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ABSTRACT
Model quantization represents both parameters (weights) and in-
termediate values (activations) in a more compact format, thereby
directly reducing both computational and memory cost in hard-
ware. The quantization of recent large language models (LLMs)
faces challenges to achieve competitive memory density compared
to other models such as convolutional neural networks, since values
in LLMs require larger dynamic ranges.

Current hardware can expedite computation for LLMs using com-
pact numerical formats such as low-bitwidth integers or floating-
point numbers. Each has advantages: integer operations simplify
circuit design, whereas floating-point calculations can enhance ac-
curacy when a wider dynamic range is required. In this work, we
seek an efficient data format that combines the best of both worlds:
Microscaling (MX) formats. MX formats are efficient data formats
that achieve both large dynamic ranges and high memory density.

In this paper, we propose a compiler named MASE for exploring
mixed-precision MX formats on dataflow hardware accelerators
for LLM inference. Our main contributions are twofold. First, we
propose a novel orchestration abstraction to explore both software
and hardware optimizations with new data formats. Second, MASE
achieves LLM inference at an average precision of 4-bits, with
minimal to no accuracy degradation. To our knowledge, MASE
represents the first effort to harness fine-grain multi-precision MX
formats in the design of LLM hardware accelerators. Over a range
of LLMs and datasets, MASE achieves an average improvement of
24% in Δ accuracy with an overhead of only 3% in energy efficiency
compared to designs using 8-bit fixed-point numbers.

1 INTRODUCTION
Large Language Models (LLMs) [4, 5, 8, 54, 55, 71] have gained sig-
nificant attention, with empirical evidence suggesting that models
must reach a certain scale to exhibit emergent abilities [59]. These
large models, such as GPT-3, Vicuna and LLaMA, are pre-trained
on vast amounts of text data, enabling them to provide state-of-
the-art results in areas like language translation [23], question-
answering [63], sentiment analysis [40]. One of the main challenges
in LLM inference is the vast number of parameters involved [69].
For example, the larger variants in the GPT family can have hun-
dreds of billions of parameters, which would require a minimum of
300 GB of memory to store them in a FP16 format [5]. To reduce
memory size, quantization is employed to reduce the precision of

Table 1: Evaluation of MX formats in similar average bits
for quantizing LLaMA on Wikitext2. Small perplexity means
better LLM performance. Higher memory density or hard-
ware arithmetic density (both defined by Darvish et al. [14])
means better hardware efficiency.

Approaches Config Perplexity Memory
Density

Arithmetic
Density

FP32 - 7.06 1× 1×
Int8 W8A8 265 4× 7.7×
FP8 W8A8 7.18 4× 17.4×

MXInt8 W8A8 7.07 3.8× 14.4×
BMF8 W8A8 223k 3.8× 14.4×
BL8 W8A8 18.8 3.8× 16.1×

both model parameters and activations to a more compact repre-
sentation.

Background: Large numerical variation in activation val-
ues motivates quantization with new data formats for effi-
cient LLM inference. Existing LLM hardware accelerator designs
typically quantize each tensor into one of two common number
representations: fixed-point formats, such as int8, and floating-
point formats, such as FP8. Both representations have their merits:
operations with fixed-point formats simplify circuit design, while
operations with floating-point formats can enhance accuracy when
a wider dynamic range of value is required. LLM quantization is
more challenging because it has both a large variation of values and
high computational complexity. For example, the variance of all
activations in each transformer block of LLaMA averaged across all
data points in the Wikitext2 dataset is plotted in Fig. 1a. This plot
highlights that the variances change drastically for different tensors
in different layers. For example, variances increase in deeper layers
with significant changes up to 7624× (the variable 𝐷 in Fig. 1a).
Also, variances significantly vary between tensors, even if they are
within the same layer; for example, 𝐴 and 𝐷 exhibit a 7902-fold
variance difference at layer 0. This observation motivates us to
explore efficient data formats that combine the best of both worlds
of fixed-point and floating-point formats.

