2D [7]), it can be represented as multiple dependent
rOperators, each can be partitioned into rTasks.

An rTask is indexed by a logical rtask_id. The rTasks in
an rOperator are numbered continuously. To execute an rTask,
the parallel execution unit could call the compute_rtask()
interface (line 3 Figure 6). To generate an rProgram,
RAMMER needs to know the total number of rTasks
in an operator. This is available through the interface
get_total_rtask_num(). In contrast, a traditional opera-
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tor has only one interface compute()(line 1 Figure 6). The
implementation of an rOperator is called rKernel, which real-
izes the concrete rTask computation logics and decides the
total number of rTasks. One rOperator might have multiple
versions of rKernels based on different tiling strategies, e.g.,
trading off between resource efficiency and overall execution
time.

The rOperator abstraction allows RAMMER to expose both
inter- and intra-operator parallelisms. This opens up a new
space to optimize DNN computation holistically.

3.2 Virtualized Parallel Device
Modern accelerators do not provide interfaces to map an
rTask to a desired execution unit directly. For example, a GPU
only allows to execute one operator (in the form of a kernel)
at a time. To address this challenge, RAMMER abstracts a
hardware accelerator as a software-managed virtual device
called virtualized parallel device (vDevice). A vDevice further
presents multiple parallel virtual execution units (vEUs), each
of them can execute rTasks independently.

With vDevice, RAMMER organizes the computation
of rTask-aware DFG as an rProgram on a vDevice.
An rProgram is represented as two dimensional array of rTask
prog[vEU_id][order], where vEU_id denotes the vEU the
rTask is assigned to, and order denotes the execution order
of the rTask in this vEU. For example, prog[0][0] denotes
the first rTask to be executed in vEU 0. To ensure the correct
execution of dependent rTasks in a plan, RAMMER introduces
barrier-rTask. A barrier-rTask takes the argument of a list
of pairs <vEU_id, order>. The barrier-rTask will wait until
the completion of all rTasks indexed by each pair. The barrier-
rTask provides a fine-grained synchronization mechanism to
enable rTask schedule plan execution.

For the execution of DNN computation, a vDevice needs
to be mapped to a physical accelerator at runtime. We will
discuss how RAMMER implements the mapping of vDevice
to different hardware accelerators in §4.

3.3 rTask-aware DFG Compiler
The rTask abstraction and the fine-grained rTask execution ca-
pability exposed by the vDevice open up a large optimization
space. RAMMER aims to generate a high-quality schedule in
this space, represented as a sequence of rPrograms. To this
end, the rTask-aware DFG compiler separates the scheduling
mechanism from its policy. On the mechanism side, it pro-
vides two capabilities: (1) Two scheduling interfaces for a
policy to generate an execution plan. (2) A profiler to supply
profiling information requested by a scheduling policy.

Scheduling interfaces. RAMMER’s rTask-aware DFG
compiler introduces two scheduling interfaces, Append and
Wait. Append(task_uid, vEU_id) assigns an rTask from

Algorithm 1: Wavefront Scheduling Policy
Data: G: DFG of rOperator, D: vDevice
Result: Plans: rPrograms

1 Function Schedule(G, D):
2 Pcurr = {};
3 for W = Wavefront(G) do
4 P1 = ScheduleWave(W , Pcurr , D);
5 P2 = ScheduleWave(W , {}, D);
6 if time(P1)≤ time(Pcurr)+ time(P2) then
7 Pcurr = P1;
8 else
9 Plans.push_back(Pcurr);

10 Pcurr = P2;
11 return Plans;
12 Function ScheduleWave(W, P, D):
13 SelectRKernels(W , P);
14 for op ∈W do
15 for r ∈ op.rTasks do
16 vEU = SelectvEU(op, P, D);
17 P.Wait(r, Predecessor(op).rTasks);
18 P.Append(r, vEU);
19 return P;

an operator to the specified vEU in a sequential order. Here
task_uid is a global identifier for an rTask, which is essen-
tially the operator id combined with the rtask_id within
the operator. The second API, namely Wait(wtask_uid,
list<task_uid>), allows an rTask specified by wtask_uid
to wait for rTasks in list<task_uid>. The Wait interface
will implicitly Append a barrier-rTask (discussed in §3.2)
right before the rTask wtask_uid. As an optimization, when
waiting for multiple consecutive rTasks r1,r2, ...,rn sequen-
tially appended to the same vEU, the rTask only need to
include the last one, i.e., rn, in the waiting list.

Compile-time profiling. RAMMER profiler provides the
following three types of information: 1) individual rTask
execution time on a vEU; 2) resource usage of an rTask such
as the local memory or registers used and 3) the overall exe-
cution time of an rProgram. This profiling information can
guide a policy to generate an efficient scheduling plan.

Scheduling policy. Algorithm 1 illustrates how to use the
above scheduling interfaces and the profiler to implement a
scheduling policy to exploit both inter- and intra-operator par-
allelisms. This policy takes an rTask-aware DFG and sched-
ules operators in waves [37]. The operators in a wave are the
fringe nodes of a breadth-first-search on the DFG. The policy
will include a wave’s operators in the current rProgram if the
profiling results (denoted by time()) suggest it will reduce
the total execution time. Otherwise, the policy will create a
separate rProgram (line 2-10).

First of all, we assume that each rOperator has one or more
implementations called rKernels, each rKernel is a way to
break the operator into rTasks with different resource and run-
time trade-offs. Among the rKernels of a particular rOperator,
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there is the fastest one with the smallest runtime, and there
is the most efficient one with the smallest product of runtime
and the total number of rTasks.

