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Abstract—The past year has witnessed the increasing popu-
larity of Large Language Models (LLMs). Their unprecedented
scale and associated high hardware cost have impeded their
broader adoption, calling for efficient hardware designs. With the
large hardware needed to simply run LLM inference, evaluating
different hardware designs becomes a new bottleneck.

This work introduces LLMCompass1, a hardware evaluation
framework for LLM inference workloads. LLMCompass is fast,
accurate, versatile, and able to describe and evaluate different
hardware designs. LLMCompass includes a mapper to automat-
ically find performance-optimal mapping and scheduling. It also
incorporates an area-based cost model to help architects reason
about their design choices. Compared to real-world hardware,
LLMCompass’ estimated latency achieves an average 10.9% er-
ror rate across various operators with various input sizes and an
average 4.1% error rate for LLM inference. With LLMCompass,
simulating a 4-NVIDIA A100 GPU node running GPT-3 175B
inference can be done within 16 minutes on commodity hardware,
including 26,400 rounds of the mapper’s parameter search.

With the aid of LLMCompass, this work draws architectural
implications and explores new cost-effective hardware designs. By
reducing the compute capability or replacing High Bandwidth
Memory (HBM) with traditional DRAM, these new designs
can achieve as much as 3.41x improvement in performance/cost
compared to an NVIDIA A100, making them promising choices
for democratizing LLMs.

Index Terms—Large language model, performance model, area
model, cost model, accelerator

I. INTRODUCTION

Large Language Models (LLMs), the technology behind

OpenAI ChatGPT [49], Github Copilot [22], and Google

Bard [24], are gaining widespread attention from the whole

society. The capability of LLMs is related to their model

size [29], [31], and larger models [8], [11] show impressive

abilities [77] compared to smaller counterparts [16], [57], with

future models expected to exceed trillions of parameters [17].

This unprecedented scale of LLMs poses challenges to

deployment. Serving a GPT-3 (175B parameters) inference

requires a minimum of five NVIDIA A100s solely to ac-

commodate the model parameters (in half precision). This

substantial hardware cost impedes the broader adoption of

LLMs and motivates computer architects to design more cost-

effective hardware. We identify three challenges that exist in

designing hardware for LLM inference:

Lack of tools to evaluate hardware designs. Before diving

into writing the RTL code, hardware designers may want

1Available at https://github.com/PrincetonUniversity/LLMCompass.
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Fig. 1: An Overview of LLMCompass. LLMCompass can aid

the hardware design process as a versatile evaluation tool.

to first sketch and compare different design choices. There

are many properties we want for such a hardware evaluation

tool before writing RTL. � Fast and accurate. Due to the

intense compute and memory hardware demand required for

LLM inference, this tool needs to be as fast as possible

without sacrificing accuracy. � Architecturally descriptive.
This tool should be general enough to describe different design

choices: If it only applies to a specific architecture, the design

space for computer architects will be limited. � Performance-
optimal. The hardware performance is also affected by how

the software is programmed (e.g., how to map the workload

to the hardware). The evaluation tool should optimize this

software domain to fully demonstrate the hardware capability

of each design. � Cost-aware. We also want to know how

different hardware design choices affect the hardware cost to

reason about cost-performance trade-offs.

Existing tools fail to meet these requirements. Roofline

model analysis is fast but not accurate, and cycle-level sim-

ulators are accurate but slow. FPGA emulation is accurate

and provides area statistics but requires significant engineering

effort. To evaluate large-scale hardware designs in the era of

LLMs, a new hardware evaluation tool is needed.

Lack of knowledge on how different hardware design
choices affect LLM inference performance. As an emerging

application, the hardware characteristics of LLMs remain to

be understood. Besides the large volume of compute and

memory requirements, LLMs are also unique in their auto-

regressive way of generating tokens. We are interested in

exploring whether these properties of LLMs will change

common architecture wisdom.
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Lack of cost-effective hardware designs to democra-
tize LLMs. LLMs are powerful and capable, but are cost-

prohibitive to deploy. To serve GPT-3, a DGX A100 compute

node can cost over $100,000 USD [46], with each NVIDIA

A100 featuring 54B transistors and 80 GB of High Bandwidth

Memory (HBM). This high hardware cost hinders democra-

tizing LLMs.

In this paper, we tackle these challenges and make three

main contributions.

(1) We introduce LLMCompass, a hardware evaluation
framework for LLM inference workloads (Sec. III). LLM-

Compass leverages the fact that mainstream ML hardware

platforms share many architectural commonalities, allowing

us to develop a general hardware description template for

them. We also observe LLMs’ computational graphs are

composed of dense operators: matrix multiplication, softmax,

layer normalization, etc., all of which have a structural and

hence predictable compute and memory access pattern. This

allows LLMCompass to perform faster, higher-level tile-by-

tile (block-by-block) simulations without losing accuracy com-

pared to cycle-accurate simulators. The framework implements

a mapper to manually manage the memory hierarchy and find

the performance-optimal mapping and schedule scheme for

dense workloads. LLMCompass also features a cost and area

model based on public parameters to help designers reason

about different design choices.

LLMCompass is validated on three commercial hardware

designs: NVIDIA A100 [48], AMD MI210 [2], and Google

TPUv3 [30], [45]. Compared to real-world hardware, LLM-

Compass’ estimated latency achieves 10.9% error rate across

various operators with various input sizes and 4.1% error rate

for LLM inference. Implemented in Python, LLMCompass is

still fast. It takes only 15-16 minutes to simulate a 4-A100

GPU node running GPT-3 175B inference, including 26,400

rounds of the mapper’s parameter search (Figure 5i, tested on

one core of Intel Xeon Gold 6242R CPU @ 3.10GHz).

(2) We leverage LLMCompass to draw architectural
implications and explore how hardware design choices
affect LLM inference (Sec. IV). We find that prefill and

decoding pose different hardware requirements. Prefill can

significantly benefit from more compute capability and buffers,

while decoding barely gains from these and is more sensitive

to memory bandwidth. These insights inspire us to think about

new hardware design paradigms.

(3) We propose two cost-effective hardware designs
different from conventional wisdom (Sec. V). We find that

today’s hardware design paradigms tend to fit massive compute

capability and SRAMs in a huge die connected to high-end

HBMs. We analyze the LLM inference characteristics and

show how current hardware designs are inefficient. � As LLM

inference is mostly IO-bound, HBMs can be used to achieve

low latency. However, HBM memory capacity limits the batch

size, making it hard to fully utilize the massive compute

capability. Based on this observation, we find that 95.3% of the

original performance can still be achieved even if we prune the

compute capability and buffer size by half. � Larger batch size
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Fig. 2: A Decoder-Only Transformer Layer with Tensor Paral-

lelism. GPT-3 175B [8] consists of a stack of 96 such layers.

can significantly improve throughput as the model parameters

are only read once for the whole batch. As memory capacity

limits the batch size therefore limiting throughput, we propose

to replace HBMs with traditional DRAM. We find that a larger

batch size can compensate for the loss in memory bandwidth

and can bring a 1.42x improvement in throughput and a 3.41x

improvement in performance/cost.