Design Opportunities: Microscaling (MX) formats have
shown initial promising results in LLM quantization. MX for-
mats are a class of data representations that allow a block of values
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Figure 1: An example of mapping LLaMA onto a dataflow accelerator. The large variances of each activation cross different
layers in (a) motivate us to use quantization with MX formats in (c). We achieve mixed-precision quantization in (b) and map
the model onto a dataflow architecture in (d). The dataflow schedule exploits task-level parallelism in (f), leading to a higher
throughput compared to a non-dataflow schedule in (e). The proposed MASE compiler provides a fully automated and efficient
approach to exploring software and hardware optimizations for MX formats.

to share certain components of their data formats, as illustrated in
Fig. 1c, leading to efficient memory size. Table 1 gives a compar-
ative overview of different MX formats against other arithmetic
types when prototyped on FPGAs. Among all data formats, the
MXInt format, a subclass of MX formats, offers an advantage in
achieving a favorable balance between minimizing accuracy loss
and optimizing hardware efficiency.

Problem: Existing approaches require manual effort to
explore custom data formats for LLM accelerator designs.
Although MX formats have recently been standardized by AMD,
Arm, Intel, Meta, Microsoft, NVIDIA, and Qualcomm [44], the ex-
ploration of MX formats on hardware accelerators remains limited.
A major reason is that there is no tool available to explore these
formats for hardware accelerator designs. In practice, significant
manual effort is spent on iterations between software model and
hardware mapping to determine an optimized co-design. Existing
work on MX quantization treats each layer equally and applies
the same quantization to all tensors [14, 49]. This reduces the de-
sign space but also misses opportunities to perform model-specific
optimizations for a given LLM, potentially making the optimal
hardware design unreachable.

In order to tackle the problems above, our work aims to solve
the following challenges:

1) Efficiency: How should one efficiently explore fine-grained
quantization of an LLM using custom data formats?

2) Hardware awareness: How should one determine a quantiza-
tion solution that leads to an efficient hardware design?

The efficiency heremeansminimal design effort, avoiding re-implementing
optimizations from scratch for a new data format. Existing opti-
mization algorithms originally for existing data formats may be
reused to explore design opportunities for new data formats. These
optimizations must take hardware intrinsics into account, leading
to a hardware-friendly solution.

Solution: We propose a novel co-design compiler named
MASE to explore custom MX formats for efficient LLM in-
ference on dataflow accelerators. Specifically, MASE provides
an efficient co-design intermediate representation (IR) named MASE
IR to explore software and hardware co-design with custom data
formats. A key novelty of MASE IR is that it orchestrates exist-
ing optimization techniques for traditional data formats to explore
hardware optimization opportunities for custom data formats. To
efficiently exploit fine-grained mixed-precision custom MX quan-
tization, MASE maps an LLM onto dataflow architectures where
each tensor precision can be tailored at the bit level.

To our knowledge, MASE is the first approach to dataflow hard-
ware design using mixed-precision MX formats. Our main contri-
butions are as follows:

• an end-to-end compiler that automatically determines a
mixed-precision MX quantization for a given LLM for map-
ping onto an efficient dataflow hardware accelerator;
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• an efficient orchestration method using a co-design IR to
explore both software and hardware designs for custom
data formats such as MX formats;

• an open-source library of parameterized hardware operator
designs using MX formats and their evaluation model at
the source level for mixed-precision quantization search
and efficient hardware generation; and

• over a set of LLM families and datasets, our approach attains
on average 24% in Δ accuracy with an overhead of 3% in
area efficiency compared to designs using 8-bit fixed-point
numbers.

The rest of the paper is organized as follows. Section 2 provides
a motivating example for exploiting custom MX formats in LLM
hardware accelerator design; Section 3 describes MASR IR and its
optimization orchestration; Section 4 describes our modeling of
MXInt formats for efficient quantization search; Section 5 evaluates
our design over a set of state-of-the-art LLM models; and Section 6
reviews related work on block-based quantization, hardware com-
pilers for LLM inference, and hardware accelerator designs.

2 MOTIVATING EXAMPLE
In this section, we begin by introducing dataflow hardware ar-
chitectures and their optimization opportunities for fine-grained
quantization. We also provide an overview of three MX formats
and evaluate their performance in quantizing LLMs.

Why Dataflow Accelerators? Dataflow hardware accelerators
are specialized hardware architectures that drive operations us-
ing the presence of input data, leading to parallelized execution
of coarse-grained tasks across several spatial processors. Fig. 1e
illustrates a schedule running on a non-dataflow architecture, such
as Von-Neumann architecture, where only one task is executed at
a time. This means that all the hardware resources are exploited
for each task, leading to a low latency, however, these tasks are
sequentially executed in time. On the other hand, a dataflow archi-
tecture exploits spatial parallelism among these tasks, leading to
a schedule in Fig. 1f. Such a parallelism, also known as pipelining,
leads to high data throughput, however, the latency is sub-optimal
since the hardware resources are shared among different tasks.