For each wave, the policy selects the implementations of
the operators through SelectRKernels() (line 13), with the
following heuristics: If combine all the rTasks in the wave
with the fastest operator implementations still cannot occupy
all the parallel execution units in the accelerator, the policy
will just select them. Otherwise, the policy will find the most
efficient rKernels and then perform a profiling. The policy
will choose these rKernels if the profiling results show better
execution time, otherwise it will stick with the fastest rKernels.
This heuristic considers the interplay between the inter- and
intra-operator scheduling by evaluating the rOperators (and
their rTasks) in a wave, instead of individually. After the
rKernel selection, the policy calls SelectvEU() to decide
which vEU an rTask should be scheduled to (line 16). Given
the current rProgram P, SelectvEU() chooses the vEU that
can execute the rTask at the earliest, based on the profiled
execution time of each rTask in P. Finally, the policy calls
Wait() to ensure rTask level dependency (derived from the
DFG) and Append() to assign the rTask to the selected vEU
(line 17-18). The policy in Algorithm 1 demonstrates how
RAMMER separates the scheduling mechanism from schedul-
ing policy. As shown in §5, this simple policy can already
outperform the state-of-the-art, sometimes significantly. We
envision the proposed scheduling mechanism could enable fu-
ture research on more advanced scheduling policies to further
explore the optimization space.

4 Implementation

We implement RAMMER with 52k lines of C++ code, in-
cluding 3k lines of code for the core compiler and schedul-
ing function. The input of RAMMER is a DNN model in
either TensorFlow [18] frozen graph, TorchScript [16] or
ONNX [14] format. RAMMER first converts the input model
into a DFG of rOperators. Since the input model is often not
optimized, like other compilers, we also implemented com-
mon graph optimizations such as constant folding, common
sub-expression elimination, pattern-based kernel fusion, etc.
For each rOperator from an optimized DFG, RAMMER loads
one or multiple versions of rKernel implementations from dif-

1 __device__ void matmul_rTask(float *A, float *B,
2 float *C, size_t rtask_id) {
3 size_t tile_x = rtask_id / (M/32);
4 size_t tile_y = rtask_id % (N/32);
5 size_t i = threadIdx.x/32 + tile_x*32;
6 size_t j = threadIdx.x%32 + tile_y*32;
7 C[i][j] = 0;
8 for (size_t k = 0; k < K; k++)
9 C[i][j] += A[i][k] * B[k][j];

10 }
11
12 class MatmulROperator {
13 __device__ void compute_rtask(size_t rtask_id){
14 matmul_rTask(input0 ,input1 ,output0 ,rtask_id);}
15 size_t get_total_rtask_num(){return M/32*N/32);}
16 };

Figure 8: A CUDA implementation of a naive matrix multi-
plication with the rOperator abstraction.

ferent sources, e.g., auto-kernel generators [23], hand-tuned
kernels, or converted from existing operators in other frame-
works. RAMMER compiler will then partition the DFG into
sub-graphs (e.g., based on the policy in Algorithm 1) and
compile each of them as an rProgram. As an output, each
rProgram is further generated as a device code (e.g., GPU
kernels) that runs on the accelerator. Figure 7 summarizes the
overall workflow of RAMMER.

In the rest of this section, we describe the details about
RAMMER’s implementation for CUDA GPU. We focus on
NVIDIA GPUs and the CUDA eco-system because they are
the most widely used accelerators for DNN. To demonstrate
that the vDevice abstraction enables RAMMER compiler to
support different accelerators with an uniform interface, we
will also briefly describe our experience with other DNN
accelerators, including AMD GPUs and Graphcore IPU, at
the end of this section.

4.1 RAMMER on NVIDIA CUDA GPUs

An NVIDIA GPU usually consists of tens to hundreds of
streaming multiprocessors (SM), each containing tens of cores.
Computation on SM follows the Single Instruction Multiple
Thread (SIMT) model. In this paper we assume the readers
are familiar with the basic concepts of CUDA [4], the pro-
gramming paradigm introduced by NVIDIA to program their
GPUs. A single CUDA program (often referred to as a CUDA
kernel) groups multiple threads into blocks, each thread-block
is assigned to run on an SM, where the scheduling is per-
formed by GPU hardware. RAMMER naturally maps each
vEU to an SM and implements an rTask as a thread-block.

4.1.1 rOperator in CUDA

Figure 8 shows a naive CUDA implementation of an
rOperator that multiplies a M×K matrix A by a K×N matrix
B. For simplicity, we assume M and N are evenly divisible
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by 32. In the code, each rTask computes a 32×32 tile of the
output matrix C. Line 1-10 in Figure 8 shows the computa-
tion of one thread in one rTask. The thread uses rtask_id,
a RAMMER assigned id to identify the tile to be computed
by this rTask (line 3-4), and uses threadIdx, a CUDA built-
in thread index to identify the data element to be computed
(line 5-6) by this thread. The identified element is then com-
puted in line 7-9. Line 13 shows the interface exposed by this
rOperator, which will be called by a vEU’s parallel thread.
The total rTasks needed in this operator is determined by the
matrix dimension M and N, and can be obtained through the
get_total_rtask_num interface (line 16). The key differ-
ence between code in Figure 8 and a traditional CUDA code
is that an rTask uses rtask_id, a logical index controlled by
RAMMER, instead of blockIdx, a built-in thread-block index
controlled by the GPU’s hardware scheduler. This enables
RAMMER to map an rTask to a desired vEU by executing
compute_rtask() with a proper rtask_id. Note that the
code shown in Figure 8 is for illustrative purpose. The eval-
uation shown in §5 uses a more complicated tiled version
of matrix multiplication rOperator, which further improves
the performance through carefully exploiting GPU memory
hierarchy, e.g., shared memory and registers [36, 41].