II. BACKGROUND

A. Large Language Models and Transformers

Large Language Models are variations of Transformer mod-

els [73] with a considerable amount of parameters that have

been pre-trained on large corpora of data [40]. Today’s LLMs

can have as much as one trillion parameters [17]. Compared to

smaller models, larger models (e.g. GPT-3 175B [8]) showcase

a remarkable set of capabilities such as emergent abilities [77]

and few-shot learning [8]. This increase in model size and

the consequent memory and compute requirements have posed

unique challenges for hardware.

We focus on Decoder-only Transformer models [55], which

is the architecture adopted by most of the LLMs today:

LLaMA [70], GPTs [8], [57], Bloom [80], PaLM [11], etc. The

basic building blocks of these models are Transformer layers.

As illustrated in Figure 2, each layer comprises a Multi-Head

Attention block followed by an MLP block. These layers are

then stacked together, forming the bulk of an LLM’s mem-

ory and compute requirement. Transformers also use learned

Vocabulary and Position embeddings, but for large models

like GPT-3, these do not contribute significantly to either

the memory or compute requirement (< 2%). Without losing

generality, we focus on Multi-Head Attention Transformers

(GPT-style). There are other variations such as Multi-Query

Attention [11], Mixture-of-Experts [17], and parallel Attention

and MLP [11]. LLMCompass seamlessly supports all these

possible variations as they share a common set of operators.

B. LLM Inference

Given an input prompt and the required number of output

tokens, LLM inference can be divided into two stages [56].

� Prefill: Processing the input prompt and computing the KV

cache. The Key Value (KV) cache refers to the stored Key

and Value tensors of the Attention block in each layer [56].
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Fig. 3: LLMCompass’ Hardware Description Template. In this example, each device has 2 cores and each core has 2 lanes.

� Decoding: Generating output tokens one after another in

an auto-regressive manner: The Key and Value of the newly

generated token will be concatenated to the KV cache and

used for generating the next token. The latency of prefill
and decoding is mostly determined by the input and output

sequence lengths, respectively. In prefill, as the entire input

sequence needs to be multiplied by all the parameters, it is

usually bounded by compute. In decoding, each new token

needs to be multiplied by all the parameters and concatenated

to the KV cache, so decoding is usually bounded by reading

parameters and KV cache.

Latency and throughput are the key metrics to evaluate

LLM inference systems. For interactive use cases such as chat-

bots [49], it is imperative to optimize latency. For background

data processing use cases such as data wrangling [42] or form

processing [9], throughput is more important. The tradeoff

between latency and throughput is determined by batch size:

larger batch increases throughput at the cost of higher latency.

C. Parallelizing LLM Inference

Due to the large volume of compute and memory operations,

it is beneficial to parallelize LLM inference across multiple

devices. This leads to much better performance and can be

necessary if the model’s parameters along with the KV cache

do not fit in a single device’s memory. For LLM inference,

there are two model parallelization schemes: pipeline paral-

lelism and tensor parallelism. In pipeline parallelism, different

layers of the model are grouped into sequential partitions and

assigned to different devices like a hardware pipeline. This

scheme has the effect of considerably increasing throughput

at the expense of increased latency. On the other hand, tensor

parallelism, as proposed by Megatron-LM [64], partitions

each layer of the model across the available devices, thereby

decreasing latency at the cost of frequent device-device com-

munication and synchronization. As shown in Figure 2, this

scheme requires two all-reduce for each Transformer layer,

one after the Attention block and another after the MLP block.

III. LLMCOMPASS

An overview of LLMCompass (Large Language Model

Computation Performance and Area Synthesis) is shown in

Figure 1. To evaluate the performance (e.g., throughput and

latency) of running a Transformer-based large language model

TABLE I: Examples of LLMCompass’s Hardware Description

Key Specifications NVIDIA AMD Google
A100 [48] MI210 [2] TPUv32 [45]

Frequency (MHz) 1410 1700 940
Core count 108 104 2
Lane count 4 4 1

Vector width 32 16 4× 128
Systolic array 16× 16 16× 16 128× 128

Local buffer (KB) 192 80 8192
Global buffer (MB) 40 8 16384

Global buffer (bytes/clk) 5120 4096 490
Memory bandwidth (TB/s) 2 1.6 -

Memory capacity (GB) 80 64 -
Device-device bandwidth (GB/s) 600 300 162.5

on a hardware system, two inputs are needed: the computa-

tional graph of the LLM and a hardware description (Sec-

tion III-A). Given the input, the performance model (Sec-

tion III-B) generates a performance report. The mapper
conducts a parameter search along with the architecture
simulator to find the best mapping and scheduling scheme.

At the same time, the area model (Section III-D) generates

the area and cost report.

A. Hardware Description Template

The hardware description template of LLMCompass is

introduced below, as shown in Figure 3:

• A system (e.g., a DGX node) is composed of multiple

devices connected through a device-device interconnect

(e.g., NVLink or Infinity Link).

• Each device (e.g., a GPU) is composed of multiple cores,

a shared global buffer, and an off-chip main memory. The

global buffer (e.g., L2 cache in NVIDIA GPUs) is con-

nected to the main memory, device-device interconnect,

and all the cores.

• Each core (e.g., a Stream Multiprocessor in NVIDIA

GPUs) can have multiple lanes sharing a local buffer
(e.g., L1 cache in NVIDIA GPUs). The local buffer

is connected to the global buffer through the on-chip

interconnect.

• Each lane is independent from each other and has its own

vector unit, systolic array, registers and control logic.

2One TPUv3 core. Each TPUv3 chip has two TPUv3 cores. TPUv3 cores
within the same chip are connected by internal links.
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Fig. 4: Visualization of a Matrix Multiplication in LLMCompass as in Section III-B1.

In existing devices, the local and global buffers are usually

on-chip SRAM: cache, scratchpad, or a combination of both.

LLMCompass doesn’t distinguish between cache and scratch-

pad because the memory is explicitly managed by the mapper.

We believe this assumption does not lose generality as a highly

optimized library will also carefully manage the memory.

The main memory is usually off-chip DRAM: HBM, DDR

memory, CXL memory, etc, all of which can be described by

our parameterized hardware description template.
We find this hardware description is general enough to

describe the mainstream machine learning platforms of today:

NVIDIA GPUs, AMD GPUs, and Google TPUs, as shown in

Table I with a sample of key specifications listed. It is also

flexible enough to explore future architectures.

B. Performance Model
The computational graph of a Transformer is composed of

a stack of Transformer layers. Each layer is composed of a

series of operators, including matrix multiplication (Matmul),
Softmax, layer normalization (LayerNorm), and activation

functions (e.g., GELU [28] as in GPTs [8], [57]). In a multi-

device setup, communication primitives such as all-reduce
operators are also needed to perform tensor parallelism. The

key challenge is how to simulate the performance of different

operators and communication primitives on a given hardware

system - this requires knowledge about the hardware and

how to map and schedule operators on a multi-level compute

system with a multi-level memory hierarchy.
To solve this, LLMCompass introduces a mapper and an

architecture simulator to build a performance model. Concep-

tually, we simulate running an operator on the chosen hardware

in a recursive manner: we first partition the problem into

smaller sub-problems that can fit in the global buffer. The sub-

problem is then divided into smaller sub-sub-problems that can

fit in each core’s local buffer. The partitioning, mapping, and

scheduling are generated by the mapper and a parameter search

is conducted to find the optimal mapping and scheduling.

