
GraphPipe: Improving Performance and Scalability of
DNN Training with Graph Pipeline Parallelism

Byungsoo Jeon∗
byungsoj.com@gmail.com

OctoAI
Seattle, Washington, USA

Mengdi Wu∗
mengdiwu@andrew.cmu.edu
Carnegie Mellon Univerisity

Pittsburgh, PA, USA

Shiyi Cao∗
shicao@berkeley.edu

UC Berkeley
Berkeley, CA, USA

Sunghyun Kim∗

sunghyun@csail.mit.edu
MIT

Cambridge, MA, USA

Sunghyun Park
spark@octo.ai

OctoAI
Seattle, Washington, USA

Neeraj Aggarwal
aggarwal.neeraj141@gmail.com
Carnegie Mellon Univerisity

Pittsburgh, PA, USA

Colin Unger
unger@stanford.edu
Stanford University
Palo Alto, CA, USA

Daiyaan Arfeen
marfeen@andrew.cmu.edu
Carnegie Mellon Univerisity

Pittsburgh, PA, USA

Peiyuan Liao
peiyuanl@andrew.cmu.edu
Carnegie Mellon Univerisity

Pittsburgh, PA, USA

Xupeng Miao
xupeng@cmu.edu

Carnegie Mellon Univerisity
Pittsburgh, PA, USA

Mohammad Alizadeh
alizadeh@csail.mit.edu

MIT
Cambridge, MA, USA

Gregory R. Ganger
ganger@andrew.cmu.edu

Carnegie Mellon Univerisity
Pittsburgh, PA, USA

Tianqi Chen
tqchen@cmu.edu

Carnegie Mellon Univerisity
Pittsburgh, PA, USA

Zhihao Jia
zhihao@cmu.edu

Carnegie Mellon Univerisity
Pittsburgh, PA, USA

Abstract
Deep neural networks (DNNs) continue to grow rapidly
in size, making them infeasible to train on a single device.
Pipeline parallelism is commonly used in existing DNN sys-
tems to support large-scale DNN training by partitioning a
DNN into multiple stages, which concurrently perform DNN
training for different micro-batches in a pipeline fashion.
However, existing pipeline-parallel approaches only consider
sequential pipeline stages and thus ignore the topology of a
DNN, resulting in missed model-parallel opportunities.
This paper presents graph pipeline parallelism (GPP), a

new pipeline-parallel scheme that partitions a DNN into
pipeline stages whose dependencies are identified by a di-
rected acyclic graph. GPP generalizes existing sequential
pipeline parallelism and preserves the inherent topology of a
DNN to enable concurrent execution of computationally-
independent operators, resulting in reduced memory re-
quirement and improved GPU performance. In addition, we
develop GraphPipe, a distributed system that exploits GPP
strategies to enable performant and scalable DNN training.
GraphPipe partitions a DNN into a graph of stages, opti-
mizes micro-batch schedules for these stages, and parallelizes

∗Equal contribution.

DNN training using the discovered GPP strategies. Evalu-
ation on a variety of DNNs shows that GraphPipe outper-
forms existing pipeline-parallel systems such as PipeDream
and Piper by up to 1.6×. GraphPipe also reduces the search
time by 9-21× compared to PipeDream and Piper.

1 Introduction
Deep neural networks (DNNs) grow more rapidly in size
against hardware developments, making them computation-
ally costly to train [2, 29]. A recent language model GPT-4
[27] supposedly uses a much larger number of parameters
[9] compared to the previous model GPT-3 with 175 billion
parameters [5]. As a result, training modern DNNs requires
distributing the model architecture across multiple devices.
To address this challenge, existing DNN systems apply

model parallelism [6, 17, 25, 33, 34, 46] where a DNN is
partitioned into smaller pieces, each of which fits into the
memory of a single device. Pipeline parallelism [7, 10, 23,
24, 38] is a particular form of model parallelism that further
improves device utilization and throughput. As shown in
Figure 1, a key idea of pipeline parallelism is to split both a
DNN and a mini-batch of samples into smaller pieces. First,
the DNN is partitioned into multiple disjoint stages, each
of which is a sub-model and links to other stages to form a
pipeline. Second, a mini-batch of samples is further divided

1

ar
X

iv
:2

40
6.

17
14

5v
1

 [
cs

.D
C

]
 2

4
Ju

n
20

24

S1
S2
S3
S4 B1

F1

F1

F1

F1

F2

F2

F2

F3

F3 F4

F2 B2 F3 B3 F4 B4

B1

B1

B1

B2

B2

B2

B3

B3

B3

B4

B4

B4

F3 F4

F4

Fj: j-th forward pass
Bj: j-th backward pass

O1 O2 O3 O4 Oi : i-th op

Computation Graph (DNN)Mini-batch (Data)

Micro-batch
Sj : j-th
 pipeline stage

S1 S2 S3

Warm-up
Phase

Cool-down
Phase

In-flight
Micro-batches

Pipeline depth: 4
(= # of sequential stages)

S4

Figure 1. Pipeline parallelism for DNN training with basic
terms used in this paper.

into multiple micro-batches, which are executed on different
stages in a pipeline fashion. This approach reduces device
idle time in training iterations, during each of which a single
data mini-batch is processed, and thus improves throughput.

Shortcomings of existing sequential pipeline paral-
lelism. Existing schemes of applying pipeline parallelism
form a sequential pipeline from partitioned stages, which we
refer to as sequential pipeline parallelism (SPP).
Figure 1 illustrates a DNN training scheme that employs

it. A micro-batch traverses the pipeline’s stages (𝑆1 to 𝑆4) in
sequence to perform the computations (𝑂1 to 𝑂4) dictated
by the DNN (forward pass: 𝐹1’s), and traverses in reverse for
all stages to update their assigned model weights (backward
pass: 𝐵1’s). Each stage needs to store the intermediate acti-
vations of a forward pass until its corresponding backward
pass is completed. For a given stage, a micro-batch is in-
flight until its backward pass finishes. As micro-batches are
continuously injected into the pipeline, there is a warm-
up of in-flight micro-batches. The earlier the stage in the
pipeline, the longer the warm-up. As described, SPP is simple
to construct and operate, but has three key limitations.
First, opportunities to exploit the inherent parallel struc-

tures of a DNN are left unseized. DNN applications such
as healthcare [15, 35, 37], chatbot [27], and recommenda-
tion [26] jointly process heterogeneous data types (e.g., text,
images, and tabular data). DNNs employed therein are de-
signed to feature multiple branches, which are computation-
ally independent and thus can be executed concurrently. But
existing DNN systems with SPP first linearize the computa-
tion graph of a DNN to construct the stages of a sequential
pipeline and process these stages sequentially, falling short
in harnessing the opportunity to blend such branch-level
parallelism with pipeline parallelism.
Second, pipeline depth (i.e., number of sequential stages

in SPP) is unduly increased by missing parallelism opportu-
nities that arise from inherent DNN structures (e.g., parallel

branches). Under an alternative arrangement in which some
pipeline stages are parallelized by exploiting such structures,
the number of sequential stages a micro-batch traverses in
a forward (or backward) pass can be smaller. That is, the
elongated pipeline formed by SPP unduly increases pipeline
depth, which in turn increases the number of in-flight micro-
batches to manage. This imposes a higher burden of manag-
ing memory, especially for early stages in the pipeline. Recall
that the tight memory constraint in training large DNNs is
a primary reason to apply pipeline parallelism. Thus, it is
critical to curb the heightened memory requirement.
Third, today’s devices employed for DNN training (e.g.,

GPUs) have high parallel-computing capabilities, requiring
a large amount of training samples to be fetched to achieve
peak performance. The increased memory consumption that
results from applying SPP impedes doing so. As a conse-
quence, devices perform computations at an operational
intensity lower than their desired capacity, resulting in sub-
optimal training performance.

Our approach. To address the above challenges, we in-
troduce graph pipeline parallelism (GPP), that enables per-
formant and scalable DNN training. Figure 2 highlights the
key difference between GPP and SPP. Instead of enforcing a
strictly sequential execution order of pipeline stages, GPP
allows partitioning a DNN into stages whose dependencies
are identified by a directed acyclic graph. GPP includes SPP
as a special case and can preserve the inherent topology
of the DNN during stage partitioning. As a result, GPP en-
ables concurrent execution of computationally-independent
components, resulting in reduced memory requirement and
improved GPU performance compared to SPP.