4.1.2 vDevice and vEU on CUDA GPU

On a CUDA GPU, the intra-operator scheduling is usually
managed by the GPU’s built-in scheduler. To bypass the
built-in scheduler, RAMMER leverages a persistent thread-
block (PTB) [29] to implement a vEU in a vDevice. PTB is
a thread-block containing a group of continuously running
threads, where RAMMER is able to “pin” the PTB to the de-
sired SM. Given an rProgram, each thread in the PTB (and
hence the vEU) executes the compute_rtask() according
to the sequence specified by the rProgram. To execute the
compute_rtask() from multiple rTasks continuously in a
PTB, a function qualifier __device__ is required by CUDA
for comptue_rtask() and any sub functions executed therein
(e.g., line 1 and 13 in Figure 8).

Figure 9 illustrates the CUDA code for a vDevice with
two vEUs, i.e., a CUDA kernel function with two PTBs. This
vDevice executes an rProgram compiled from a DFG with
three rOperators: a Matmul, a Relu, and a Conv. Specified
by the execution plan, the vDevice executes two rTasks of
the Matmul operator on vEU 0, and in parallel it also runs
four rTasks of the Relu operator on vEU 1. Then a global
barrier is inserted to the two vEUs, each runs a barrier-rTask:
vEU 0 waits for the 4th rTask on vEU 1, and vEU 1 waits for
the 2nd rTask on vEU 0. Finally, the vDevice executes two
rTasks of the Conv operator on the two vEUs respectively. On
each vEU, RAMMER runs the rTasks sequentially in a code
branch, executed only if the current vEU Id matches the one
generated by the rProgram.

Before a lengthy DNN computation, RAMMER dispatches

1 // config: <<<(vEU_size,1,1), (vEU#,1,1)>>>
2 __global__ void vdevice_run() {
3 if (Get_vEU_Id() == 0) { // vEU 0
4 MatmulrTaskOp.compute_rtask (0);
5 MatmulrTaskOp.compute_rtask (1);
6 // wait the rTask on vEU 1 with order=3
7 BarrierTask({<1, 3>}).compute_rtask();
8 Conv2DrTaskOp.compute_rtask (0);
9 }

10 else if (Get_vEU_Id() == 1) { // vEU 1
11 for (auto i : 4)
12 RelurTaskOp.compute_task(i);
13 // wait the rTask on vEU 0 with order=1
14 BarrierTask({<0, 1>}).compute_rtask();
15 Conv2DrTaskOp.compute_rtask (1);
16 }
17 }

Figure 9: The CUDA code for a vDevice with two vEUs.

each vEU (implemented by a PTB) to a desired SM through
the GPU scheduler [48]. To improve hardware utilization, an
SM can run multiple vEUs (PTBs) concurrently. Since CUDA
uses a SIMT model, all vEU are homogeneous, the number
of vEUs an SM can support depends on the most demanding
rTask across all the vEUs, i.e., the rTask that requires the
most thread number, register number, shared memory size,
etc. In practice, we set the number of vEUs on each SM
according to the maximum active PTB number provided by
the CUDA compiler nvcc [5]. With the vDevice abstraction,
the optimizations in RAMMER become hardware agnostic.

4.1.3 Executing rTask on vEU in CUDA

Executing heterogeneous rTasks. In a CUDA kernel, the
number of threads in a thread block is fixed in the entire
execution lifecycle. This force RAMMER to require that all
the rTasks on a vEU to run on with the same number of
persistent threads. In practice, different rOperators may use
different number of threads to balance parallelism and per-
thread resource usage. To address this problem, RAMMER sets
the number of threads of a vEU to be the maximum number
of threads used by an rTask in the vEU. For an rTask with less
threads, RAMMER inserts early-exit logic in the extra threads
to skip the unnecessary (and invalid) execution. However,
early-exit may lead to dead-lock: a global barrier might never
return because early-exit logic may skip the barrier. To avoid
this issue, RAMMER can leverage the CUDA cooperative
group primitives [3], which explicitly controls the scope of
threads during a synchronization.

Implementing barrier-rTask. To implement an efficient
barrier-rTask, RAMMER introduces a step array, where each
element is an integer tracking the number of finished rTasks
in each vEU. When finished, an rTask will use its first thread
to increase the corresponding element in the step array by
1. When waiting for a list of rTasks on N vEUs, a barrier-
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rTask uses its first N threads to poll on the corresponding
elements in the step array until the steps are larger than the
orders of those rTasks. After that, the barrier-rTask calls
__syncthreads to ensure all threads in this vEU are ready
to run the next rTask.

4.1.4 Transforming Legacy CUDA Operators

Many operators for DNN are already available as CUDA ker-
nel code. To reduce development efforts, RAMMER introduces
a source-to-source converter to transform a legacy CUDA op-
erator into an rOperator. The key insight of the converter
lies on the facts that to exploit the intra-operator parallelism,
legacy CUDA operators are also implemented as thread-
blocks, although they use blockIdx and let CUDA GPU hard-
ware control the intra-operator scheduling directly. rOperator
can just compute the desired blockIdx from rtask_id with-
out changing computation logic in the legacy kernel.

One challenge in this transformation is that the thread-
blocks in existing operator could be laid out in 1, 2, or 3-
dimensional shape, while in a vEU threads are laid out in a
1-dimensional shape. This means our vEU needs to support
rTask with different threads shapes. For example, Figure 10
illustrates a vEU executing two rTasks with the thread shapes
of [2×2] and [2×3] respectively. Our solution is to stick to
a 1-D persistent thread shape for a vEU, and apply a thread
index remapping to compute the desired threadIdx in the
legacy kernel with the vEU’s 1-D threadIdx. Notice that, as
discussed before, the number of threads of a vEU is the maxi-
mum number of threads of all rTask in the vEU, so that such
a remapping is always possible. For example, in Figure 10 we
configure the vEU with [1×6] persistent threads. When exe-
cuting rTask 0 with a legacy [2×2] thread shape, RAMMER
remaps the [2×2] shape to the vEU’s [1×6] thread.