LLMCompass always tries to find the performance-optimal

mapping to fully demonstrate the hardware capability.

1) Matrix Multiplication: The process of simulating a

matrix multiplication is visualized in Figure 4. A is a M ×K
matrix with M rows and K columns. Similarly, B and C are

K×N and M×N matrices respectively. A generalized matrix

multiplication is defined as C = AB+C.

From main memory to global buffer: To maximize data

reuse, matrix multiplication is usually calculated in a tile-by-

tile manner [34]. As shown on the left of Figure 4, matrix

A, B, and C are divided into tiles small enough to fit into

the global buffer. In each step, one A tilem,k, B tilek,n,

and C tilem,n are read into the global buffer, the cores then

perform the computation, and the results are written back.

From global buffer to local buffer: With tiles inside the

global buffer, we now need to parallelize the computation of

C tilem,n = A tilem,kB tilek,n + C tilem,n on multiple

cores. As shown in the middle of Figure 4, these tiles are

further divided into smaller sub-tiles to fit in each core’s local

buffer. It then becomes a scheduling problem to map sub-tiles

onto cores.

The right of Figure 4 shows two possible schedule schemes:
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• Schedule Scheme 1: Different cores working on different

C subtiles in the same column. At wave 0, as core 0
and core 1 both need to read the same B subtile, their

memory access to the global buffer should be merged.

In our simulator, this memory access merging is auto-

matically identified and taken care of. As the same core

keeps updating the same C subtile, there is no need to

first write the partial result and then read it from the

global buffer. This Read-After-Write dependency is also

automatically taken care of by the simulator.

• Schedule Scheme 2: Different cores working on the same

C subtile. Core 0 and core 1 first read the data and

calculate the partial results, then perform a reduction and

write back the final results.

In reality, with more cores and more tiles, the schedule space

can be more complicated than the example shown in Figure 4.

From local buffer to lanes: Similarly, within each core, the

sub-tiles are further partitioned into sub-sub-tiles to be mapped

to lanes sharing a local buffer. After that, the sub-sub-tiles are

finally passed to the systolic arrays. LLMCompass leverages

SCALE-Sim [61], [62], a cycle-level systolic array simulator,

to mimic the behavior of a systolic array and get the cycle

count. LLMCompass caches the results of SCALE-Sim into a

look-up table to avoid duplicated simulation. A reduction will

be performed by the vector unit if needed.

Mapper: A parameter search is performed by the mapper

to determine the best tiling scheme and schedule scheme.

To overlap computation with memory accesses, we also add

software pipelines (double buffering) at each level of the

memory hierarchy as scheduling options. The downside of

enabling software pipeline is that it requires extra buffer space

so the maximal tile size will be reduced, causing potentially

lower utilization of systolic arrays. However, we find software

pipeline to be beneficial in most cases.

2) Communication Primitives: We use the link model as

in AHEAD [1] and LogGP [4]. Suppose L is the link latency,

O is the additional overhead associated with the data transfer,

and B is the link bandwidth. The latency T to transfer n bytes

of data through a link is expressed in Equation 1 and 2:

T = L+O +
n̂

B
(1)

n̂ =

⌈
n

MaxPayload

⌉
∗ Flit size+ n (2)

On top of this, we implement ring all-reduce [52], which

is a bandwidth-optimal all-reduce algorithm. We use a 16-

byte Flit size and a 256-byte MaxPayload based on

NVLinks [18]. We don’t model more communication prim-

itives as LLM inference only requires all-reduce for tensor

parallelism and peer-to-peer for pipeline parallelism.

3) Other Operators: We also model Softmax, LayerNorm,

and GELU following a similar methodology as in Sec-

tionIII-B1. The differences are as follows: � These operators

have fewer dimensions and are therefore simpler: Softmax
and LayerNorm operate on two-dimensional data, and GELU
operates on one-dimensional data, while Matmul operates on

three-dimensional data. As each dimension requires tiling and

scheduling, the mapper search space is much smaller. � They

do not use systolic arrays. � Softmax and LayerNorm involves

reductions to calculate the sum, mean, or max. Therefore, the

schedule scheme needs to consider that the reduction can be

either performed within one core or might be splitted across

different cores. For the reduction within each core, a reduction

tree is implemented. Inter-core reduction is implemented with

atomic operations. Softmax is implemented with the online

algorithm [39]. GELU is approximated with tanh [28].

C. Performance Model Validation

In this section, we validate our framework against three

real hardware platforms: (1) a datacenter GPU node with 4

NVIDIA A100 SXM4 GPUs (80 GB) fully connected by

NVLinks; (2) a Google Cloud TPU node with 8 TPUv3

cores connected in a 2D torus topology; (3) an AMD MI210

GPU3. The results are shown in Figure 5. For NVIDIA GPUs,

CUDA 11.7 and PyTorch 2.0 are used to benchmark operators

in half precision (FP16) with torch.compile enabled

for LayerNorm and GELU to maximize performance. Com-

munication primitive all-reduce is benchmarked with nccl-

tests [43], a communication primitive performance benchmark

for NVIDIA GPUs. For Google TPUs, JAX 0.4.18 is used

to benchmark operators and communication primitives. Due

to the hardware feature of TPUs, Matmul is benchmarked in

bfloat16 (BF16) and all the other operators are in FP32. For

AMD GPU, ROCm 5.4.2 and PyTorch 2.0 are used along

with FP16 for Matmul and FP32 for other operators. The

kernel launch overhead including the framework overhead is

measured by running the operator with an input of size 1.

As shown in Figure 5, for Matmul, Softmax, LayerNorm,

GELU, and all-reduce, LLMCompass achieves an average er-

ror rate of 9.0%, 12.0%, 13.8%, 5.0%, and 14.9% respectively.

For LLM inference, LLMCompass achieves an average error

rate of 0.69% and 7.5% for prefill and decoding respectively.

On average, LLMCompass achieves a 10.9% error rate
for different operators at various input sizes and a 4.1%
error rate across the prefill and decoding stages.

GELU is more accurate than other operators because it is

element-wise and easy to simulate. Layernorm and Softmax are

less accurate because of the reduction involved. All-reduce is

less accurate probably because of unidealed hardware. Matrix

multiplication is accurate (except for small ones on AMD

MI210 as in Figure 5b) because it is highly optimized on those

hardware platforms. As matrix multiplication is the dominant

part of most of the models today, a validity of performance

across different types of models can be achieved.

Although not a perfect match to real-world hardware,

LLMCompass is able to show a similar trend that a naive

roofline model fails to show. For example, in Figure 5e, as the

reduction dimension of LayerNorm increases to an extreme,

the throughput should drop due to the increasing reduction

cost. LLMCompass is able to catch this trend.