GPP involves a significantly larger and more complicated
search space of parallelization strategies compared to the
SPP strategies considered by existing DNN systems. Dis-
covering GPP strategies with superior performance over
existing SPP baselines requires weighing subtle trade-offs
between pipeline depth, memory consumption, and micro-
batch schedule. To unleash the power of GPP, we develop
GraphPipe, a system that automatically discovers efficient
GPP strategies to enable performant and scalable DNN train-
ing. GraphPipe includes three key components. First, a
pipeline stage partitioner automatically determines how to
partition the operators of a DNN into a graph of stages,
while balancing the computational load among these stages
and minimizing inter-stage communication. Second, a static
micro-batch scheduler schedules the forward and backward
passes of different micro-batches within a mini-batch to
minimize the peak GPU memory requirement of a GPP
strategy. The stage partitioner and micro-batch scheduler
jointly partition a DNN into stages and determine the micro-
batch schedules for each stage. Finally, a distributed runtime
uses the discovered GPP strategy to enable performant and
scalable DNN training.

2

S1
S2
S3
S4 B1

F1

Computation Graph
(DNN)

Data1

Data2

Data3

Data4

O1 O2

O3

O4 O5

O6 O7

O9 O10

O8

O1 O2 O3 O4 O5 O6

O7 O9 O10O8

O1 O2

O3

O4 O5

O6 O7

O9 O10

O8

SPP Partitioner
(Unaware of Topology)

GPP Partitioner (Topology-aware)

S1

S2

S3

S4

S1 S2

S3 S4

S1

SPP Scheduler (Sequential Stages)

GPP Scheduler (Graphical Stages)

F1

F1

F1

F2

F2

F2

F3

F3 F4

F2 B2 F3 B3 F4 B4

B1

B1

B1

B2

B2

B2

B3

B3

B3

B4

B4

B4

F3 F4

F4

S1
S2
S3
S4 B1

F1

F1

F1

F1

F2

F2

F2

F2 B2 F3 B3 F4 B4

B1 B2 B3 B4F3 F4

B1 B2 B3 B4F3 F4

B1 B2 B3 B4F3 F4

Oi : Op i

Fi: i-th forward pass
Bi: i-th backward passSi : Pipeline Stage i : Imaginary Linear Dependency

S2

S3

S4

S1

S2

S3

S4

SPP: Sequential Pipeline Parallelism (Existing Methods)

GPP: Graph Pipeline Parallelism (Ours)

Input

Large Memory Footprint

Small Memory Footprint

Shorter
Training
Iteration

r

Preserve

r

Line
ariz

e

2
2

of In-flight Micro-batches

4
3

of In-flight Micro-batches

Figure 2. A high-level comparison between existing (SPP) and our (GPP) approaches. SPP (top) produces sequential pipeline
stages that miss the opportunity of parallelizing the branches in the DNN. In contrast, GPP (bottom) generates graphical
pipeline stages that enable parallel execution of the branches. This leads to lower training iteration time (i.e., higher training
throughput) and smaller memory footprint in pipeline-parallel DNN training.

Through experiments on three multi-branch DNNs (e.g.,
Multi-Modal Transformer [12, 27, 30, 32, 41, 44], DLRM
[26], and CANDLE-Uno [1]), we show that GraphPipe can
achieve up to 1.6× training throughput improvements over
existing pipeline-parallel systems such as PipeDream [23]
and Piper [38]. GraphPipe also reduces the search time by
9-21× compared to PipeDream and Piper.
To summarize, we make the following contributions:
• We introduce graph pipeline parallelism, a new paral-

lelization scheme that promotes concurrent stage exe-
cution, reduces memory requirement, and improves
GPU utilization compared to existing SPP schemes.
• We design algorithms to partition a DNN into a graph

of stages and schedule micro-batches for these stages,
which jointly discover efficient GPP strategies.
• We develop GraphPipe, a distributed runtime that
enables fast and scalable DNN training with GPP.

2 Graph Pipeline Parallelism
Figure 2 describe the key differences between sequential
pipeline parallelism (SPP) employed by existing DNN sys-
tems [24, 38] and graph pipeline parallelism (GPP). Given a
DNN and a set of devices, SPP and GPP produce strategies
with different partitioning of stages and pipeline schedules.

Concurrent execution of stages. SPP linearizes all oper-
ators of a DNN while preserving data dependencies between
these operators, and then partitions the linearized DNN into
a sequence of pipeline stages. As a result, each stage has
at most one predecessor and one successor. The execution
order of these stages is thus strictly sequential.

In contrast, GPP preserves the topology of a DNN when
partitioning it into pipeline stages. To avoid circular depen-
dencies between pipeline stages, the relationships between
these stages form a directed acyclic graph. The execution
order of the stages can be thusmore general compared to SPP.
This topology-aware partitioning and pipeline stage execu-
tion providesGPP a clear advantage: (potentially) concurrent
execution of stages that are computationally-independent.
For the GPP strategy in Figure 2, the three stages 𝑆1, 𝑆2,

and 𝑆3 are computationally-independent. Accordingly, the
forward and backward passes of the three stages can be
executed concurrently. However, in the SPP strategy, the
two stages 𝑆2 and 𝑆3 are partitioned such that they have a
sequential data dependency (due to the dependency between
operator 𝑜6 in 𝑆2 and operator 𝑜7 in 𝑆3) since the SPP parti-
tioner does not consider the topology of the DNN and fails to
exploit it. Moreover, while the two stages 𝑆1 and 𝑆2 in the SPP
strategy should be computationally-independent according
to the original DNN, the SPP scheduler executes the forward
and backward passes of these two stages sequentially. This is
because new data dependencies are imposed between them
when linearizing the operators of a DNN to construct a
sequential pipeline.

This distinction directly leads to a performance gap. Specif-
ically, both SPP and GPP involve a warm-up phase during
which micro-batches are injected into the pipeline until all
stages can performwork concurrently. However, as shown in
Figure 2, the warm-up phase of GPP (i.e., 2) is shorter than
that of SPP (i.e., 4). This performance improvement also

3

applies to the cool-down phase during which in-flight micro-
batches are resolved. As a result, GPP achieves a shorter
per-iteration training time (hence, a higher throughput) than
SPP. The topology-aware stage partitioning and scheduling
of GPP address the first shortcoming of SPP (§1).
Reduced memory requirement. There is a close rela-

tionship between the memory requirement of a pipeline-
parallel strategy and its pipeline depth, which is defined
as the diameter of its stage graph. As mentioned earlier,
the depth of the pipeline becomes excessively extended due
to overlooked opportunities for parallelism within DNN
architectures, such as parallel branches. This results in a
higher memory footprint compared to that of pipeline stages
that are parallelized by taking advantage of these structures.
In Figure 2, GPP and SPP have a pipeline depth of 2 and

4, respectively. As a result, the first stage with the highest
activation memory pressure needs to store the forward pass
results for 2 micro-batches in GPP and those for 4 micro-
batches in SPP. All else being equal (i.e., an identical model
partition by both), GPP has a lower total memory footprint
than SPP. Note that memory saving is likely to grow asmodel
size grows since a bigger model with deeper pipeline depth
requires larger number of in-flight micro-batches (especially
for early stages). The activation memory saving by GPP
addresses the second shortcoming of SPP in §1.
Improved GPU utilization. Devices employed in DNN

training (e.g., GPUs) are designed to parallelize DNN com-
putation of a micro-batch efficiently. Thus, larger micro-
batches (i.e., more training samples within a micro-batch)
can improve the operational intensity, thus GPU utilization
of DNN operators. Note that larger micro-batches lead to
reduced numbers of micro-batches, which in turn increases
the warm-up and cool-down time of pipeline that GPP can
significantly reduce. For simplicity of presentation, Figure 2
assumes that the same micro-batch size is used by GPP
and SPP. However, a lower device memory requirement of
GPP over SPP allows integrating more training samples in a
micro-batch, which increases the operational intensity and
overall GPU utilization, and therefore further reduces the
per-iteration training time. We evaluate this aspect in more
detail in §7.

3 Problem Formulation
In this section, we formulate the problem of devising a GPP
strategy for distributed DNN training. Compared to existing
works [24, 38, 46], we further generalize the formulation
to support graphical pipeline stages with fine-grained per-
stage micro-batch size and schedules. As input, we are given
(a) a computation graph G𝐶 = (V𝐶 , E𝐶) that represents the
neural architecture of a DNN model, (b) a mini-batch size 𝐵,
and (c) a device topology graph D = (V𝐷 , E𝐷) where each
node 𝑣 ∈ V𝐷 represents a device with memory budget 𝑀𝑣

and each edge 𝑒 ∈ E𝐷 represents a communication link with
bandwidth 𝐶𝑒 between the two adjacent devices.