In summary, to convert a legacy DNN operator to an
rOperator, one needs to remap thread and block index, imple-
ment the early-exit logic, and use CUDA cooperative group
primitive to support local barrier on the active (i.e. not early-
exited) threads. RAMMER implements these changes by in-
serting a compiler-generated code segment at the entry point
of the legacy operator kernel code. With these modifications,
RAMMER can preserve the legacy operator implementation,
and reuse it as an rTask operator. In RAMMER, we have trans-
formed and implemented total 150 rKernels for 70 rOperators.

4.2 RAMMER on Other Accelerators

The design of RAMMER is not limited to CUDA and NVIDIA
GPUs. In fact, our rTask, rOperator and vEU abstractions are
applicable to any massively parallel computational devices
with homogeneous execution units, including most of the
devices that used for DNN computation. In this section, we
discuss how to port RAMMER to support other devices.

rTask0: thread_shape =[2 x 2] 
remap threads as [1 x 4] block

rTask1: thread_shape=[2 x 3]
remap threads as [1 x 6] block

vEU: [1 x 6] persistent block

Active thread
Early-exit threadt

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5
0 1 2
3 4 5

0 1
2 3

Figure 10: Executing two heterogeneous rTasks on a vEU.

4.2.1 RAMMER on AMD GPUs

AMD GPUs are similar to NVIDIA GPUs, which also consist
of many parallel execution units called compute units (CU).
AMD GPU has a HIP programming model [8], which is simi-
lar to CUDA. AMD provides a hipify tool that can convert a
CUDA kernel to a HIP kernel. hipify can help convert most
CUDA rOperators to the HIP version. Some CUDA kernel
configurations, such as the number of threads per thread-block
and size of local memory, are not optimized for AMD GPUs
due to the minor architecture differences. We re-implemented
41 rKernels for AMD GPUs for better performance. hipify
can also convert the CUDA implementation of vDevice (i.e.,
PTBs) to the HIP version. The only exception is that AMD
GPUs do not support cooperative group primitives. To address
this issue, we introduce a new API in rOperator to provide
the number of (block-wise) synchronizations S (i.e. calls to
__syncthreads). For early-exit threads, instead of exit imme-
diately, RAMMER will insert code to call the __syncthreads
primitive S times.

4.2.2 RAMMER on Graphcore IPU

The Graphcore IPU (Intelligence Processing Unit) [10] is a
state-of-the-art DNN accelerator with an architecture quite
different from GPUs. IPU is a massively parallel MIMD pro-
cessor with a bulk-synchronous-parallel (BSP) communica-
tion model. Each IPU contains 1,216 parallel processing units
called tiles; a tile consists of a hyper-threaded computing core
plus 256 KB of local memory. DNN computation on an IPU
is explicitly programmed as a data-flow graph, where each
vertex implements the code executed on a tile and each edge
depicts the data transfers between vertices. The IPU compiler
is responsible for mapping each vertex to a tile.

RAMMER’s rTask abstraction can also map to IPU’s MIMD
model: a vEU can map to a tile and a vertex can be treated as
an rTask. Thus, an rOperator on IPU can be implemented as a
set of vertices. More importantly, IPU compiler allows to con-
trol the vertex-tile mapping at compile-time. This provides the
core functionality required in vDevice abstraction. Restricted
by the hardware BSP model, IPU does not provide a fine-
grained synchronization mechanism. We therefore implement
barrier-rTask with a global barrier, which may reduce schedul-
ing space for RAMMER. Even with this limitation, RAMMER
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Model Dataset Model Type Note

ResNeXt CIFAR-10 Computer Vision layers: 29, cardinality: 16, bottleneck width: 64d (16×64d, paper parameter)
NASNet CIFAR-10 Computer Vision repeated cells: 6, filters: 768 (6@768, paper parameter)
AlexNet ImageNet Computer Vision (paper parameter)
DeepSpeech2 LibriSpeech Speech input length: 300; CNN layer: 2; RNN: type: uni-LSTM, layer: 7, hidden size: 256
LSTM (-TC) synthetic Language Model input length: 100, hidden size: 256, layer: 10
Seq2Seq (-NMT) synthetic Language Model Encoder: input length: 100, type: uni-LSTM, hidden size: 128, layer: 8

Decoder: output length: 30, type: uni-LSTM, hidden size: 128, layer: 4

Table 1: Deep learning models and datasets.

still can schedule rTasks of different operators at the same
computing step to increase utilization. To evaluate RAMMER,
we implemented total 15 rOperators and 18 rKernels.

4.2.3 RAMMER on x86 CPUs

We also implemented RAMMER on multi-core x86 CPUs.
However, we see little performance benefit of adopting the
RAMMER abstractions on x86-based platforms. On x86, the
operator runtime is high due to the relatively low performance
of x86 cores for numerical computations, and the small num-
ber of cores can be fully occupied by almost any DNN opera-
tors. Moreover, scheduling overhead is not significant because
kernel launch is just a regular function call. Therefore, RAM-
MER cannot provide additional benefit compared with the
traditional two-layered scheduling approach.

5 Evaluation

In this section, we present the detailed evaluation results to
demonstrate the effectiveness of RAMMER with comparison
with other state-of-the-art frameworks.