3We set the frequency to 1400 Mhz to avoid frequency fluctuation
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(a) Matmul with M = 8192. (b) Matmul with N = K = 12288. (c) Softmax with N = 4096.

(d) LayerNorm with N = 4096. (e) LayerNorm with M = 4096. (f) Softmax with M = 4096.

(g) GELU. (h) All-reduce.

(i) GPU Prefill Latency. (j) TPU Prefill Latency. (k) GPU Decoding Latency. (l) TPU Decoding Latency.

Fig. 5: Performance Model Validations. Matmul takes a M × K (M rows and K columns) and a K × N matrix as input.

12288 is the model dimension of GPT-3 [8]. Softmax and LayerNorm take a M × N matrix and perform normalization on

the N dimension. Prefill latency is measured by running one layer of GPT-3 with batch size 8 and sequence length 2048.

Decoding latency is per GPT-3 layer per output token and is measured by the latency of generating the 1024th output token

with batch size 8 and input sequence length 2048. For (a)-(g), a single GPU/TPU device is used. For (h)-(l), the 4-A100 GPU

node and 8-TPUv3-Core TPU node are used with tensor parallelism.

LLMCompass’ results are totally interpretable without in-

corporating any fudge factor and we believe this interpretabil-

ity is more important than perfectly matched results. Here are

some possible causes of the mismatch between LLMCompass

and real hardware:

• Lack of hardware knowledge. We have little knowledge

about the micro-architecture of GPUs and TPUs (e.g.,
hardware pipeline design or scheduler design). With a

large input size, the hardware is well utilized and some

overhead can be hidden. However, with a small input

size, it’s hard to hide the overhead and micro-architecture

details affect performance significantly. Also, the Tensor

Cores in NVIDIA GPUs and Matrix Cores in AMD GPUs

are simulated as systolic arrays in LLMCompass, which

may not be true in reality.

• Lack of software knowledge. We don’t know how op-

erators and communication primitives are implemented

on these platforms as they are closed-source libraries.

We conduct a thorough parameter search for each in-

put size to maximize performance, but in reality those

libraries probably use heuristics to determine mapping

and scheduling, which may not be optimal at all input

sizes (e.g., we find that for a Matmul with M = 64
and N = K = 12288, AMD MI210 is less than 25%
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of its roofline performance while a NVIDIA A100 can

achieve 50% of its roofline performance.). Also, some

key information is not available. For example, we cannot

find the packet format for TPU-TPU communication and

have to use the NVLink packet format instead.

• Non-ideal hardware. LLMCompass assumes a fixed fre-

quency, but when testing real-world hardware, we have

no control over the frequency of the datacenter GPU or

TPU nodes. LLMCompass also assumes bandwidth can

be utilized at full rate, but in reality there may be some

other overhead (e.g., error correction code).

D. Area and Cost Model

As chip designers increase die area to improve single chip

performance, fewer chips fit per wafer and may also risk

decreased yield, leading to increased costs. LLMCompass

incorporates area and cost models to allow designers to reason

about these performance-area trade-offs. These models use the

provided hardware description with estimated transistor counts

and/or die areas from known components to find the total

device die area - our methodology is explained as follows.

Within each core’s lanes, we estimate the vector units’ and

systolic arrays’ transistor counts from open-source designs,

tape-outs, and generators [20], [38], [83]. We estimate each

lane’s register file’s area overhead using an empirical area

model [58]. For the local buffer shared amongst lanes in each

core as well as the global buffer shared amongst cores, we

model them as SRAM caches and derive their areas using

CACTI [41] and scale results down to a 7nm process. For

memory and device-device interconnect, we estimate PHY

and controller area based on annotated A100 and MI210 die

photos [53], [65]. In our calculations, the controller area scales

based on the process node, but the PHY area remains fixed as

they do not scale well due to internal analog devices.

We account for extra per lane overheads (e.g., control

signals) by calculating the core area using our model and

taking the difference from the expected die areas taken from

annotated photos. We then divide the overhead per lane,

per scheduler width (32 in A100s, 16 in MI210). Similarly,

we account for extra per core overheads (e.g., core-to-core

crossbars) by calculating the expected die area with our model

and splitting the area between the cores. These per-lane and

per-core overhead estimates are averaged between AMD and

NVIDIA chips.

To estimate cost, LLMCompass uses supply chain mod-

eling [44] for wafer costs to calculate per-die costs. These

per-die costs do not incorporate any IP, masks, or packaging

costs. For memory costs, we use average DRAM spot prices

for DDR [71] and consumer estimates for HBM2e [35].

Table II shows a sample of the transistor counts and

corresponding 7nm die areas of the parameters used in the

area model. Using their respective architecture white papers,

we model GA100 [48] (the die used in NVIDIA A100) and

Aldebaran [2] (the die used in AMD MI210) dies to estimate

their total die areas, shown in Fig. 6a. For the accounted-

for components, LLMCompass’ area model estimates for

TABLE II: A Sample of Area Model Parameters (7nm)

Parameter Transistor Count 7nm Area (μm2)

64 Bit Floating Point Unit 685300 7116
32 Bit Int ALU 177000 1838

Per Lane Overhead 996200 10344
Per Core Overhead 44300000 460000

1024 Bit HBM2e Control 552743000 5740000
1024 Bit HBM2e PHY - 10450000

(a) Die Area Breakdown of NVIDIA GA100 and AMD Aldebaran.

(b) Core Area Breakdown (Stream Multiprocessor for NVIDIA
GPUs and Compute Unit for AMD GPUs).

Fig. 6: Area Model Validations.

GA100 and Aldebaran dies achieve a 5.1% and 8.1% er-

ror respectively. We attribute these differences to the core’s

microarchitecture and core-to-core communication overheads

which are proprietary and difficult to estimate. Our model

also allows users to break down a single core’s area into its

individual components, shown in Fig. 6b.

IV. ARCHITECTURAL IMPLICATIONS

With LLMCompass, we are able to conduct a design space

exploration and shed light on how to design efficient hardware

systems for LLM inference. In this section, we use LLMCom-

pass to study how different compute system configurations,

memory bandwidth, and buffer sizes affect LLM inference per-

formance and draw architectural implications. These insights

inspire us to propose new designs as in Section V.

A. Experimental Setup

For all the unmentioned specifications, we use the specifi-

cations of an NVIDIA A100 (as in Table I) and 4-way tensor

parallelism. Prefill latency (also know as TTFT, time to first

token) is measured by running one GPT-3 layer with batch size

8 (a balancing point between latency and throughput) and input

sequence length 2048 (a medium-long sequence for GPT-3).

Decoding latency (also know as TBT, time between tokens) is

measured as the latency of generating the 1024th output token

when running one GPT-3 layer with batch size 8 and input

sequence length 2048. We use FP16 for all the operators.
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TABLE III: Five Compute System Designs.

Specifications A B C D E

Core count 128 128 128 32 8
Lane count 4 4 1 1 1

Vector width 8 32 128 512 2048
Systolic array 8× 8 16× 16 32× 32 64× 64 128× 128

Local buffer (KB) 192 192 192 768 3072

(a) Prefill Latency (TTFT) per GPT-3 Layer.