We focus on dataflow architectures because each spatial proces-
sor can be tailed for the task that it computes, while non-dataflow
architectures require general spatial processors for all tasks. This
leads to minimal instruction overhead and design opportunities
for fine-grained customization down to the bit level. Targeting a
dataflow architecture allows us to simplify the hardware design
problem, such as excluding control flow design, and focus on data-
specific hardware optimizations.

For example, Fig. 1d illustrates a transformer block of LLaMA
mapped onto a dataflow architecture. In an LLM, tensors are often
large, and their computation cannot be fully parallelized for given
available hardware resources. Instead, they are partitioned into tiles
and streamed into the hardware in a deep pipeline. The streaming
orders of these tiles depend on the dataflow hardware operator be-
haviors. In the figure, tensors are streamed either in a row-by-row
or column-by-column order. There are also dataflow-specific oper-
ators in the hardware, such as ‘transpose’ and ‘reorder‘, to switch
the streaming order in between at run-time. In this work, we take

this hardware architecture as a starting point, and explore efficient
mixed-precision quantization search at the tensor level using MX
formats. For example, Fig. 1b illustrates the bitwidth distribution
of the activations and weights in Fig. 1a across transformer blocks
using our work.

What are MX Formats? MX formats allow a block of values to
share certain components of a data format as a scaling factor [44].
The scaling factor enables individual values to represent larger
dynamic ranges compared to traditional integers. The elements
then provide a high-precision representation of values within the
range specified by the scaling factor. MX formats could further
reduce the average bits per value due to the sharing of the scaling
factor in the block. A key requirement is that all the elements in a
block must be within the same range specified by the scaling factor.

By means of examples, we compare three MX formats with stan-
dard floating-point formats in Fig. 1c. A standard floating-point
format contains four components: a sign bit, an exponent, a man-
tissa, and an exponent bias [31]. A common one used for ML is
MinFloat (FP8) proposed by Sun et al. [52], as illustrated at the top
of the figure. It has 8 bits overall, and the exponent bias in this
format is set as a fixed constant of 7. We now introduce three MX
formats. First, theMicroscaling Integers (MXInt) format, also known
as the Block floating-point (BFP) format [32], shares the exponent
in a block. The shared exponent bounds the range of values in the
block and works well for values with small typical variation be-
tween magnitudes of the components in a block. Second, the Block
Minifloat (BMF) [24] format shares the exponent bias in a block.
This representation achieves high precision and range simultane-
ously, albeit with a larger quantization error around the medium
of its range compared to the standard floating-point format. It is
potentially suitable for values in a multi-modal distribution, effi-
ciently representing values close to a peak within a block. Finally,
the Block Logarithm (BL) format [43] strips out the mantissa and
shares the exponent bias, resulting in values that are always powers
of two. This contrasts with MXInt and is suitable for values with
large dynamic ranges.

Table 1 shows the quantization results using different arithmetic
formats for LLaMA on Wikitext2. To ensure fairness, all the arith-
metic types have an average bitwidth of 8 bits. We evaluate them
using three metrics, perplexity, memory density, and arithmetic
density. The memory and arithmetic densities represent the nor-
malized average values per bit and normalized average area per
arithmetic operation compared to FP32 [14]. Both memory and
arithmetic densities are derived from our post-routing hardware
GEMM implementation using these arithmetic types. From the
table, we made following observations. First, traditional 8-bit fixed-
point (Int8) quantization achieves decent memory and arithmetic
density but suffers from a significant increase in perplexity. Sec-
ond, FP8 achieves the best hardware efficiency, with an increase in
perplexity. Finally, MX formats, such as MXInt, have competitive
memory density and arithmetic density, and can preserve low per-
plexity. This motivates us to explore custom MX formats for LLM
quantization and further improve hardware area efficiency with
minimal precision loss.

What is the most efficient data format and its precision for
quantizing an LLM?Given an LLM, the proposed compiler, MASE,
automatically finds amixed-precisionMX quantization solution and
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1 class toy(torch.nn.Module):
2 ...
3 # Before quantization , all values are in FP32
4 def forward(self , x):
5 x0 = flatten(x)
6 x1 = relu(linear(x0))
7 return x1

(a) Input PyTorch model.