5.1 Experimental Setup
Machine environment. We evaluated RAMMER on three
servers with different accelerators equipped. The CUDA GPU
evaluations use an Azure NC24s_v3 VM equipped with Intel
Xeon E5-2690v4 CPUs and 4 NVIDIA Tesla V100 (16GB)
GPUs, with Ubuntu 16.04, CUDA 10.0 and cuDNN 7.6.5. The
AMD ROCm GPU evaluations use a server equipped with In-
tel Xeon CPU E5-2640 v4 CPU and 2 AMD Radeon Instinct
MI50 (16GB) GPUs, installed with Ubuntu 18.04 and ROCm
3.1.1 [1]. The IPU evaluations use an Azure ND40s_v3 pre-
view VM equipped with Intel Xeon Platinum 8168 CPUs and
16 IPUs with Poplar-sdk 1.0.

We compare RAMMER with other DNN frameworks
and compilers, including TensorFlow (v1.15.2) representing
the state-of-the-art DNN framework, TVM (v0.7) [23] and
TensorFlow-XLA representing the state-of-the-art DNN com-
pilers, and TensorRT (v7.0) (with TensorFlow integration ver-
sion), a vendor-specific inference library for NVIDIA GPUs.

Benchmarks and datasets. Our evaluation is performed
using a set of representative DNN models that covers typi-
cal deep neural architectures such as CNN and RNN; and
different application domains including image, NLP and
speech. Among them, ResNeXt [49] is an improved version
of ResNet [30]; NASNet [54] is a state-of-the-art CNN model
obtained by the neural architecture search; AlexNet [35]
represents a classic CNN model with a simple architecture.
LSTM-TC [31] is an RNN model for text classification; Deep-
Speech2 [19] is a representative speech recognition model;
and Seq2Seq [46] is for neural machine translation. All the
implementations of these benchmarks, including the rKernels
used in each model, are available in our artifact evaluation
repository3.

We focus our evaluation on model inference. There is no
fundamental reason limiting RAMMER from model training,
except that supporting training requires us to develop more
operators. We evaluate these models on a set of datasets in-
cluding CIFAR-10 [2], ImageNet [26], LibriSpeech [11] and
synthetic datasets. Table 1 lists the models, hyper-parameters,
and the corresponding datasets used. All performance num-
bers in our experiments are averages over 1,000 runs; in all
cases we observed very little variations.

5.2 Evaluation on CUDA GPUs
This section answers the following questions: 1) How does
RAMMER perform comparing with the state-of-the-art DNN
frameworks or compilers? 2) How well does RAMMER utilize
the GPU’s parallel resource? 3) How much does RAMMER
reduce the runtime scheduling overhead? 4) How much per-
formance gain comes from RAMMER’s scheduling leveraging
both the intra and inter operator parallelism? 5) How effective
is the fine-grained synchronization in improving the overall
performance?

5.2.1 End-to-end Performance

We first demonstrate the end-to-end efficiency of RAMMER
by comparing with TensorFlow (TF), TensorFlow-XLA (TF-

3https://github.com/microsoft/nnfusion/tree/osdi20_
artifact/artifacts
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Figure 11: End-to-end model inference time with batch size of 1 on NVIDIA V100 GPU.

XLA), TVM and TensorRT (TF-TRT). To show the benefit
of the abstractions introduced in RAMMER, we create a base-
line version of RAMMER (called RAMMERBASE), which only
implements the optimizations similar to those in existing com-
pilers and still uses a two-layered scheduling approach. Thus,
RAMMERBASE can be treated as just another regular DNN
compiler implemented in the same codebase of RAMMER.
Figure 11 shows the execution time of the benchmarks with
batch size of 1.

First, RAMMER significantly outperforms TF by 14.29×
on average, and up to 33.94× for the LSTM-TC model. The
performance improvement of RAMMER against TF is mainly
because TF suffers from heavy runtime scheduling overhead
at DFG level, especially when the individual operator’s ex-
ecution time is relatively short, as is the case in small batch
inference. TF-XLA, as a DNN compiler, can improve TF’s
performance through DFG level optimizations (e.g., opera-
tor fusion) and operator-level code specializations (e.g. cus-
tomized kernel generation). However, it still cannot fully avoid
scheduling overhead, which leads to an average of 11.25×
(up to 20.12×) performance gap compared to RAMMER. We
observed that TF-XLA incurs even higher overhead for some
CNN models such as ResNeXt and NASNet compared with
TF. TVM, as another state-of-the-art DNN compiler, mainly
leverages a kernel tuning technique to generate a special-
ized kernel for each operator. In our evaluation, TVM tunes
1,000 steps and chooses the fastest kernel for each operator.
With such specialized optimization, TVM can improve the
performance significantly compared with TF and TF-XLA.
Still, RAMMER can outperform TVM by 3.48× on average
and up to 6.46×. Even though TVM can make individual
operator run faster through tuning, it still lacks the capabil-
ity to leverage the fine-grained parallelism as RAMMER. An
exception is that, for AlexNet, RAMMER can only achieve
comparable performance with TVM. This is mainly because
AlexNet, being one of the earliest modern DNN models, can
be easily optimized due to its simple sequential model ar-
chitecture and relatively fewer, but larger operators. Finally,
TensorRT is a specialized DNN inference library with highly
optimized operators provided by NVIDIA. We use its offi-
cial TensorFlow-integration version (TF-TRT) to compile and
run our models, as its stand-alone version fails to directly
compile these benchmarks. However, for RNN models like
DeepSpeech2, LSTM-TC and Seq2Seq-NMT, TF-TRT failed
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Figure 12: End-to-end model inference time with different
batch sizes (BS).

to produce results after compiling for over 50 hours. Thus, we
reimplemented these three models with the TensorRT native
APIs. Our evaluation shows that RAMMER can outperform
the vendor optimized TensorRT on all the benchmarks, with
an averaged 2.18× and up to 3.09× lower latency. Finally,
compared to RAMMERBASE, RAMMER can further improve
the end-to-end performance by 2.59× and up to 6.29×.