(b) Decoding Latency (TBT) per GPT-3 Layer per Output Token.

Fig. 7: Impact of Compute System Design on Performance.

B. Compute System

We test five different compute system designs as shown

in Table III. From A to E, we increase each core’s systolic

array, vector unit, and local buffer capacities. B represents a

full GA100. We keep B, C, D, and E to have the same total

compute capability and total buffer size to compare the design

choice of fewer big cores or more tiny cores. Configuration

A only has a quarter of the compute capability compared to

others. All the designs have the same amount of total buffer

size and register file size scales with vector width.

Figure 7 shows prefill and decoding latencies for these

designs. Compared to the GA100, design A has 3.25x higher

prefill latency but is only 0.1% slower at decoding and uses

only 57.8% of the area. Design E with the largest cores see

prefill and decoding latency increase by 12.4% and 1.9%

respectively, but can reduce die area up to 7.7%.

Analysis: For the prefill stage, B is much faster than A

because prefill is compute-bound. As per core systolic arrays

and vector units scale, the tile size needs to increase to fully

utilize larger computing units. Bigger tiles can cause more

padding as the problem size needs to be quantized to the tile

size and hardware size. Although large systolic arrays and

vector units can be more area-efficient, they are harder to

schedule and fully utilize.

Since decoding is IO-bound, increasing compute capability

barely helps, which explains why A and B have similar

performance. As the matrix multiplications during decoding
are narrow (e.g. 16× 12288), it is even harder to fully utilize

larger systolic arrays/vector units and performance degrades.

(a) Prefill Latency (TTFT) per GPT-3 Layer.

(b) Decoding Latency (TBT) per GPT-3 Layer per Output Token.

Fig. 8: Impact of Memory Bandwidth on Performance.

Implications:
� Increasing compute capability significantly helps

prefill but barely helps decoding.
� Larger systolic arrays and vector units are more

area-efficient but harder to fully utilize.

C. Main Memory

As main memory capacity is considered more of a constraint

(enough capacity is required to hold the parameters and

KV cache), we will focus on the impact of main memory

bandwidth. Figure 8 details the performance results for sweep-

ing memory bandwidth from 400 to 3200 GB/s. For prefill,
increasing memory bandwidth from 800GB/s to 2000GB/s

reduces latency by 14.3%, and further increasing to 3200GB/s

has a marginal performance gain of 3.5%. For decoding,

increasing from 800GB/s to 2000GB/s has a speedup of 1.88x,

and further increasing to 3200GB/s brings another 26% gain.

Analysis: In the prefill stage, Matmuls are significantly

faster when increasing memory bandwidth from 400GB/s to

800GB/s. Further increasing bandwidth does not significantly

affect Matmul performance as it becomes compute-bound. For

IO-bound GELU, LayerNorm, and Softmax, larger memory

bandwidth realizes significant speedup.

In the decoding stage, Matmuls are significantly faster with

increased memory bandwidth, mainly because they are narrow

(turn into a vector-matrix multiplication at batch size 1) and

IO-bound. In this stage, GELU, LayerNorm, and Softmax have

a small input size. They are dominated by kernel launch

overhead and barely affected by memory bandwidth.

� Decoding is much more sensitive to memory band-
width than prefill.
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(a) Prefill Latency (TTFT) per GPT-3 Layer.

(b) Decoding Latency (TBT) per GPT-3 Layer per Output Token.

Fig. 9: Impact of Local Buffer Size on Performance.

D. Local and Global Buffer

Local Buffer. We fix the hardware specifications to an

NVIDIA A100 (as in Table I) and sweep local buffer size. The

results are shown in Figure 9. For prefill, increasing the local

buffer size from 64KB to 192KB improves the performance by

18.0% while increasing the area by 5.8%. Further increasing to

1024KB has a negligible performance gain of only 0.2% at the

cost of 28.8% bigger area. For the decoding stage, increasing

the local buffer size from 64KB to 1024KB only increases the

performance by 0.5%.

Analysis: The reduced prefill latency with larger local

buffers is mainly because of reduced matrix multiplication

latencies. A larger local buffer enables larger matrix tiles and

therefore higher systolic array utilization rate. A local buffer

size of 192KB is just enough for matrix multiplication of

128×128×128 at FP16 with double buffering technique. It can

fully utilize the 16×16 systolic arrays, shedding some insight

on the NVIDIA A100’s design choices. Increasing local buffer

size when the systolic array is already fully utilized leads to

marginal performance gains. For decoding stage, increasing

local buffer size does not help because it’s IO-bound.

Global Buffer. The performance trends for global buffer

size are similar to Figure 9. Increasing the global buffer

size from 10MB to 40MB speeds up prefill by 11.8% while

increasing area by 9.6%. Further increasing to 80MB only

brings a performance gain of 0.01% at the cost of 11.7% bigger

area. For decoding, increasing global buffer size from 10MB

to 80MB has a performance gain of only 0.7%.

Analysis: Larger global buffers enable larger matrix tiles,

increasing systolic array utilization and data reuse at the

global buffer level. Similarly, increasing global buffer size has

diminishing returns once the systolic arrays are saturated. The

decoding stage is not bounded by computation so it barely

benefits from the larger global buffer.

TABLE IV: Comparison with NVIDIA GA100

Specifications Latency GA100 Throughput
Design (Full) Design

Core count 64 128 64
Lane count 4 4 4

Vector width 32 32 32
Systolic array 16× 16 16× 16 32× 32

Local buffer (KB) 192 192 768
Global buffer (MB) 24 48 48

Global buffer (bytes/clk) 2560 5120 5120
Memory bandwidth (TB/s) 2 2 1

Memory capacity (GB) 80 80 512
Memory protocol HBM2E HBM2E PCIE 5.0/CXL

Die area (TSMC 7nm, mm2) 478 826 787
Normalized performance 0.95 1 1.41

Estimated die cost $80 $151 $142
Estimated memory cost $560 $560 $154

Estimated total cost $640 $711 $296
Normalized performance/cost 1.06 1 3.41

� Large buffers help prefill but not decoding.
� Buffers should be large enough to fully utilize the

systolic arrays.

V. EFFICIENT HARDWARE DESIGN WITH LLMCOMPASS

Ideally, efficient hardware design will optimize for both

performance and cost. This section draws from the insights

in Section IV and proposes two efficient hardware designs:

a latency-oriented design and a throughput-oriented design.

Both of these designs aim to reduce hardware costs while

maintaining or improving performance. The key specifications

are shown in Table IV. All the other specifications (e.g.,
frequency, register file size, device-device interconnect, kernel

launch overhead, and framework overhead etc.) are the same

as an NVIDIA GA100 for fair comparison.

A. Latency-Oriented Design

LLM inference latency means the total time between receiv-

ing the request and generating the last token. It is a critical

metric for interactive use cases like chatbots. It is composed

of prefill latency, the time to process the input sequence, and

decoding latency, the time to generate the output sequence in

an auto-regressive way. Inference latency is usually dominated

by decoding unless the input sequence is much longer than

the output sequence. Decoding is IO-intensive and is mostly

bounded by reading model parameters and KV cache.