As output, we generate a pipeline stage graphG𝑆 = (V𝑆 , E𝑆)
that optimizes the performance metric of interest. In this
work, we limit the scope to strategies that combine pipeline-
parallel and data-parallel techniques, and aim to minimize
the Time-Per-Sample (TPS) of the bottleneck pipeline stage
since the pipeline throughput performance hinges upon the
straggler stage. The stage graph G𝑆 = (V𝑆 , E𝑆) is a directed
acyclic graph (DAG), where each node 𝑆𝑖 ∈ V𝑆 specifies a
pipeline stage and each directed edge (𝑆𝑖 , 𝑆 𝑗) ∈ E𝑆 indicates
that stage 𝑆𝑖 must precede 𝑆 𝑗 for forward passes and that 𝑆 𝑗
must precede 𝑆𝑖 for backward passes.

The goal is to solve the min-max optimization problem:

min max
𝑆𝑖 ∈V𝑆

TPS(𝑆𝑖 ;G𝐶 , 𝐵,D) (1)

s.t. max
𝑆𝑖 ∈V𝑆

DeviceMemoryUsage(𝑆𝑖 ;G𝐶 , 𝐵,D) ≤ 𝑀. (2)

Formally, GPP devises a strategy G𝑆 as follows. We define
𝑆𝑖 ∈ V𝑆 in further detail as a four-element tuple: 𝑆𝑖 =

⟨G𝑖 , 𝑏𝑖 ,D𝑖 ,Π𝑖⟩:
1. G𝑖 represents a subgraph of G𝐶 ,
2. 𝑏𝑖 is the micro-batch size of 𝑆𝑖 (i.e., there are 𝐵/𝑏𝑖

micro-batches for each mini-batch),
3. D𝑖 is a set of devices allocated to process the forward

and backward passes of 𝑆𝑖 (we apply data parallelism
within 𝑆𝑖 if |D𝑖 | > 1), and

4. Π𝑖 is a micro-batch schedule that specifies the order in
which the 𝐵/𝑏𝑖 forward and 𝐵/𝑏𝑖 backward passes are
processed. We use fw𝑖

𝑗 (or bw
𝑖
𝑗) to denote the forward

(or backward) pass of the 𝑗-th micro-batch for 𝑆𝑖 .
G𝑆 is a valid GPP strategy if and only if the memory

constraint (Equation 2) and all following conditions are met:
C1. G𝑖 is a convex subgraph of G𝐶 , and G1, . . . ,G|V𝑠 | form

a partition of G𝐶 .
C2. If there exists (𝑢, 𝑣) ∈ E𝐶 such that𝑢 ∈ G𝑖 and 𝑣 ∈ G𝑗 ,

then (𝑆𝑖 , 𝑆 𝑗) ∈ E𝑆 .
C3. D1, . . . ,D |V𝑠 | form a partition of D.
C4. For each micro-batch schedule Π𝑖 , fw𝑖

𝑘
precedes fw𝑖

𝑘+1,
bw𝑖

𝑘
precedes bw𝑖

𝑘+1, and fw𝑖
𝑘
precedes bw𝑖

𝑘
.

In words, C1 mandates that all operators be covered by
stages that do not overlap with each other, and C2 mandates
that a strict sequential execution order between two stages
be established if according to the computation graph there
exists a data dependency between two operators each in
either of the stages. C3 ensures that at least one device is
allocated to every stage. C4 dictates the orderings of forward
and backward passes.

4 System Overview
Figure 3 illustrates an overview of GraphPipe, a system
that accelerates distributed DNN training at scale using
GPP. Taking as input (a) the computation graph of a DNN,

4

GraphPipe
Pipeline Stage Partitioner (Sec 5)

Static Micro-batch
Scheduler (Sec 6)

Model
Partitioning

Device
Assignment

Micro-batch
Adjustment

Model Partition, Device Assignment,
Micro-batch Sizes

Parallel Decomposition

Pipeline ScheduleMemory Usage Stages

Forward
Passes

Backward
Passes

...

DNN Computation Graph Device ClusterMini-batch Size

Input

Distributed Runtime

Optimized GPP Training Strategy (Stage Partition, Micro-batch Schedule)

Optimized
Micro-batch

Schedule

S1

S2

S2 S3

S4 S5

S1

S3
S4
S5Device Memory Limit

OOM

...

Series Decomposition

Figure 3. Overview of GraphPipe. It consists of a pipeline
stage partitioner and a micro-batch scheduler. Given a DNN
computation graph, mini-batch size, and device configura-
tion, they interact with each other to produce an optimized
GPP training strategy as output. The output can be launched
on the distributed runtime framework we also develop to
execute it and evaluate its real-world performance.

(b) mini-batch size, and (c) the topology of assigned GPUs,
GraphPipe produces an optimized GPP strategy for parallel
DNN training. GraphPipe includes three key components:
a pipeline stage partitioner, a static micro-batch scheduler,
and a distributed runtime. The first two components jointly
discover a high-performance GPP strategy for a given DNN
model, mini-batch size, and assigned devices, which will be
executed by the distributed runtime.
Pipeline stage partitioner. The partitioner performs

three tasks. First, it partitions a DNN, aimed at achieving an
effective distribution of workloads across stages. It examines
the amount of computation and communication needs associ-
atedwith the operators in each stage. Importantly, it leverages
the inherent topology of the DNN at hand in order to exploit
concurrent execution opportunities. To this end, it performs
a sequence of series-parallel decompositions of the given
DNN. Second, it adjusts the micro-batch size for each stage.
This fine-grained adjustment aims to exploit heterogeneous
compute efficiencies of different types of operators. Finally,
it determines how many devices to assign to each stage to

achieve an effective allocation of resources. Note that all
three functions are jointly performed, as no one function is
independent of the others. We provide further details in §5.
Static micro-batch scheduler. The scheduler performs

two tasks. First, it optimizes micro-batch schedules for for-
ward and backward passes while ensuring the integrity of
distributed DNN training. This involves examining both
intra- and inter-stage data dependencies between the passes
(see C4 in §3). Next, it checks if the memory usage that
results from the schedule is within the given device memory
constraint (see Equation 2). Memory usage is closely related
to the numbers of in-flight micro-batches of a stage, which
can be computed based on the schedule of the forward and
backward passes of the stage. §6 provides further details.
Distributed runtime framework. We develop a dis-

tributed DNN runtime system that executes GPP training
strategies generated by the optimizer of GraphPipe. Using
the distributed runtime as the testbed, we compare the per-
formance of the generated GPP strategies against existing
SPP strategies for various DNNs. We provide details in §7.

5 Pipeline Stage Partitioner
The pipeline stage partitioner of GraphPipe aims to mini-
mize Time-Per-Sample (TPS) of the bottleneck pipeline stage
as described in §3. It takes as input a DNN computation graph
G𝐶 , a mini-batch size 𝐵, and a device topology graph G𝐷 ,
and generates an optimized stage graph G𝑆 by searching
over different model partitions, device assignments, and
micro-batch sizes simultaneously. A key challenge we must
address is the large and complex search space of potential
GPP strategies. To reduce the complexity of the search task,
we employ a binary search method combined with series-
parallel decomposition and dynamic programming. We next
describes these three components.

Binary search. Given the large search space of potential
solutions, GraphPipe does not attempt to directly find an
optimal solution. Instead, GraphPipe employs binary search
to iteratively narrow down the target performance range
and examines whether there exist valid solutions within
the range. By iteratively reducing the range, GraphPipe
discovers solutions arbitrarily close to an optimal one, and
thus there is little difference in performance for practical
purposes. Lines 2–11 of Algorithm 1 shows GraphPipe’s
binary search process.

Series-parallel decomposition. Since most DNNs struc-
turally reflect series-parallel graphs [36, 39], GraphPipe
applies series-parallel decomposition to an input graph G𝐶
in order to decompose it into smaller, manageable subgraphs,
and perform model partitioning, device allocation, and task
scheduling for each subgraph. In the unusual cases where a
DNN does not possess such a structural property,GraphPipe
bypasses this issue by converting the DNN to an arithmeti-
cally identical one whose structure is a series-parallel graph.