Performance with different batch sizes. We also evaluate
RAMMER’s performance with larger batch sizes. Figure 12
shows the performance comparison on two representative
CNN and RNN models, i.e., ResNeXt and LSTM-TC, with
batch sizes of 4 and 16. We limit our benchmarks in this test
due to the cost of developing optimized rOperator kernels for
RAMMER: we have to hunt for efficient open-sourced operator
kernel implementations or perform tuning by hand or through
automatic tuning tools, which is time consuming. As it shows,
using larger batch sizes can reduce scheduling overhead in ex-
isting frameworks due to the increased per-operator execution
time. Even so, RAMMER can still outperform all the systems
except for TensorRT on the ResNeXt model with batch size of
16. For this case, TensorRT uses some operators whose source
codes are not publicly available, and our implementations do
not yet match their performance. In fact, implementing op-
erators to match the performance of close-sourced kernels is
one of the major challenges for RAMMER. Compared to the
other open source frameworks and compilers, RAMMER has
a significant gain. For example, when using batch size of 16,
RAMMER can outperform TF by 2.25×, and TVM by 1.25×
on ResNeXt. For the LSTM-TC model, RAMMER can get
20.08× and 9.0× performance gains compared with TF and
TVM respectively.

890    14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



 0
 100
 200
 300
 400
 500

T
im

e 
(m

s)

ResNeXt
 0
 5

 10
 15
 20
 25
 30

NASNet

TF
TF-XLA

TF-TRT
TVM

RammerBase
Rammer

Figure 13: End-to-end model inference time with the batch
size of 1 on the ImageNet dataset (image size: 224×224).

 0
 20
 40
 60
 80

 100

ResNeXt NASNet AlexNet DeepSpeech2 LSTM Seq2SeqG
P

U
 U

ti
li

za
ti

on
 (

%
) TF

TF-TRT
RammerBase

Rammer

Figure 14: Comparison of GPU utilization.

Performance with larger input sizes. In our default set-
tings, ResNeXt and NASNet are evaluated on images of
32×32 size in the CIFAR-10 dataset. To show RAMMER’s
performance on larger images, we also evaluate these two
models on the ImageNet dataset with the same model hyper-
parameters in their original papers [49, 54]. Specifically,
ResNeXt on ImageNet uses 101 layers with cardinality of
64 and bottleneck width of 4d; and for NASNet, the num-
ber of repeated cells is 4 and the number of filters is 1056.
Figure 13 shows the end-to-end model inference time. From
the results, we observe that using larger input size has little
impacts on RAMMER’s performance gain. For example, us-
ing ImageNet, RAMMER can still outperform TF by 18.91×,
TVM by 4.96×, and even TF-TRT by 2.06× on ResNeXt.
For the NASNet model, RAMMER can also get 6.99×, 1.33×
and 2.34× performance gains compared with TF, TVM and
TF-TRT respectively. The significant performance improve-
ment is mainly because that the model structure for larger
dataset usually have more inter-operator parallelism that can
be better leveraged by RAMMER’s optimization. For example,
the cardinality for ResNeXt is increased from 16 to 64 when
replacing the dataset from CIFAR-10 to ImageNet.

Note that in the above evaluations, RAMMERBASE can
already get a comparable or even better performance than
compilers like TF-XLA and TVM. Thus, we will use RAM-
MERBASE as the baseline of the state-of-the-art compiler and
TF-TRT as the state-of-the-art DNN inference library to eval-
uate the benefits of RAMMER in the rest of the evaluations.
RAMMERBASE can also help remove the side effects caused
by different implementations in the performance comparison.

5.2.2 GPU Utilization

RAMMER’s scheduling enables rTasks from different opera-
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Figure 15: TF performance with different stream(STM) num-
ber. (Note: The number atop a bar indicates kernel time.)

tors to execute alongside each other to achieve better GPU
utilization. We evaluate the utilization improvement by RAM-
MER through comparing it with both TF, TF-TRT and RAM-
MERBASE. Figure 14 shows the average utilization for the
6 DNN models (with batch size of 1) through their execu-
tion time. The average GPU utilization only accounts for
kernel execution, excluding other stages like operator emit-
ting. Specifically, we use the metric SM-efficiency provided
by NVIDIA profiler nvprof [6] to measure the utilization,
which calculates the percentage of time when at least one
warp is active on a multiprocessor. Compared to TF and TF-
TRT, RAMMER can improve GPU utilization by 4.32× and
2.45× on average respectively across different models. This
improvement comes from both the lower runtime scheduling
overhead and the capability to co-schedule operators in RAM-
MER. Through comparing RAMMER with highly optimized
RAMMERBASE, which uses the same set of kernels, our evalu-
ation shows that RAMMER’s scheduling by itself can improve
the utilization by 1.61× on average, and up to 2.39× for the
LSTM-TC model.

As mentioned in §2, modern GPUs support the multi-
streaming mechanism to increase utilization through con-
currently scheduling independent kernels. We evaluate the
efficiency of multi-streaming by increasing the stream num-
bers in TF. Figure 15 shows both the end-to-end execution
time and the kernel time when using stream number of 1, 2,
and 4 for each model. We observe that using more streams can
harm the end-to-end performance, a phenomenon observed
by others [45]. For example, using 4 streams increases the
end-to-end time by 2.72× on average compared with using
a single stream. Moreover, the kernel time in each model
only sees very small reduction after enabling multi-streaming,
which implies most kernels are still sequentially executed,
thus providing little improvement on the GPU utilization.
The major reason is because multi-streaming introduces even
higher operator scheduling overhead, as shown in Figure 15.