Observation: As latency is mostly IO-bound, memory

bandwidth is the key to reducing latency, making HBM the

best choice. However, due to the capacity limit of HBM, the

batch size cannot be too large: the size of the KV cache and

intermediate values is proportional to batch size. Therefore,

the massive compute capability is not fully utilized.

Proposal: We propose an efficient latency-oriented design

by pruning half of the compute capability while using the same

memory system as a GA100, as shown in the left of Table IV.

Results: Compared to an NVIDIA GA100, the die area is

reduced by 42.1% while keeping 95.3% of the performance

on average. The results are shown in Figure 10.
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Fig. 10: End-to-End Performance of Latency-Oriented Design

Normalized to GA100. Performance metric: inverse of latency

(higher is better). Settings: batch size416, 4-way tensor paral-

lelism, running 48 GPT-3 layers (half of GPT-3).

Fig. 11: TTFT and TBT of Latency-Oriented Design Normal-

ized to GA100. Reducing compute capability by half barely

hurts TBT but will bring 1.82x slowdown for TTFT.

Discussion: Due to the IO-bound decoding stage, the

over-provisioned GA100 is not able to realize significantly

improved inference performance compared to our latency-

oriented design. As shown in Figure 11, our pruned design

achieves identical decoding performance as a GA100. The

GA100 is an enormous die and is susceptible to yield issues

- A100 dies are already binned to have 108 functioning SMs

out of 128. Our latency-oriented design shows that even with

half the cores and SRAM disabled, the device can still achieve

similar performance. This may motivate designers to salvage

previously deemed faulty chips and manufacture them into

separate products focused on LLM inference.

Pruning the compute capability only hurts the compute-

bound prefill performance. As prefill is more dominant at long

input sequence and short output sequence, the performance

degradation will be more visible under these cases, which

explains why we only achieve 80% of the GA100 performance

at input length 2048 and output length 256. With a smaller

input length and larger output length, our pruned latency-aware

design can achieve 99% the performance as GA100.

B. Throughput-Oriented Design

For background use cases such as form processing or data

wrangling, throughput can be more important than latency.

There are generally two ways to improve throughput:

• Decrease latency - As latency is mostly IO-bound by

reading parameters and KV cache, the best way to im-

4In reality, a batch size of 16 with input length 2048 and output length
2048 will slightly exceed the memory capacity.

(a) Throughput of Throughput-Oriented Design (Tokens/s).

(b) Normalized to a 8-GA100 GPU Node.

Fig. 12: End-to-End Performance of Throughput-Oriented De-

sign. Performance metric: throughput. Settings: largest batch

size within memory capacity, 8-way pipeline parallelism where

each device runs 12 GPT-3 layers (1/8 of GPT-3).

prove latency is to further improve memory bandwidth.

As HBM is already expensive, this may not be easily

achieved without increasing cost.

• Increase batch size - Generally, larger batch sizes are

more efficient for throughput because the parameters are

only read once for the whole batch. Larger batch sizes can

also improve the hardware utilization rate. The downside

is that a larger batch size consumes more compute power

and increases KV cache accesses.

Observation: Increasing batch size is a more efficient way

to improve throughput compared to decrease latency, which

requires expensive high-end HBMs or even SRAMs. With a

larger batch size, more memory capacity is needed to hold the

larger KV cache and intermediate values.

Proposal: We propose a throughput-oriented design as

shown in the right of Table IV. To hold larger batches, we use

512GB of DRAM powered by 256 PCIe 5.0 channels with an

aggregated memory bandwidth of 1TB/s. (According to our

area model, an 800mm2 die’s perimeter is able to fit around

400 PCIe 5.0 channels.) Considering the high cost and limited

capacity of HBMs, this design is more cost-effective. With

larger batch sizes comes a greater need for compute capability,

so we quadruple the systolic arrays and the local buffer. We

halve the core count and vector unit to maintain a similar die

area as GA100.

Results: Compared to an NVIDIA GA100, the die area is

slightly smaller and the throughput is improved by 1.42x on

average. The results are shown in Figure 12. By replacing

HBMs with traditional DRAMs, the cost is reduced by 58.3%,

making a total of 3.41x gain in performance/cost.
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Fig. 13: Design Space Exploration with LLMCompass. The

proposed latency-optimized design and throughput-optimized

design are marked in red. Throughput and latency are normal-

ized to a 4-GA100 node. Sweep parameters: compute system

design, buffer size, memory type and capacity. Settings: largest

batch size within the memory capacity, input length 1024,

output length 1024, 4-way tensor parallelism, running 48 GPT-

3 layers (half of GPT-3). It took 84 minutes to collect all the

data points on one Intel Xeon Gold 6242R CPU @ 3.10GHz.

Discussion: Our design has 6.4x the memory capacity of a

GA100, which allows more than 12x bigger batch size after

subtracting the fixed space occupied by model parameters.

Ideally, with half the bandwidth of a GA100, this configuration

can achieve more than 6x improvement in throughput. How-

ever, batching only reduces model parameter accesses but not

KV cache reads. With a much larger batch, KV cache accesses

become the new bottleneck, which diminishes the benefits

of batching. As input length and output length increase,

throughput decreases due to more KV cache accesses.

From a latency perspective, this throughput-oriented design

may not be promising: the latency is 9.21x worse than GA100

on average. While model parameters are only read once for

each batch, a larger batch size means more KV cache and

intermediate values to read. In LLM inference, there is no

free lunch between latency and throughput.

C. Design Space Exploration

With LLMCompass’ speed, we are able to conduct design

space exploration with different hardware design choices. As

shown in Figure 13, four different memory designs with

different bandwidths and capacities as well as various core

counts and core designs are explored.

Figure 13 indicates our proposed latency-oriented design

and throughput-oriented design are around the sweet point.

Decreasing compute capability too much can hurt performance

due to the compute-intensive prefill stage. Increasing memory

capacity also has diminishing returns as larger batches increase

KV cache accesses.

VI. DISCUSSION

1) Hardware designs that can/cannot be modeled by
LLMCompass: LLMCompass covers the dominant hardware

platforms for LLMs today: NVIDIA GPUs, AMD GPUs, and

Google TPUs, and can be extended to newer architectures with

no/little change to the code, thanks to its generic hardware

template and automatic mapping exploration. In LLMCom-

pass, users only need to describe their design and do not need

to recalibrate LLMCompass for each new design.

For the three real-world designs evaluated in the paper,

we use the same code for performance and area modeling.

LLMCompass can be seamlessly extended to newer architec-

tures such as NVIDIA H100. As a train/test setup, we asked

our collaborators to validate LLMCompass on an NVIDIA

RTX A6000 without changing any code, and LLMCompass

achieves within 2.5% error rate for LLM inference workloads.

LLMCompass does not incorporate network modeling, and

therefore cannot accurately model Cerebras wafer-scale pro-

cessors, which have 850K cores and are more like a distributed

system where inter-core communication mechanism plays a

key role. To model Cerebras-like designs, LLMCompass can

add in existing network models [50], [59], [79].