1 toy():
2 %x: MXInt ((16 ,2) ,8,7) = in{}
3 %x0: MXInt ((16 ,2) ,8,7) = FlattenOp (%x) {...}
4 %l1: MXInt ((16 ,2) ,8,7) = LinearOp (%x0)
5 [weight: MXInt ((16 ,2) ,8,3),
6 bias: MXInt ((16 ,2) ,8,3)] {...}
7 %x1: MXInt ((16 ,2) ,8,7) = ReLuOp (%l1) {...}
8 return x1

(b) Quantized model in MASE IR.

Flatten

Linear

MASE IR

ReLU

Operation Attributes:
ip-name = mxint_linear
area = 4990

order = column-wise
interface = dataflow
rate = 32

order = column-wise
interface = dataflow
rate = 16

order = row-wise
interface = on-chip
rate = 512

Value Attributes:
input
shape = 4096x1
type = mxint((16,2),8,7)
tiling = 32x1
input
output
shape = 32x1
type = mxint((16,2),8,7)
tiling = 16x1

weight
weight shape = 32x4096
type = mxint((16,2),8,3)
tiling = 16x32
…

Value Attributes:
input
shape = 4x32x32
type = mxint((16,2),8,7)
tiling = 32x4
order = column-wise
interface = dataflow
rate = 128

output
shape = 4096x1
type = mxint((16,2),8,7)
tiling = 32x1
order = column-wise
interface = dataflow
rate = 32

Operation Attributes:
ip-name = mxint_flatten
area = 1090

(c) A graph view of operation and value attributes of the reorder and linear operation
in the model. Here we highlight software-specific and hardware-specific attributes.

Figure 2: A toy model in MASE IR after quantization and hardware parallelism.

maps it into an efficient dataflow accelerator for inference. In the
rest of the paper, we show how to exploit our proposed abstraction
MASE IR for efficient design exploration using MX formats.

3 MASE INTERMEDIATE REPRESENTATION
Existing hardware compilers for ML accelerators suffer from two
main problems. First, they focus on operations with fixed-point and
floating-point formats. Designers need to manually re-implement
the whole design from scratch when mapping models with custom
data formats. Second, the hardware-aware IR in those hardware
compilers, such as LLVM [36] and MLIR [37], do not preserve back-
forward propagation functions. This means that a software model
lowered into such an IR can no longer be further trained. When
training is required, designers need to restart from a state in the
software flow and may abandon all applied hardware optimizations
if an additional software optimization is applied. In order to over-
come these two challenges, we propose MASE IR, a hardware-aware
and ‘trainable’ software intermediate representation that describes
both a software model and the corresponding hardware accelerator
architecture. MASE IR provides an efficient interface for users to
integrate custom data formats for hardware exploration, and also
keeps backward propagation functions so that the model can be
trained or fine-tuned in hardware optimization cycles.

Like most IR languages, the syntax of MASE IR follows the tra-
ditional static single-assignment form [11]. The SSA form already
provides a dataflow-like representation of a model. This enables
direct translation into a dataflow hardware representation where
each software module is mapped into a hardware component as
illustrated in Fig. 1d and connected to other components using
handshake interface. An operation in MASE IR contains a set of
components, arguments, results, parameters and attributes:

result: type = operator(arg: type, ...) [param: type, ...] {attr,

...}

MASE IR is general for representing any ML model to explore opti-
mizations with custom data formats. For example, Fig. 2a illustrates
a toy model that contains a Linear operation followed a ReLU func-
tion. The input tensor is flattened before being sent to the linear
operation. Fig. 2b represents the quantized toy model instance in

Table 2: Key MASE passes used in this work. MASE con-
tains 44 analysis and optimization passes. All these passes
target different granularities varying from the model level
to the bit level. These passes are general and type inde-
pendent, which opens up opportunities for optimizing new
data formats. Here we highlight software-specific and
hardware-specific components.

Names Descriptions

profile Profile variation of values for a given dataset, used to define
the quantization search space.

quantize Quantize a given model based on an input configuration, used
to perform tensor-level mixed-precision quantization for a
given data format.

parallelize Exploit resource-constrained hardware parallelism based on
a given hardware target, leading to a hardware design with
high area efficiency.

evaluate Evaluate the hardware design based on a given expression of
cost function, taking both model accuracy and area efficiency
as arguments.

search Orchestrate existing search algorithms, such as random
search and Tree-structured Parzen Estimator (TPE), to ex-
plore quantization search.

emit Translate a co-design in MASE IR into a dataflow hardware
accelerator in SystemVerilog.