5

Algorithm 1 Pipeline stage partitioner.
Input: Computation graph G𝐶 , number of devices |V𝐷 |

Output: Optimized stage graph G𝑆
1: // MAXTPS: safe upper-bound for TPS of bottleneck stage.
2: 𝑡𝑙 = 0, 𝑡𝑟 = MAXTPS, G𝑆 = ∅
3: while 𝑡𝑟 − 𝑡𝑙 > 𝜖 do
4: 𝑡𝑚 = (𝑡𝑙 + 𝑡𝑟)/2
5: G𝑏𝑒𝑠𝑡

𝑆
= SearchStageGraph(G𝐶 , |V𝐷 |, 𝑡𝑚, 𝐵)

6: if G𝑏𝑒𝑠𝑡
𝑆

== ∅ then
7: 𝑡𝑙 = 𝑡𝑚
8: else
9: 𝑡𝑟 = 𝑡𝑚
10: G𝑆 = G𝑏𝑒𝑠𝑡

𝑆

11: return G𝑆
12:
13: function SearchStageGraph(G𝐶 , |V𝐷 |, 𝑡𝑚, 𝐵)
14: // 𝐶 is a set of candidate schedule configurations (𝑐)
15: for 𝑐 ∈ 𝐶 do
16: // 𝑐0: dummy schedule configuration
17: G𝑛𝑒𝑤

𝑆
= DP(G𝐶 , 𝑐0, 𝑐, |V𝐷 |, 𝑡𝑚)

18: // PickBetter(·) picks one with less memory
19: G𝑏𝑒𝑠𝑡

𝑆
= PickBetter(G𝑏𝑒𝑠𝑡

𝑆
,G𝑛𝑒𝑤

𝑆
)

20: return G𝑏𝑒𝑠𝑡
𝑆

21:
22: function DP(G, 𝑐 𝑓 , 𝑐𝑏 , 𝑑, 𝑡𝑚𝑎𝑥)
23: if this DP state has been visited then
24: return corresponding G𝑏𝑒𝑠𝑡

𝑆
to this DP state

25: // Consider a given DP state as a SINGLE stage
26: G𝑏𝑒𝑠𝑡

𝑆
= ∅

27: if EstimateTPS(G, 𝑐 𝑓 , 𝑐𝑏 , 𝑑)≤ 𝑡𝑚𝑎𝑥 then
28: // Optimize schedule via Algorithm 2
29: Π𝑜𝑝𝑡 = ScheduleStage(G, 𝑐 𝑓 , 𝑐𝑏 , 𝑑)
30: G𝑏𝑒𝑠𝑡

𝑆
= StageGraph(G,Π𝑜𝑝𝑡 , 𝑑)

31: // Decompose a given DP state into two stages
32: if G can be decomposed in series then
33: for (G1,G2) ∈ SeriesDecompose(G) do
34: for 𝑑2 ← 1 to 𝑑 − 1 do
35: 𝑑1 = 𝑑 − 𝑑2
36: for 𝑐𝑚 ∈ 𝐶 do
37: G𝑛𝑒𝑤

𝑆2
= DP(G2, 𝑐𝑚, 𝑐𝑏 , 𝑑2, 𝑡𝑚𝑎𝑥)

38: Update 𝑖𝑚 based on G𝑛𝑒𝑤
𝑆2

39: G𝑛𝑒𝑤
𝑆1

=DP(G1, 𝑐 𝑓 , 𝑐𝑚, 𝑑1, 𝑡𝑚𝑎𝑥)

40: else if G can be decomposed in parallel then
41: for (G1,G2) ∈ ParallelDecompose(G) do
42: for 𝑑1 ← 1 to 𝑑 − 1 do
43: 𝑑2 = 𝑑 − 𝑑1
44: G𝑛𝑒𝑤

𝑆1
= DP(G1, 𝑐 𝑓 , 𝑐𝑏 , 𝑑1, 𝑡𝑚𝑎𝑥)

45: G𝑛𝑒𝑤
𝑆2

= DP(G2, 𝑐 𝑓 , 𝑐𝑏 , 𝑑2, 𝑡𝑚𝑎𝑥)

46: G𝑏𝑒𝑠𝑡
𝑆

= PickBetter(G𝑏𝑒𝑠𝑡
𝑆

,G𝑛𝑒𝑤
𝑆1
∪ G𝑛𝑒𝑤

𝑆2
)

47: return G𝑏𝑒𝑠𝑡
𝑆

Dynamic programming (DP). GraphPipe adopts a dy-
namic programming algorithm where the value of each

DP state indicates the existence of a strategy achieving a
throughputwithin a target range (Lines 13–20 of Algorithm 1).
At each DP level,GraphPipe applies series-parallel decompo-
sitions to split an input graph (sayG) into two new subgraphs
(say G1,G2), each of which serves as the input computation
graph of a newDP subproblem at one DP level below.Graph-
Pipe recursively solves the DP subproblems to construct a
solution of the original problemwhere the input computation
graph is G𝐶 (Lines 22–47 of Algorithm 1).
DP subproblem. We ensure that each DP subproblem

maintains a certain structure (i.e., having a unique pair of
source and sink nodes and a subgraph G comprised of them).
The input to a DP subproblem includes a computation graph
G ⊆ G𝐶 , the number of devices 𝑑 , and some schedule-related
information for its predecessor and successor stages, which
we furnish by enumeration if not available.

The solution of a DP subproblem involves devising a
training strategy such that (1) the number of in-flight micro-
batches for the source stage (i.e., the pipeline stage that
includes the source node) is minimized; and (2) the Time-
Per-Sample (TPSes) for all stages do not exceed the target
TPS range. These results are returned back to the parent
DP subproblem at one DP level above where the results are
gathered for the parent DP subproblem to produce its own.

We consider three cases in a DP subproblem:
• Base case: We consider the entire subgraph G as a
single stage and apply data parallelism with a data-
parallel degree of 𝑑 (Line 27 in Algorithm 1). We check
if the target TPS range is achievable with the memory
constraint, and compute the number of in-flight micro-
batches according to Algorithm 2 (see §6).
• Series decomposition: We perform a series decompo-
sition to create two subgraphs G1 and G2, where the
sink node of G1 coincides with the source node of G2
(Line 32 in Algorithm 1).We first solve the subproblem
associated with G2. To do so, we enumerate all feasible
schedules for the source node of G2. We then solve
the subproblem associated with G1.
• Parallel decomposition: We perform a parallel decom-
position to create G1 and G2, where G1 and G2 share
the same source and sink nodes (Line 40 in Algo-
rithm 1). As there is no data dependency between
these subgraphs, the pipelines can be executed in
parallel. The subproblems associated with G1 and G2
may produce different optimal numbers of in-flight
micro-batches for the shared source node. To ensure
continuous pipelining, we take the larger number of
in-flight micro-batches as the solution.

Overall process. Figure 4 visualizes the overall process.
At the top, a DP subproblem is provided with its initial
conditions: computation graph G, the number of available
devices 𝑑 , and the target TPS range [0, 𝑡𝑚𝑎𝑥]. Suppose the
number of in-flight micro-batches for the sink node is 𝑖𝑏 , the
micro-batch sizes for the source and sink nodes are𝑏 𝑓 and𝑏𝑏 ,

6

the stage containing the source node (i.e., source stage) uses
the 𝑘𝑓 F𝑘𝑓 B schedule, and the stage containing the sink node
(i.e., sink stage) uses the 𝑘𝑏F𝑘𝑏B schedule (we introduces
GraphPipe’s micro-batch schedules in §6). These supposed
conditions comprise a schedule configuration denoted by
𝑐 := (𝑖, 𝑏, 𝑘) in Algorithm 2. They are either available as
the results of some other DP subproblems solved previously,
or furnished by enumeration. The solution of this DP sub-
problem computes the smallest possible number of in-flight
micro-batches for the source stage (i.e., 𝑖 𝑓 in Figure 4) that
meets the target TPS range [0, 𝑡𝑚𝑎𝑥].

E

F

G

H

bm, km ib, bb, kb

G2, d2

A

B

C D

E

F

G

H

bf, kf ib, bb, kb

Partition: (FGH)

im

Series
Decompn.

Single
Stage

Parallel
Decompn.

...Partition: (BE)(CD)

if=max(if0, if1)

Single
Stage

...

if Partition: (BE)(CD)(FGH)

Parallel
Decompn.

...

Single
Stage

...

if1
Series

Decompn.
...

A B E
bf, kf im, bm, km

G1,1, d1,1

Single
Stage

if0

Partition: (BE)

Series
Decompn.