LLMCompass is designed for throughput-oriented latency

tolerant machines so it cannot model CPUs accurately due to

its latency-sensitive nature and complicated control flow.

2) Other optimization techniques: LLMCompass can be

extended to a variety of optimization techniques. To support

operator fusion like FlashAttention [13], users can implement

a simulated fused operator based on the simulation code for

its individual operators. We do not explore operator fusion in

this paper as many of them are specific to NVIDIA GPUs and

we are not sure whether they can be applied to other hardware

platform such as Google TPUs.

LLMCompass can also be extended to other LLM schedul-

ing techniques. For example, ORCA-style continuous batch-

ing [82], SARATHI-style [3] chunked prefills, and Splitwise-

style [54] phase splitting can be supported by wrapping a

scheduling function on top of LLMCompass.

In this paper, we choose to use request-level batching with

different input and output lengths (as in Figure 10, 11, and 12),

as it is how NVIDIA benchmarks their TensorRT-LLM [68].

VII. RELATED WORK

A. Evaluating Large-scale Hardware Design

Evaluating the various characteristics of a hardware design,

including performance, area, and cost, is extremely useful for

hardware designers. To this end, the options are as follows:

Roofline Model Analysis [78]. Roofline models are analyti-

cal, fast to evaluate, and can be applied to various architectures

for performance comparison. However, they can be overly

optimistic relative to actual hardware capabilities.

Cycle-level Simulation [6], [7], [21], [23], [25], [32], [33],

[51], [61], [62], [66], [72]. With a typical simulation rate of

less than 100K instructions per second, cycle-level simulators

become infeasible for design space exploration of LLM scale

workloads. As these simulators are often designed for specific

architectures, it is hard to describe a hardware design very

different from its design purpose (e.g., it’s almost impossible

to use GPGPU-sim [6] to evaluate a TPU-like design because

it relies on the GPU ISA). These simulators often require the

user to provide the program for evaluation. If the software

program is not optimized, it may lead to unfair comparisons.
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FPGA Emulation. Another way is to implement the design

in RTL code and emulate it on FPGAs. The RTL code can be

either handwritten or generated by accelerator generators [20],

[47], [69], [74]. Although the emulation is fast, the synthesis

process may take a long time, and users are responsible for

mapping their workloads to the hardware. Additionally, users

need to repeat this whole process to evaluate a new design.

Comparison. LLMCompass is suitable for pre-silicon de-

sign space exploration before diving into more detailed cycle-

level simulation or FPGA emulation. Compared with roofline

model, LLMCompass is more accurate. As opposed to sim-

ulating in a cycle-by-cycle manner, LLMCompass is much

faster by leveraging the insights that operators in LLMs

follow a highly regular and predictable pattern. Cycle-level

simulators are usually tightly bonded to specific architectures.

For example, GPGPU-sim [6], [32] only supports a subset

of NVIDIA architectures and does not have official support

for newer NVIDIA Ampere GPUs like A100. We could not

find an existing simulator that models NVIDIA A100, AMD

MI210, and Google TPUv3. Compared with FPGA emulation,

LLMCompass is significantly less engineering-intensive.

LLMCompass can complement FPGA emulation. De-

signers can perform initial design space exploration before

incurring the heavy costs associated with FPGA emulation and

the necessary RTL implementation of the proposed design.

B. Accelerator Design Space Exploration

Since the era of CNN, various works have focused on

exploring optimal hardware designs as well as mapping [14],

[15], [27], [36], [37], [51], [60], [74], [81], [84]. LLMCompass

is different from these works in design considerations and

emphasis: � Mainly targeting Convolutional Neural Networks

(CNNs), these works focus on loop parallelization, loop order,

and data flows (e.g., weight stationary or output station-

ary), which are not the primary design considerations in

Transformer-based LLMs. LLMCompass is more tailored for

matrix multiplication tiling and scheduling as well as other

Transformer operators such as LayerNorm. � LLMCompass

is designed for GPU-scale designs, which are much larger than

CNN accelerators like Eyeriss [10]. LLM workloads are also

significantly larger than CNN workloads.

LLMCompass can also complement design space ex-
plorations. Implemented as a Python library, LLMCompass

can be seamlessly integrated into design space exploration

frameworks such as FAST [84]. FAST uses an internal TPU

performance simulator, limiting its broader utility. Fast and

accurate, we believe the fully open-source LLMCompass can

democratize hardware design space exploration research.

C. Accelerating LLM Inference

Many Transformer accelerators have been proposed [26],

[67], [75], [76], mainly focusing on accelerating the Trans-

former with hardware-software co-design such as pruning or

approximate-computing. Whether these techniques are effec-

tive for the largest of models remains to be seen. Additionally,

TABLE V: Comparison of Hardware Evaluation Methods

Methods Fast Accurate Architecturally Performance Cost
Descriptive� Optimal� Aware

Roofline 	 
 	 	 

Cycle-level 
 	 
 � 


FPGA � 	 � � 	
LLMCompass 	 	 	 	 	

�: The ability to describe different hardware designs.

�: Find the optimal mapping to fully demonstrate hardware capability.

the major challenge of LLMs today comes from the massive

scale of the models, which is the main scope of this paper.

Many efforts have also been made to accelerate LLM

inference at the software domain [3], [5], [12], [13], [19], [54],

[56], [63], [82]. LLMCompass is compatible with these opti-

mization techniques by modeling their compute and memory

access patterns, as discussed in Section VI-2.

VIII. CONCLUSION

This work introduces LLMCompass, a fast, accurate, and

architecturally descriptive hardware evaluation framework for

LLM inference workloads. LLMCompass’ hardware descrip-

tion template, mapper, and architectural simulator allow hard-

ware designers to evaluate large-scale chip designs for LLMs,

which are infeasible for cycle-level simulators. The incorpo-

rated area and cost models can also help designers reason

about performance-cost trade-offs. With the aid of LLM-

Compass, we draw implications on how hardware designs

affect LLM inference. Based on these findings, we propose a

latency-oriented design and a throughput-oriented design that

achieve 1.06x and 3.41x performance per cost improvements

respectively, compared to NVIDIA GA100. We plan to extend

LLMCompass to support more machine learning workloads as

well as LLM training/fine-tuning in the future.
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D. Hesslow, R. Castagné, A. S. Luccioni, F. Yvon, M. Gallé, J. Tow,
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M. Mitchell, C. Raffel, A. Gokaslan, A. Simhi, A. Soroa, A. F. Aji,
A. Alfassy, A. Rogers, A. K. Nitzav, C. Xu, C. Mou, C. Emezue,
C. Klamm, C. Leong, D. van Strien, D. I. Adelani, D. Radev, E. G.
Ponferrada, E. Levkovizh, E. Kim, E. B. Natan, F. D. Toni, G. Dupont,
G. Kruszewski, G. Pistilli, H. Elsahar, H. Benyamina, H. Tran, I. Yu,
I. Abdulmumin, I. Johnson, I. Gonzalez-Dios, J. de la Rosa, J. Chim,
J. Dodge, J. Zhu, J. Chang, J. Frohberg, J. Tobing, J. Bhattacharjee,
K. Almubarak, K. Chen, K. Lo, L. V. Werra, L. Weber, L. Phan, L. B.
allal, L. Tanguy, M. Dey, M. R. Muñoz, M. Masoud, M. Grandury,
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ARTIFACT APPENDIX

A. Abstract

This artifact appendix illustrates how to utilize the pro-

posed LLMCompass framework to evaluate hardware designs

running Large Language Model (LLM) workloads. An x86

machine capable of running Python programs is required to

reproduce all the results in Figure 5-12.