5.2.3 Scheduling Overhead

The techniques proposed by RAMMER can effectively reduce
scheduling overhead. To verify this, we evaluate the run-time
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scheduling overhead by comparing RAMMER with both TF,
TF-TRT and RAMMERBASE. Figure 16 shows the total ker-
nel time and the scheduling overhead (i.e., the time not spent
on actual computation) for each model. Specifically, com-
pared with TF, RAMMERBASE can reduce the scheduling
time from an average of 32.29 milliseconds to only 2.27 mil-
liseconds (overhead percentage from 55.41% to 18.43%) over
all models. Even compared with TF-TRT, RAMMERBASE
can reduce the average scheduling overhead from 31.38% to
18.43%. RAMMERBASE achieves this reduction by optimiz-
ing the scheduling execution code path and leveraging opera-
tor fusion to reduce kernel launches. The significant reduction
demonstrates the heavy overhead of operator scheduling in
existing DNN frameworks. Compared with RAMMERBASE,
RAMMER can further reduce the average overhead from 2.27
milliseconds to 0.37 milliseconds, a 6.14× reduction. This
significant reduction is due to static compile-time operator
scheduling, i.e. packing operators into rProgram so that sev-
eral operators can be executed by a single GPU kernel launch.

5.2.4 Interplay of Intra and Inter Operator Scheduling

RAMMER enables scheduling policies to optimize the inter-
play of intra and inter operator scheduling, instead of just
focusing on making individual operators fast. This is im-
plemented through selecting appropriate rKernel for each
rOperator, as introduced in §3.3. We evaluate the effect of
such scheduling by using two sets of kernels: the fastest ker-
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rTask: 128
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Figure 18: An irregular DFG generated by NASBench

nels only for each individual operator, and the kernels selected
by RAMMER’s scheduling policy. Figure 17 shows the per-
formance of RAMMER and RAMMERBASE with these two
kernel sets on two representative CNN and RNN models, i.e.,
ResNeXt and LSTM-TC. First, no matter which set of ker-
nels is used, RAMMER can always improve the performance
significantly. For example, if RAMMER uses the same fastest
kernels (i.e., the RAMMER-fast) as used in RAMMERBASE
(i.e., RAMMERBASE-fast), it can improve the performance
by 2.89× on average. If more rKernels are available for a
given rOperator and RAMMER can select kernels based on
its policy (i.e., the RAMMER-select), it can further improve
the end-to-end performance by 1.44× on average, and up
to 2.28× compared with RAMMER-fast, even though the se-
lected kernels may be not the fastest in isolation. In fact, if we
use these kernels in RAMMERBASE (i.e., the RAMMERBASE-
select), its performance will drop by 1.84× on average.

We further perform detailed analysis of the kernels used in
LSTM-TC model with batch size of 4. For example, for the
Matmul operator, the fastest kernel uses 1,024 rTasks to get
the optimal execution time of 4.28 microseconds; while the se-
lected kernel by RAMMER only consists of 16 rTasks and gets
a slower execution time of 7.46 microseconds when launched
alone. However, RAMMER chooses this kernel to trade a
slower individual kernel (by reducing intra-operator paral-
lelism) for a better overall performance (through increasing
the inter-operator parallelism), thanks to the holistic schedul-
ing capability of RAMMER.

5.2.5 Fine-grained Synchronization

As a synchronization mechanism, barrier-rTask provides
some extra optimization spaces for the DFGs with irregu-
lar structure, which is common in the models generated by
neural architecture search (NAS) [54]. To highlight such extra
benefit, we leverage NASBench [50], a state-of-the-art NAS
benchmark, to randomly generate 5,000 modules, where each
module is a small DFG that consists of up to 9 operators
and 7 edges. We first compare the end-to-end performance of
RAMMER and RAMMERBASE on all these modules, which
shows RAMMER can improve the performance by 1.28× on
average, and up to 3.40× than RAMMERBASE. Among all
these modules, our measurement shows that 28.3% of them
has obvious irregular structures, e.g., heterogeneous operators
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Figure 19: End-to-end model inference time with batch size of 1 on AMD MI50 GPU.

in a wave decided by our policy (Algorithm 1). For these
modules, we compare the end-to-end performance of using
our barrier-rTask implementation and a global barrier. The
results show that using the barrier-rTask can provide extra
performance speedup of 1.11× on average and up to 1.89×.
Figure 18 illustrates one of such modules, where the execu-
tion time and rTask number in each operator are also listed.
For such a DFG, our barrier-rTask provides a possibility to
overlap the execution of operators from different waves (e.g.,
the two STEM-Conv operators from wave 1 and 2) through
removing the global barriers between waves and inserting
fine-grained rTask-level synchronizations.

5.3 Evaluation on Other Accelerators
5.3.1 End-to-end Performance on ROCm GPUs

We evaluate the efficiency of RAMMER on AMD ROCm
GPUs by comparing it with TF, TVM, and RAMMERBASE.
TF-XLA is not included because it cannot be successfully
enabled on AMD GPUs in our experiments, and TensorRT
is not included because it is proprietary and is exclusive for
NVIDIA. Figure 19 shows the end-to-end performance of
the 6 benchmarks with batch size of 1. Compared with TF,
RAMMER can outperform it by 13.95× on average, and up to
41.14× for the LSTM-TC model. Compared to TVM, RAM-
MER can improve the performance by 5.36× on average, and
up to 7.57×. Note that we fail to make the TVM auto tuning
feature works on ROCm GPUs, so TVM just uses its default
kernels in this experiment. Compared with RAMMERBASE,
we can see that the proposed scheduling of RAMMER’s can
bring average of 2.19× and up to 4.12× speedup. Finally,
RAMMERBASEK in the figures is exactly the same as RAM-
MERBASE, except that it uses kernels from RAMMER. Notice
that RAMMER might not always choose the fastest kernel
implementations for the rOperators. Though there are little
performance change for most models, for the ResNeXt model
there is a 3.02× performance drop. This demonstrates the im-
portance of the interplay of scheduling and kernel selection.