...

A

B

C D

E

bf, kf im, bm, km

G1, d1

Single
Stage

...

A C D E

bf, kf im, bm, km

G1,2, d1, 2

G, d

Partition: (CD)

 1) Optimize schedule to
 minimize # in-flight samples (i)
 2) Check memory limit and TPS

Figure 4. Pipeline stage partitioner performing series-
parallel decompositions. Black arrows indicate subproblem
formulations. Red arrows indicate solutions of subproblems.

Time complexity.We analyze the time complexity of the
stage partitioner to gauge the impacts of design parameters.
Let 𝑁 be the number of series-parallel subgraphs of G𝐶 , B be
the set of possible micro-batch sizes,D be the set of possible
data-parallel degrees. The maximal element of B is upper-
bounded by 𝐵. We consider powers of 2 for micro-batch sizes
(i.e., |B| < log2 𝐵). Likewise, the maximal element of D is
upper-bounded by |V𝐷 | and |D| < log2 |V𝐷 | holds.
The number of candidates for G is 𝑂 (𝑁), that for 𝑐 𝑓 =

(𝑏 𝑓 , 𝑘𝑓) is𝑂 (|B|2), that for 𝑐𝑏 = (𝑖𝑏, 𝑏𝑏, 𝑘𝑏) is𝑂 (𝐵 |B|2), and
that for𝑑 is𝑂 (|D|) in each DP subproblem. To compute a DP
value, it takes𝑂 (|D||B|2) time for series decompositions and
𝑂 (|D|) time for parallel decompositions. Therefore, the time
complexity for a single DP run is 𝑂 (𝑁𝐵 |B|6 |D|2) and the
overall time complexity is 𝑂 ((logMAXTPS)𝑁𝐵 |B|6 |D|2) =
𝑂 ((logMAXTPS)𝑁𝐵(log2 𝐵)6 (log2 |V𝐷 |)2).

Algorithm 2 Static micro-batch scheduler.
Input: Model partition G, initial current and next stage schedule

configurations 𝑐 𝑓 , 𝑐𝑏 , number of devices 𝑑
Output: Optimized schedule Π𝑜𝑝𝑡

1: function ScheduleStage(G, 𝑐 𝑓 , 𝑐𝑏 , 𝑑)
2: // Optimize schedule by minimizing number of
3: // in-flight micro-batches
4: // while respecting data dependencies
5: 𝑖 𝑓 = ComputeInFlight(𝑘𝑓 , 𝑏 𝑓 , 𝑘𝑏 , 𝑏𝑏 , 𝑖𝑏)
6: 𝑐𝑜𝑝𝑡 = (𝑖 𝑓 , 𝑘𝑓 , 𝑏 𝑓)
7: if 𝑐𝑜𝑝𝑡 violates device memory constraint then
8: 𝑐𝑜𝑝𝑡 = ∅ // Invalidate schedule 𝑐𝑜𝑝𝑡
9: Π𝑜𝑝𝑡 ← ScheduleTask(𝑐𝑜𝑝𝑡)
10: return Π𝑜𝑝𝑡

6 Static Micro-Batch Scheduler
The static micro-batch scheduler of GraphPipe optimizes
micro-batch schedules to minimize training time and mem-
ory footprint. Specifically, we design our scheduler to address
the unique challenges presented by graph-like data depen-
dencies in GPP pipeline stages. These dependencies compli-
cate both scheduling and memory footprint optimization.
Our scheduler aims to optimize schedules while ensuring
their validity by meeting the data dependency requirements
between all forward and backward passes.
We further generalize our scheduler so that it can sup-

port different micro-batch sizes and schedules over pipeline
stages. This can be effective when running heterogeneous
models (e.g., multi-modal models with different ideal micro-
batch size over pipeline stages across different modalities).
We also find it can save extra memory footprint with fine-
grained per-stage micro-batch scheduling (i.e., Figure 5).

The scheduler (Algorithm 2) takes as input (1) a configura-
tion of model partition G, (2) current and next stage schedule
configurations 𝑐 𝑓 , 𝑐𝑏 , and (3) the number of devices 𝑑 from
the pipeline stage partitioner, and produces an optimized
micro-batch schedule Π𝑜𝑝𝑡 for a given stage configuration.
As in Figure 3, the input is fed by the stage partitioner, and
the output is returned back to the stage partitioner to form
a stage graph with an optimized micro-batch schedule.

GraphPipe’s pipeline stage partitioner (Algorithm 1) first
calls Algorithm 2 to discover an optimizedmicro-batch sched-
ule for the last stage. It then traces back all directed edges
(𝑆𝑖 , 𝑆 𝑗) ∈ E𝑆 of the stage graph G𝑆 in the reverse direction
and determines a schedule for each stage 𝑆𝑖 until a schedule
for the first stage is determined. The reason for backward
traversal is that computing the activation memory usage,
and thus the total usage, for a stage 𝑆𝑖 requires complete
schedule information of its subsequent stages 𝑆 𝑗 .

ComputeInFlight(·) and ScheduleTask(·) in Algorithm 2
are two key functions. First, ComputeInFlight(·) is a key
subroutine to optimize schedule by effectively minimizing

7

S1
S2
S3

F{1,2}
F1 F2
F{3,4}

F3 B1 B2 B3 B4F4

(b) Per-stage kFkB schedule [k=2 for S2, k=1 for S1 and S3]

(a) kFkB schedule [single k(=1) for all stages]

F{1,2} F{3,4}B{1,2} B{3,4} F{5,6} B{5,6} F{7,8} B{7,8}
F5

F{5,6} F{7,8}
F6 F7 F8
B{1,2} B{3,4} B{5,6}

B5 B6 B7 B8
B{7,8}

1 2 3 4 5 6 7 8

Mini-batch (Data Samples)

Micro-batch

S1
S2
S3

F{1,2}
F1 F2
F{3,4}

F3 B1 B2 B3 B4F4
F{1,2} F{3,4}B{1,2} B{3,4} F{5,6} B{5,6} F{7,8} B{7,8}

F5
F{5,6} F{7,8}

F6 F7 F8
B{1,2} B{3,4} B{5,6}

B5 B6 B7 B8
B{7,8}

3 in-flight micro-batches
(Less memory footprint than 1F1B)

4 in-flight micro-batches

Figure 5. A comparison between (all-stage) 𝑘F𝑘B and per-
stage 𝑘F𝑘B schedules with different micro-batch sizes over
stages. F{𝑖, 𝑗}, B{𝑖, 𝑗} indicate forward and backward passes
for a micro-batch including samples 𝑖 and 𝑗 . It showcases
how per-stage 𝑘F𝑘B scheduling can save memory footprint.

the number of in-flight micro-batches for a given stage with-
out increasing per-iteration training time. In existing SPP
methods, it is trivial to implement ComputeInFlight(·)
since it adopts simple 𝑘F𝑘B schedule (i.e., forward pass for
𝑘 micro-batches followed by backward pass for 𝑘 micro-
batches)1 [10, 43] or its subset (e.g., 1F1B) [23, 38] with se-
quential dependency. However, in GPP, graph-like dependen-
cies between pipeline stages complicate memory footprint
optimization, as they require consideration of all parallel
successor stages of a current stage.
In addition, we generalize ComputeInFlight(·) to sup-

port 1) different micro-batch sizes over pipeline stages and
2) fine-grained 𝑘F𝑘B schedules per stage (i.e., varying 𝑘 over
stages). Figure 5 illustrates how fine-grained 𝑘F𝑘B schedules
can save activation memory footprint. In Figure 5, 𝑆2 has
a different micro-batch size (=1) from that of 𝑆1, 𝑆3 (=2). 𝑆2
can employ either 1F1B or 2F2B without degrading training
iteration time. If 𝑆2 employs 2F2B, it can save the activation
memory footprint of 𝑆1 by reducing the number of in-flight
micro-batches from 4 to 3 in comparison to 1F1B.
Second, ScheduleTask(·) produces an optimized sched-

ule of forward and backward passes for a given stage with
optimized schedule configuration (𝑐𝑜𝑝𝑡). It adopts greedy
scheduling that schedules backward pass as early as possible.
It reduces both memory consumption and training iteration
time since it quickly resolves the corresponding in-flight for-
ward pass. However, graphical pipeline stages and different
micro-batch sizes over stages make the data dependencies
of forward and backward passes convoluted. Still, we find a

1A schedule Π𝑖 is said to be 𝑘F𝑘B when there exist ℓ and 𝑘 such that Π𝑖

starts with ℓ forward passes (for warm-up), alternates between 𝑘 backward
and 𝑘 forward passes, and ends with ℓ backward passes (for cool-down).

greedy scheduling handling these factors is optimal in terms
of iteration time and memory footprint.
GraphPipe uses the following default schedule config-

urations: 1) synchronous 1F1B schedule [24] adjusted to
support graph-like dependencies and 2) the same micro-
batch size across stages. The synchronous 1F1B avoids gra-
dient staleness with the same pipeline latency and lower
activation memory footprint in comparison to alternatives
(e.g., GPipe [10]). Furthermore, except for some corner cases,
we observe that performance improvements from per-stage
micro-batch sizes and 𝑘F𝑘B schedules are incremental to
justify the increased search times for models and device clus-
ters we explored. Still, with GraphPipe, users can choose to
search over per-stage micro-batch sizes and 𝑘F𝑘B schedules
for more heterogeneous models and larger device clusters.