MASE IR. All the tensors in the model including both activations
and parameters are quantized in custom-precision MXInt formats
for smaller bitwidths. For example, a type of MXint((16, 2), 8, 7)
means that the elements of the tensor shares an 8-bit exponent for
every block of size 16 by 2, and every element has a 7-bit mantissa.
A model in MASE IR also carries detailed hardware design attributes
for parallelism exploration, as illustrated in Fig. 2c. The operation
attributes specify which hardware IP block is used for exploration
and its estimated circuit area. The value attributes describe each
dataflow edge in Fig. 1d. As illustrated in Fig. 2c, these include the
shape of streaming tiles, the streaming order, hardware data inter-
face, and estimated throughput. This allows the model optimizer to
interface existing tools to exploit hardware parallelism.
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Figure 3: Orchestration of existing tools for new data formats exploration. Given both software and hardware specifications for
a new data format, MASE automatically explores resource-constrained quantization search for a given LLM.

3.1 Passes for Quantization Search and Dataflow
Optimization

MASE contains a large set of passes targeting analysis and opti-
mizations at different granularities ranging from the model level
to the bit level. To minimize additional development for the new
format, all MASE passes are type-independent, so that they can
be orchestrated for optimizations of any data format. A set of key
passes used in this work are listed in Table 2. The left of Fig. 3
provides an example of quantization search flow in MASE IR. In
this example, the toy model in Fig. 2a is translated into MASE IR
from PyTorch. The MASE front-end automatically performs model
analysis and initializes software attributes when constructing MASE
IR, such as tensor shapes and initial data types. For complex models,
implicit dataflow-specific operations may also be inserted, such as
‘reorder’ in Fig. 1d. For simplicity, here we focus only on the toy
model. 1○ The model is quantized by the quantize pass using a
set of user-defined precisions, which supports both post-training
quantization (PTQ) and quantization-aware training (QAT). For this
example, the model is quantized into MXInt format at the tensor
level. The parameters have a lower bitwidth compared to activa-
tions because they are less sensitive. 2○ Then the parallelize pass
exploits hardware parallelism for the quantized model. Given a
hardware resource budget, it automatically explores the most effi-
cient stream tile sizes for each layer, leading to an optimized overall
throughput. The hardware mapping solution contains several hard-
ware design parameters illustrated in Fig. 2c. 3○ Since MASE IR
contains both software and hardware design parameters, the ac-
curacy of the model and the area efficiency of the final hardware
can be estimated by program analysis at the source level using the
evaluate pass. These design constraints form a hardware-aware cost
function, which could guide exploration of both following software
and hardware optimizations. 4○ Guided by the cost function, the
search pass iterates quantization and hardware parallelism to find
an efficient mixed-precision quantization for a given model. It or-
chestrates existing search algorithms, such as TPE (Tree-structured

Parzen Estimator) [45], for efficient exploration with custom data
formats. 5○ After a given number of iterations, the model is then
mapped into a dataflow hardware design in SystemVerilog. The
emit pass performs direct translation without any program anal-
ysis because all the hardware design parameters of the model are
accessible in MASE IR.

3.2 Pass Orchestration for Custom Data Formats
MASE is general and allows for seamless integration of new data
formats for resource-constrained quantization. The right of Fig. 3
shows our optimization orchestration flow, where users only need
to add the blue part of the code for a new data format. There are two
components to be added for a new data format, software emulators
and hardware components. First, software emulators specify how
to quantize and dequantize the value between the given format
and floating-point numbers. For each operation, the input data is
first quantized into a given input precision. Then the same existing
operation in PyTorch is orchestrated to carry out the calculation
in floating-point numbers. The results in floating-point numbers
are further quantized to a given output precision. A main advan-
tage of such an approach is that MASE can orchestrate existing
floating-point operations to emulate operations with custom data
formats without re-defining all the operations from scratch. The
software emulators provide a fast evaluation of model performance
in accuracy, which guides further software optimizations, such as
the iterative quantization search.