B. Artifact Checklist

• Run-time environment: Python 3.9

• Hardware: An x86 machine.

• Metrics: Throughput and latency of serving LLM inference.

Area and cost of the hardware design.

• Output: CSV logs and Figure 5-12 in the paper.

• Experiments: Scripts are provided to automate the experi-

mental flow and generate the graphs.

• How much disk space required (approximately)?: 1GB.

• How much time is needed to prepare workflow (approx-
imately)?: Less than an hour.

• How much time is needed to complete experiments
(approximately)?: 10 hours.

• Publicly available?: On GitHub: https://github.com/

PrincetonUniversity/LLMCompass.

• Archived?: https://doi.org/10.5281/zenodo.10951545.

C. Description

1) How to access: The artifact is available at https://github.

com/PrincetonUniversity/LLMCompass and includes all the

source code, scripts, and data that are sufficient to reproduce

all the experiments in the paper.

2) Hardware dependencies: The artifact works on x86

CPUs and has been verified on an Intel Xeon Gold 6242R

CPU @ 3.10GHz.

3) Software dependencies: The artifact requires Python3

and has been verified with Python 3.9.19. We recommend

using Anaconda to create a virtual environment and install

the required packages as below:

$ conda create -n llmcompass_ae python=3.9
$ conda activate llmcompass_ae
$ pip3 install scalesim
$ conda install pytorch==2.0.0 -c pytorch
$ pip3 install matplotlib
$ pip3 install seaborn
$ pip3 install scipy

4) Installation: We use Python module method so no

installation required. One can download the artifact as below:

$ git clone -b ISCA_AE https://github.com/
PrincetonUniversity/LLMCompass
$ cd LLMCompass
$ git submodule init
$ git submodule update --recursive

D. Experiment workflow

After setting up the environment, one can reproduce the

experiments by running the following scripts. These scripts

will first generate CSV files and then visualize the results as

in the paper. There is no dependency on these scripts and feel

free to run them in parallel.

# Figure 5 (around 100 min)
$ cd ae/figure5
$ bash run_figure5.sh

# Figure 6 (around 1 min)
$ cd ae/figure6
$ bash run_figure6.sh

# Figure 7 (around 20 min)
$ cd ae/figure7
$ bash run_figure7.sh

# Figure 8 (around 40 min)
$ cd ae/figure8
$ bash run_figure8.sh

# Figure 9 (around 30 min)
$ cd ae/figure9
$ bash run_figure9.sh

# Figure 10 (around 45 min)
$ cd ae/figure10
$ bash run_figure10.sh

# Figure 11 (around 5 min)
$ cd ae/figure11
$ bash run_figure11.sh

# Figure 12 (around 4 hours)
$ cd ae/figure12
$ bash run_figure12.sh

Profiling results on real world hardware has been provided

in advance (as illustrated in Sec. III-C) and is out of the scope

of this artifact.

E. Evaluation and expected result

After running each script above, the corresponding figures

will be generated under the corresponding directory as sug-

gested by its name:

• Figure 5a and Figure 5b: ae\figure5\ab
• Figure 5c and Figure 5f: ae\figure5\cf
• Figure 5d and Figure 5e: ae\figure5\de
• Figure 5g: ae\figure5\g
• Figure 5h: ae\figure5\h
• Figure 5i-l: ae\figure5\ijkl
• Figure 6: ae\figure6
• Figure 7: ae\figure7
• Figure 8: ae\figure8
• Figure 9: ae\figure9
• Figure 10: ae\figure10
• Figure 11: ae\figure11
• Figure 12: ae\figure12
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For comparison, a copy of the expected results can be found

in ae\expected_results. The figures generated by the

scripts should be identical to these expected results. Minor

mismatch is possible because we are actively improving the

framework after the paper submission. However, the mismatch

should not exceed 5%.

The only exception is Figure 11, which has been replaced

by a new figure to show the TTFT and TBT of the proposed

latency-oriented design. A copy of the original Figure 11 can

be found in ae\expected_results.

F. Experiment customization

1) Customized hardware design: In addition to the provided

hardware configurations, users can describe their own hard-

ware design with the provided hardware description template

configs\template.json. More examples can be found

in configs\ and users need to bring their own numbers and

set the parameters in the json file.

An alternative way is to build up the hardware de-

sign bottom-up with the provided Python Class defined

in hardware_model\. The user needs to define their

own ComputeModule, MemoryModule, IOModule, and

InterConnectModule, and combine them into a System.

2) Customized LLM computational graph: In addition to

the provided Multi-Head-Attention Transformer, users can

describe their own computational graph with the provided

operators and primitives, including Matmul, LayerNorm,

Softmax, GeLU, and AllReduce. An example is shown

in software_model\transformer. The user needs to

initialize the operators and combine them into a computational

graph in a similar way to PyTorch.

G. Extending LLMCompass

1) Other DNN models such as RNN or CNN: LLMCom-

pass focuses on Transformers as almost all the LLMs today

are based on Transformers. LLMCompass can also support

other DNN models as long as they can be expressed by

the operators LLMCompass has. For RNNs such as LSTM,

LLMCompass already supports all the operators and we can

model the recurrent nature of RNNs similar to the auto-

regressive decoding stage of LLMs. To support CNNs, we

can derive the convolution operator by modifying the existing

matrix multiplication code.

2) Other precisions: LLMCompass naturally supports

other precisions by allowing users to define their own data

type. In this work, we usually use FP16/BF16 and FP32

because they are widely used and naturally supported by

the GPUs/TPUs we have. LLMCompass takes the data type

as an input and different precisions will consume different

bandwidth and compute operations. LLMCompass can help

users explore the different speeds of different precisions and

facilitate low-precision LLM research, such as GPTQ [19].

LLMCompass cannot explore the accuracy of quantized mod-

els as it does not perform numerical computations.

3) Training and fine-tuning: LLMCompass can be ex-

tended to fine-tuning by building the back propagation com-

putational graph with the provided operator. This generally

does not require implementing new operators as the current

operators are sufficient for LLMs (for instance, the backward

pass of a matrix multiplication is also matrix multiplications).

Optimizer and weight update can be modeled as element-wise

operations which are already supported by LLMCompass.

Training would require a network model due to the large

scale of hardware systems involved to simulate the communi-

cation and synchronization among different nodes. This can be

done by integrating LLMCompass with a network simulator

such as ASTRA-sim [59], [79], where LLMCompass serves

as a truthful device-level hardware backend.
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