7 Evaluation
We develop GraphPipe on top of FlexFlow [13], a distributed
multi-GPU runtime for DNN training. Major modifications
are to replace FlexFlow’s partitioner and scheduler with ours
described in §5 and §6 respectively. We evaluate GraphPipe
on the Summit supercomputer [3]. For each compute node of
Summit, we use 2 IBM POWER9 CPUs and 4 NVIDIA V100
GPUs with 512GB of main memory. GPUs within a node are
interconnected via NVLink while nodes are connected via
Mellanox EDR 100Gb InfiniBand.We use the default schedule
configurations of GraphPipe mentioned in Section 6. Note
that we omit error bars for our plots, as we observe marginal
standard deviations (less than 3%) for all results.

DNNs.Weexplore threemulti-branchDNNs:Multi-Modal
Transformer-based model (MMT) [30, 41], DLRM [26], and
CANDLE-Uno [1]. Multi-Modal Transformer (MMT) is a
backbone of most state-of-the-art multi-modal models [12,
27, 30, 32, 44]. DLRM is a popular deep learning recommen-
dation model for personalization and ads recommendation.
CANDLE-Uno is a specialized model in the medical domain
(i.e., precision medicine). We describe the detailed model con-
figurations in the supplemental material. Despite different
applications, all these models feature parallel branches, each
processing a different type of data.

7.1 End-to-End Evaluation
We compare the training throughput of GraphPipe with ex-
isting pipeline-parallel systems: PipeDream [24] and Piper [38].
We choose these two baselines since their combined search
space encompasses all possible model partitions covered by
other approaches including DAPPLE [7], Alpa [46], etc [23,
39]. We implemented their stage partitioning strategies in
GraphPipe to conduct fair comparisons; note that it is also
necessary for Piper given that it is a partitioning algorithm
and doesn’t have a runtime.

We compare the training throughput of GraphPipe with
existing pipeline-parallel systems such as PipeDream [24]

8

(a) Multi-Modal Transformer (MMT) (b) DLRM (c) CANDLE-Uno

Figure 6. End-to-end performance evaluation. GraphPipe outperforms both PipeDream [24] and Piper [38] in three different
models: Multi-modal Transformer-based model [30], DLRM [26], and CANDLE-Uno [1] at all but one GPU count configurations
tested. Missing data points indicate that no training strategy can be found within reasonable timeframes.

GPUs MMT DLRM CANDLE-Uno

Piper PipeDream Ours Piper PipeDream Ours Piper PipeDream Ours

4 52.9 (440.5×) 2.57 (21.4×) 0.12 ✗ 6.39 (19.3×) 0.33 ✗ 3.84 (20.2×) 0.19
8 126 (165.7×) 11.9 (15.6×) 0.76 ✗ 31.3 (11.4×) 2.73 ✗ 17.0 (11.8×) 1.43
16 304 (101.3×) 44.3 (14.7×) 3.00 ✗ 131 (9.9×) 13.28 ✗ 66.10 (10.7×) 6.14
32 745 (73.7×) 151 (15.0×) 10.11 ✗ 505 (9.2×) 54.6 ✗ 234 (10.4×) 22.37

Table 1. Solution search times (in seconds) for Piper, PipeDream, and Ours (GraphPipe) on the Apple M1 Max; ✗ indicates
search cannot be completed. Numbers in parentheses indicate the search time ratio of the algorithm to that of GraphPipe.

and Piper [38]. We choose these two baselines since their
combined search space encompasses all possible model par-
titions covered by other approaches [7, 23, 46].
Figure 6 showcase the results. We measure the training

throughput (i.e., number of samples processed per second)
as we increase the number of GPUs and mini-batch sizes.
Note that Piper cannot generate training strategies for DLRM
and CANDLE-Uno since its time and space complexity in-
creases exponentially with respect to the number of parallel
branches. GraphPipe outperforms PipeDream and Piper at
all but one GPU configuration. Moreover, the performance
gap widens as the number of GPUs increases.
Our analysis reveals that we can attribute the widening

performance gap to the pipeline depths greatly reduced
by GraphPipe compared to PipeDream and Piper for the
multi-branch models. As we use more devices, the number
of sequential pipeline stages tends to increase to achieve
a higher throughput, particularly when the model size is
too large to apply data parallelism at the cost of weight
memory footprint and weight synchronization. With a larger
number of stages, sequential pipeline schemes by generated
by PipeDream or Piper suffer from extended warm-up and
cool-down phases. Directly, these extended pipeline bub-
bles negatively affect training throughput. Indirectly, these
bubbles increase activation memory footprints, which in

turn impede effective model partitioning. We visualize this
analysis in detail via a case study (see §7.4).

7.2 Search Time
Table 1 presents the search times by the three optimizers
(GraphPipe, PipeDream, and Piper) for the three models
(Multi-Modal Transformer, DLRM, and CANDLE-Uno). The
Multi-Modal Transformer-basedmodel has two branches and
the DLRM and CANDLE-Uno models have eight branches.
GraphPipe is at least 9× faster than the baselines irre-

spective of the models or GPU configurations. In addition,
GraphPipe’s efficient partitioner produces a strategy within
a minute for all configurations. The SPP baselines are much
slower by comparison, and this search time discrepancy can
be attributed in large part to the fact that the baselines rarely
leverage DNN topology in expediting search. Note that Piper
does not produce strategies for the DLRM and CANDLE-Uno
models for the aforementioned reasons.
To see the large search space of each SPP baseline, it is

helpful to approximate their time complexities. Let us con-
sider a simple multi-branch model with each branch having
𝑘 > 𝑛 operators, where 𝑛 is the number of branches. Recall
that Piper considers model partitions in which cross-branch
stages exist. This level of granularity of model partitions
significantly increases the number of model partitions to
examine. Piper’s optimizer runs in 𝑂 (|D|2) time (Appendix

9

D in [38]), where D is the set of downsets (Definition 4.1 in
[38]). According to the definition, model partitions in which
one stage spans multiple branches and all other stages are
formed within a branch are valid candidates. Since we can
choose one operator out of 𝑘 from each branch to form a
cross-branch stage, the number of such model partitions is
at least |D| ≥ ∏𝑛

𝑖=1 𝑘 = 𝑘𝑛 . Thus, Piper’s time complexity
is lower-bounded by 𝑂 (𝑘2𝑛). This time complexity implies
that unless we employ a set of clever heuristics, Piper’s time
complexity can be significantly high for multi-branch DNNs.

On the other hand, PipeDream considers a converted DNN
that linearizes all branches and the operators within. Thus,
it deals with a single chain of operators, where the number
of model partitions to consider is much smaller than Piper.

Still, GraphPipe considers significantly fewer model par-
titions than PipeDream (and hence Piper) particularly when
a given DNN features multiple branches. Instead of solv-
ing a single long chain of 𝑛𝑘 operators as in PipeDream,
GraphPipe solves 𝑛 short chains of 𝑘 operators separately.
As empirically shown in Figure 6, GraphPipe barely demon-
strates throughput degradation, which could have resulted
from examining much fewer model partitions. Explicitly
leveraging DNN topology in examining model partitions
in search for a training strategy turns out to be critical to
reducing the search space and time complexity.