5.3.2 End-to-end Performance on Graphcore IPU

We also conduct a preliminary evaluation of RAMMER on a
Graphcore IPU. In this experiment, we choose only the three
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Figure 20: End-to-end model inference time with batch size
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Figure 21: End-to-end model training time of LSTM-TC with
batch size of 256 on NVIDIA V100 GPU. Note that TVM and
TF-TRT do not support training, hence the data is missing.

RNN benchmarks, again, because it takes effort implement-
ing efficient rOperators to support other models. Currently,
RAMMER only supports a single IPU device. We leave the
multi-IPU support of RAMMER to future work. For the three
RNN models, due to the limited memory available on IPU
(256 KB on each tile), we configure the layers of these mod-
els to 4 in order to fit in a single IPU. Figure 20 shows the
end-to-end performance of RAMMER on these models with
batch size of 1. It shows that RAMMER’s preliminary imple-
mentation can bring up to 5.37× performance improvement
compared with RAMMERBASE, which demonstrates the ap-
plicability and effectiveness of the abstractions of RAMMER
on new accelerator architectures.

6 Discussion

Having shown the advantages, we discuss some RAMMER’s
limitations and future work in this section.

Performance gain on large batch sizes. RAMMER’s ben-
efits are more significant when the intra-operator parallelism
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is insufficient to saturate hardware. This is the case when
the input batch size is small, often found in online DNN in-
ference. Moreover, our preliminary experiment shows that
this is also the case for some model training workloads with
large batch sizes (e.g., 256), such as the LSTM-TC model.
Figure 21 shows the training performance of LSTM-TC with
batch size of 256. As it shows, with holistic optimizations on
both intra- and inter-operator parallelism, RAMMER improves
the performance by 2.28× than our baseline implementation
RAMMERBASE and 2.36× than TF-XLA. We will leave a
more detailed analysis and further optimizations on model
training with large batch sizes as our future work.

Dynamic graph. Currently, RAMMER only supports static
graph. For DFGs with dynamic control flow [51], RAMMER
can compile each of the static sub-graphs, e.g., a branch of
conditionals or a body of loops, into individual rPrograms.
We leave this implementation to our future work.

Inter-job scheduling. RAMMER focuses on optimizing a
single deep learning job and is orthogonal to inter-job schedul-
ing, e.g., through scheduling multiple models in a batch or
precisely controlling each job’s hardware resource with vDe-
vice. Nevertheless, it is an interesting topic to explore the
possibility to co-schedule rTasks not only from different op-
erators, but from different jobs within an accelerator.

7 Related Work

DNN compiler optimization can be generally divided into two
classes based on its two-layered representations. DFG-level
optimizations, such as operator fusion, are exploited in many
DNN frameworks and compilers, e.g., TensorFlow [18], Py-
Torch [15], TVM [23], XLA [17], etc. TASO [34] proposes an
automatic graph substitutions approach to optimize the DFG.
On the operator-level, recent work has leveraged different ap-
proaches to tune and generate efficient hardware-specific op-
erator code, e.g., AutoTVM [24], Tensor comprehension [47],
FlexTensor [53], Tiramisu [21], Halide [43], etc. RAMMER
is compatible with all these optimizations through taking an
optimized DFG as input and generating efficient rKernels
with those kernel generators.

DNN inference and its optimization have attracted a
lot of recent attention. DeepCPU [52], BatchMaker [27],
GRNN [32], and NeoCPU [40] optimize the inference for
RNN or CNN specific models on either CPU or GPUs. Jain
et al. [33] proposes to leverage both temporal and spatial
multiplexing for multiple inference jobs to improve the GPU
utilization. RAMMER differentiates with these works in two
aspects: 1) RAMMER can apply to general DNN models and
accelerators; and 2) more than just compiler optimizations,
RAMMER provides a new abstraction and a larger optimiza-
tion space for DNN computation. Astra [45] exploits the

predictability of DNN to perform online optimization for
DNN training, while RAMMER leverages the same property
to reduce the individual rTask scheduling overhead. There
are also many inference systems proposed to optimize the
overall throughout under the guaranteed query latency, e.g.,
Nexus [44], PRETZEL [38], Clipper [25], TF-serving [42],
etc. RAMMER instead focuses on optimizing a single model
and is orthogonal to these works.

Some other work from the GPU community has proposed
software-based schedulers within a GPU to schedule general
workload. For example, Juggler [22] proposes a framework
to dynamically execute a job represented as a DAG of tasks.
Wu et al. [48] proposes a software approach to control the job
locality on SMs. However, driven by the property of DNN
workload, RAMMER proposes a new computation represen-
tation with rTask and rOperator; and adopts a compile-time
scheduling approach to avoid runtime overhead systemically.

8 Conclusion

DNN computation suffers from unnecessary overheads due to
the fundamental limitations of existing deep learning frame-
works, which adopt a two-layer scheduling design that man-
ages the inter-operator scheduling in the framework and del-
egates intra-operator scheduling to the hardware accelerator.
RAMMER addresses this issue with a holistic compiler so-
lution that (1) provides an rTask-operator abstraction that
exposes the fine-grained intra-operator parallelism. (2) vir-
tualizes the modern accelerator with parallel execution units
to expose the hardware’s fine-grained scheduling capabil-
ity. (3) leverages the predictability of DNN computation to
transform run-time scheduling into a problem of generating
compile-time rTask execution plans. Our evaluations show
that RAMMER can achieve significant improvements com-
pared to native deep learning frameworks, compilation frame-
works and even vendor-specific inference engine on GPUs.
This positions RAMMER as a new enhancement to the existing
ecosystem of DNN compiler infrastructure.
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