7.3 Different Numbers of Branches and
Micro-Batch Sizes

Figure 7 shows the results of two experiments in which we
change the number of parallel branches for the CANDLE-
Uno model (left) and change the number of micro-batch sizes
for the two-branch multi-modal Transformer-based model
(right). The purpose of the experiments is to investigate the
effects of main parameters on the performances of Graph-
Pipe and the SPP baselines (i.e., PipeDream and Piper).
The left sub-figure depicts the throughputs of different

systems normalized by that of PipeDreamwith respect to the
number of parallel branches for the CANDLE-Uno model.2
We see that the performance gap achieved by GraphPipe
scales with the number of branches, reaching up to 2× at
16 branches. Intuitively, the performance gain mostly stems
from the fact that GraphPipe is able to reduce the pipeline
depths at all configurations allowing concurrent execution of
parallel branches, reducing the inefficient pipeline warm-up
and cool-down phases significantly. The gain scales because
the larger the number of branches, the larger the differentials
of the phases between GraphPipe and SPP. This experiment
result demonstrates that (1) reducing pipeline depth is crit-
ical to training performance; and (2) GraphPipe is better
at it than SPP especially when multiple branches of non-
negligible workload are present. The larger the number of

2Piper was not able to produce a strategy for the CANDLE-UNO model.

Figure 7. Throughput vs. different numbers of branches
using 4, 8, 16 GPUs respectively (left). Throughput vs.
different micro-batch sizes using 8 GPUs (right).

branches in a given DNN to train, the more opportunities
for GraphPipe to exploit and reduce pipeline depths.

The right sub-figure depicts the throughput performances
for the multi-modal Transformer-based model with four
branches. We use a mini-batch size of 128 and eight GPUs.
We intentionally fix a micro-batch size (instead of using
the best ones chosen by the optimizers) in comparing the
performances, for the purpose of examining the benefits (or
harms) of using large micro-batch sizes. If increasing micro-
batch size turns out to be beneficial, then it is worth reducing
pipeline depth so as to reduce activation memory footprints,
and in turn create room for using a larger micro-batch size.

We can observe the key role of reduced pipeline depth by
GraphPipe in improving throughput. For each micro-batch
size, GraphPipe always outperforms SPP. Since there is no
difference in operational intensity with the samemicro-batch
size used for both GraphPipe and SPP, the performance
gap can be solely attributed to the difference in pipeline
depth. The reduced pipeline depth by GraphPipe leads to
a shorter execution time for the warm-up and cool-down
phases, hence a higher throughput.

7.4 Case Study
It is instructive to take a close look at the strategies produced
by GraphPipe and SPP. We run both GraphPipe and SPP
optimizers for a synthetic model, execute the strategies, and
observe a 20% throughput improvement by GraphPipe over
SPP. Our analysis finds that the aggregate gain comes from
two sources, and the contributions are nearly equal.

Figure 9 depicts the two-branch Transformer-based model
synthesized for the experiment. Each branch consists of
four repeated sequences of one multi-head attention and
two linear (dense) layers. The branches are merged by a
concatenation operator.

Both GraphPipe and SPP produce the identical model par-
tition on a budget of eight devices. Each stage contains one
multi-head attention and two linear layers. There are eight
such stages, four per branch, except that one stage neces-
sarily contains the concatenation operator. A key difference
between the two strategies, however, is the way the stages
are pipelined. Figure 8 depicts the pipeline schedules. Note

10

Figure 8. Pipeline schemes devised by SPP (top) and GraphPipe (bottom). They produce an identical model partition. The
selected micro-batch sizes are different: 2 (SPP) v.s. 4 (GraphPipe), which results in a better compute efficiency for GraphPipe.
Both methods deem it unnecessary to employ data parallelism primarily because doing so would have split a smaller micro-
batch size even further, which would have harmed compute efficiencies. The pipeline depths are also different: 8 (SPP) v.s. 4
(GraphPipe), which results in a smaller pipeline depth for GraphPipe. This improvement comes purely from the fact that
GraphPipe can produce a pipeline scheme that allows for concurrent execution of parallel branches.

Figure 9. A synthetic Transformer-based two-branch DNN
for case study. A sequence of one multi-head attention and
two linear layers is repeated four times to compose a single
branch. One concatenation layer combines two branches.

that the pipeline depth for SPP is eight since all eight stages
form a sequential pipeline. In contrast, the pipeline depth for
GraphPipe is four. The two branches are computationally-
independent, hence stage 1 + 𝑖 and 5 + 𝑖 for 0 ≤ 𝑖 ≤ 3 can be
executed in parallel, and this is precisely what the training
strategy produced by GraphPipe suggests. This concurrent
execution reduces the warm-up phase by half in terms of
number of micro-batches from eight to four. This warm-up
phase reduction leads to 10% performance improvement.
There is another subtle, yet key difference. Since Graph-

Pipe reduces the pipeline depth by half, the activation mem-
ory footprints for early stages are smaller for the GraphPipe
strategy. As a result, GraphPipe can choose a micro-batch
size from a wider range of candidates, and indeed selects a
size of 4. The compute efficiency improvement from choosing
a larger micro-batch size over SPP (which chooses a size of 2
due to larger activation memory footprints) leads to a larger
number of samples processed per unit time. This means
that when the pipeline operates at full capacity, it processes
training samples at a faster rate for GraphPipe than for SPP.

Our measurements show that the gain from this compute effi-
ciency improvement is 10%. The two gain sources combined,
GraphPipe achieves 20% higher throughput over SPP.

8 Related Work
Pipeline parallelism. Existing DNN frameworks [4, 13, 28,
31, 33] employ sequential pipeline parallelism (SPP) where
pipeline stages are strictly sequential. As we discuss in Sec-
tion 2, SPP hinders parallel execution of computationally-
independent components of a DNN and memory savings
from reduced pipeline depth. While this limitation still exists
as long as SPP is adopted, there are a variety of pipeline
parallelism approaches to improve pipeline performance in
other ways. These approaches fall into one of two paradigms:
synchronous and asynchronous pipeline parallelism.
Synchronous pipeline parallelism [7, 10, 24, 39, 46] refers

to a set of techniques in which the model parameters spread
across devices are updated synchronously after every train-
ing iteration. The DNN training semantics is preserved, thus
statistical convergence issues do not arise. But the synchro-
nous updates fill and drain the pipeline periodically over it-
erations, hurting throughput. Our graph pipeline parallelism
mitigates this issue by reducing pipeline bubbles better than
sequential pipeline parallelism.

Asynchronous pipeline parallelism [23, 24, 38, 45] refers to
a set of techniques in which the model parameters spread
across devices are updated asynchronously. Although this

11

mode may suffer from statistical convergence issues as de-
vices execute their stages using out-of-sync model param-
eters, it keeps the pipeline full at nearly all times. Graph
pipeline parallelism helps us reduce total device memory
usage, thus use a larger micro-batch size to execute operators
at a higher operational intensity compared to sequential
pipeline parallelism. This enables us to process training data
faster while the pipeline is full.
Multiple pipeline stages per device. In the pipeline

parallel techniques above, each device contains only one
pipeline stage. It has been shown that assigningmultiple non-
contiguous stages to a device can reduce pipeline bubbles
[16, 25] and reduces memory consumption imbalances across
stages [19, 20]. Earlier work GEMS [11] has a similar idea but
does not utilize the pipeline well — devices are idle for most
of the time and waiting for results from other stages. These
techniques are orthogonal to graph pipeline parallelism, and
thus can be applicable upon some modifications.
Data parallelism. Data parallelism [8, 14, 18, 22, 40] is

one of parallel DNN training techniques in which every
device has a local copy of a DNN to train and a batch of
training data is split across devices. Each device updates its
model parameters based on its share of training data and
synchronizes the parameters periodically with other devices.
In ourwork, we apply data parallelismwithin a pipeline stage
to which we assignmultiple devices, in order to balance stage
execution times in a more fine-grained manner compared to
applying pipeline parallelism only.
Automatic DNN parallelism. There are a number of

automated approaches [13, 21, 23, 38, 39, 42, 46] combining
data, pipeline, and tensor parallelisms [34]. Existing works
first partition aDNN into sequential pipeline stages (SPP) and
then apply data and tensor parallelism to each stage. Graph-
Pipe follows this same high-level process as well. However,
the key difference is that it generalizes stage partitioning to
produce graphical stages and exploit concurrent execution
opportunities from DNN structures (i.e., parallel branches).
Note that it is also feasible to combine our approach with
tensor parallelism by adding a subroutine of applying tensor
parallelism (e.g., intra-op pass in Alpa [46]) in our partitioner
while our scheduler and runtime are already compatible.

9 Conclusion
We have developed graph pipeline parallelismwhere pipeline
stages form a directed acyclic graph whose edges indicate
execution orders of forward and backward passes in pipeline-
parallel DNN training. This design encourages concurrent
execution of parallel branches for superior performance.
We have also developed a distributed system GraphPipe,
and through experiments using three multi-branch models,
showed that GraphPipe achieves up to 1.61× higher training
throughputs and > 9× faster solution search times over ex-
isting baselines that operate in a strictly sequential manner.

References
[1] https://github.com/ECP-CANDLE/Benchmarks/tree/master/Pilot1/

Uno. Accessed: 2023-05-15.
[2] Ai and compute. https://openai.com/research/ai-and-compute. Ac-

cessed: 2023-05-15.
[3] Summit supercomputer. https://www.olcf.ornl.gov/summit/. Accessed:

2023-09-06.
[4] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} symposium on operating systems design
and implementation ({OSDI} 16), pages 265–283, 2016.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

[6] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu
Devin, Mark Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker,
Ke Yang, et al. Large scale distributed deep networks. Advances in
neural information processing systems, 25, 2012.

[7] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen
Zheng, Chuan Wu, Guoping Long, Jun Yang, Lixue Xia, et al. Dapple:
A pipelined data parallel approach for training large models. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 431–445, 2021.

[8] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

[9] Will Douglas Heaven. Gpt-4 is bigger and better than chatgpt—but
openai won’t say why. https://www.technologyreview.com/2023/03/
14/1069823. Accessed: 2023-05-15.

[10] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, et al. Gpipe: Efficient training of giant neural networks using
pipeline parallelism. Advances in neural information processing systems,
32, 2019.

[11] Arpan Jain, Ammar Ahmad Awan, Asmaa M. Aljuhani, Jahanzeb Maq-
bool Hashmi, Quentin G. Anthony, Hari Subramoni, Dhabaleswar K.
Panda, Raghu Machiraju, and Anil Parwani. GEMS: gpu-enabled
memory-aware model-parallelism system for distributed DNN train-
ing. In International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), page 45. IEEE/ACM, 2020.

[12] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu
Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scaling
up visual and vision-language representation learning with noisy text
supervision. In International conference on machine learning, pages
4904–4916. PMLR, 2021.

[13] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model
parallelism for deep neural networks. Proceedings of Machine Learning
and Systems, 1:1–13, 2019.

[14] Alex Krizhevsky. One weird trick for parallelizing convolutional
neural networks. arXiv preprint arXiv:1404.5997, 2014.

[15] Harlan M Krumholz, Sharon F Terry, and Joanne Waldstreicher. Data
acquisition, curation, and use for a continuously learning health
system. Jama, 316(16):1669–1670, 2016.

[16] Joel Lamy-Poirier. Breadth-first pipeline parallelism. arXiv preprint
arXiv:2211.05953, 2022.

[17] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen,
Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and
Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668,
2020.

12

https://github.com/ECP-CANDLE/Benchmarks/tree/master/Pilot1/Uno
https://github.com/ECP-CANDLE/Benchmarks/tree/master/Pilot1/Uno
https://openai.com/research/ai-and-compute
https://www.olcf.ornl.gov/summit/
https://www.technologyreview.com/2023/03/14/1069823
https://www.technologyreview.com/2023/03/14/1069823

[18] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-
Yiing Su. Scaling distributed machine learning with the parameter
server. In 11th USENIX Symposium on operating systems design and
implementation (OSDI 14), pages 583–598, 2014.

[19] Shigang Li and Torsten Hoefler. Chimera: Efficiently training large-
scale neural networkswith bidirectional pipelines. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’21, New York, NY, USA, 2021. Association
for Computing Machinery.

[20] Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang You. Hanayo:
Harnessing wave-like pipeline parallelism for enhanced large model
training efficiency. CoRR, abs/2308.15762, 2023.

[21] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus
Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy
Bengio, and Jeff Dean. Device placement optimization with reinforce-
ment learning. In International Conference on Machine Learning, pages
2430–2439. PMLR, 2017.

[22] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Andrew Tulloch,
Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo
Park, Liang Luo, et al. High-performance, distributed training of
large-scale deep learning recommendation models. arXiv preprint
arXiv:2104.05158, 2021.

[23] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei
Zaharia. Pipedream: Generalized pipeline parallelism for dnn training.
In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pages 1–15, 2019.

[24] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and
Matei Zaharia. Memory-efficient pipeline-parallel dnn training. In
International Conference on Machine Learning, pages 7937–7947. PMLR,
2021.

[25] DeepakNarayanan,Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. Efficient large-
scale language model training on gpu clusters using megatron-lm.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–15, 2021.

[26] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G Azzolini, et al. Deep learning
recommendation model for personalization and recommendation
systems. arXiv preprint arXiv:1906.00091, 2019.

[27] OpenAI. Gpt-4 technical report, 2023.
[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James

Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information
processing systems, 32:8026–8037, 2019.

[29] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean.
Carbon emissions and large neural network training, 2021.

[30] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel
Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela
Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision, 2021.

[31] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong
He. Zero: Memory optimizations toward training trillion parameter
models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

[32] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss,
Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image
generation. In International Conference on Machine Learning, pages
8821–8831. PMLR, 2021.

[33] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish
Vaswani, Penporn Koanantakool, Peter Hawkins, HyoukJoong Lee,
Mingsheng Hong, Cliff Young, et al. Mesh-tensorflow: Deep learning
for supercomputers. Advances in neural information processing systems,
31, 2018.

[34] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-
billion parameter language models using model parallelism. arXiv
preprint arXiv:1909.08053, 2019.

[35] Annamalai Suresh, R Udendhran, and S Vimal. Deep neural networks
for multimodal imaging and biomedical applications. IGI Global, 2020.

[36] Kazuhiko Takamizawa, Takao Nishizeki, and Nobuji Saito. Linear-time
computability of combinatorial problems on series-parallel graphs.
Journal of the ACM (JACM), 29(3):623–641, 1982.

[37] Wei Tan, Prayag Tiwari, Hari Mohan Pandey, Catarina Moreira, and
Amit Kumar Jaiswal. Multimodal medical image fusion algorithm in
the era of big data. Neural Computing and Applications, pages 1–21,
2020.

[38] JakubMTarnawski, Deepak Narayanan, and Amar Phanishayee. Piper:
Multidimensional planner for dnn parallelization. Advances in Neural
Information Processing Systems, 34:24829–24840, 2021.

[39] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos
Efrain Quintero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati,
Pat McCormick, Jamaludin Mohd-Yusof, et al. Unity: Accelerating
dnn training through joint optimization of algebraic transformations
and parallelization. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 267–284, 2022.

[40] Leslie G Valiant. A bridging model for parallel computation. Commu-
nications of the ACM, 33(8):103–111, 1990.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

[42] Minjie Wang, Chien-chin Huang, and Jinyang Li. Supporting very
large models using automatic dataflow graph partitioning. In Proceed-
ings of the Fourteenth EuroSys Conference 2019, pages 1–17, 2019.

[43] SiyuWang, Zongyan Cao, Chang Si, Lansong Diao, JiamangWang, and
Wei Lin. Ada-grouper: Accelerating pipeline parallelism in preempted
network by adaptive group-scheduling for micro-batches. arXiv
preprint arXiv:2303.01675, 2023.

[44] Xiao Wang, Guangyao Chen, Guangwu Qian, Pengcheng Gao, Xiao-
Yong Wei, Yaowei Wang, Yonghong Tian, and Wen Gao. Large-scale
multi-modal pre-trained models: A comprehensive survey. Machine
Intelligence Research, pages 1–36, 2023.

[45] Pengcheng Yang, Xiaoming Zhang, Wenpeng Zhang, Ming Yang,
and Hong Wei. Group-based interleaved pipeline parallelism for
large-scale DNN training. In International Conference on Learning
Representations (ICLR), 2022.

[46] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng
Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,
Eric P Xing, et al. Alpa: Automating inter-and intra-operator par-
allelism for distributed deep learning. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), pages
559–578, 2022.

13

	Abstract
	1 Introduction
	2 Graph Pipeline Parallelism
	3 Problem Formulation
	4 System Overview
	5 Pipeline Stage Partitioner
	6 Static Micro-Batch Scheduler
	7 Evaluation
	7.1 End-to-End Evaluation
	7.2 Search Time
	7.3 Different Numbers of Branches and Micro-Batch Sizes
	7.4 Case Study

	8 Related Work
	9 Conclusion
	References