Second, designs for such hardware operators can be diverse,
making it challenging for existing tools to estimate hardware results.
To restrict the design space, the hardware designs of operators with
new data formats are required for architecture exploration and
evaluation. Each component is provided as a Verilog template of a
dataflow component with a set of parameters for data parallelism,
such as input stream tile sizes. For example, the right of Fig. 3
illustrates a high-level view of a dot product operation with four
data formats illustrated in Fig. 1c. The light purple blocks represent
fixed-point or logic operators which have small area, and the dark
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scribed in Section 4. 𝑎𝑐𝑐 = accuracy, 𝑏 = average bitwidth. 𝑘 is a
hyperparameter to normalize costs. We observed that TPE is
the most efficient search algorithm for MXInt quantization.

purple blocks represent floating-point operators which have large
area. Compared to the traditional floating-point operator on the
top left, the MXInt operator saves significant area by reusing the
results of the shared exponent in the block because one of the
main area costs of a floating-point operator is the dynamic shift
hardware unit [10]; the BMF operator, on the other hand, requires
more circuit area to calculate values with the shared exponent
bias, while expanding the dynamic range of each element; the
BL operator saves area from the BMF operator by stripping out
operators for the mantissas, leading to a low precision in a small
range.

With the provided hardware templates, MASE automatically
explores hardware designs by sweeping the parallelism parameters.
This is a one-off process, and a regression model enables MASE
to estimate the overall throughput and total circuit area at the
source level. MASE orchestrates existing optimization algorithms
for dataflow architecture exploration and uses the regression model
to guide the process. This leads to an efficient co-design with both
high area efficiency and accuracy. The provided Verilog templates
are also used for final hardware generation. Because all hardware
components are implemented in a dataflow architecture, they can
be directly integrated into the design by connecting the handshake
interface. The MX software emulators and hardware components will
be open source as well as the MASE tool.

3.3 Scalability Analysis
Optimization orchestration enables users to explore a range
of new data formats at scale. This minimizes development time
and effort and allows users to focus on exploring efficient data
formats using advanced algorithms. For example, Fig. 4 evalu-
ates four well-known search algorithms orchestrated by MASE
for resource-constrained mixed-precision MXInt quantization on
OPT-125M, Random Search, Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) [16], Quasi-Monte Carlo (QMC) sequences [3],

Table 3: Line-of-Code comparison for OPT. MASE IR provides
an efficient representation of an ML model at the module
level and enables fast compilation time compared to existing
hardware design IR, such as MLIR affine. DAG = code in
directed acyclic graph.

Models MLIR affine
DAG Size

Codegen
Time

MASE IR
DAG size

Codegen
Time

Code size
×

OPT-125M 1.9M 1 week 61 23s 31.1k
OPT-350M 1.7M 2 weeks 86 63s 19.7k
OPT-1.3B 1.7M >4 weeks 86 112s 19.7k
OPT-2.7B 1.9M >4 weeks 101 217s 18.8k
OPT-6.7B 2.3M >4 weeks 101 467s 22.8k

and Tree-structured Parzen Estimator (TPE) [2]. Random Search is
an elementary method that involves exploring the solution space by
generating random configurations. The NSGA-II method is a multi-
objective optimization algorithm that operates on the principles of
evolutionary algorithms, wherein a population of candidate solu-
tions undergoes a process of evolution through selection, crossover,
and mutation operators. The QMC method is a class of numerical
integration techniques used for high-dimensional problems where
the use of traditional Monte Carlo (MC) methods would be compu-
tationally infeasible. The TPE method is a Bayesian optimization
algorithm that models the dependency between hyperparameters
to efficiently discover the promising areas of the hyperparameter
search space.

In comparison, random search serves as a straightforward base-
line but has the minimum change between the starting design point
and the final design point. This is due to the lack of a guided search
strategy. NSGA-II has a slightly larger change and leads to a better
design, efficiently trading off between the accuracy and memory
size. The QMC method has the fastest search speed but results in a
sub-optimal design. TPE, although it has the worst starting point,
can be effectively improved over time and results in the best design
among all the algorithms. The average search times for all these
algorithms are close. This suggests that the TPE is the most efficient
algorithm to search for mixed-precision MXInt quantization, so we
use the TPE algorithm in our experiments.

MASE IR also provides a compact representation for ex-
ploration of large models. It efficiently expresses the dataflow
architecture for a large model up to billions of parameters and
achieves significant scalability improvements in compilation time
compared to existing hardware IRs. Here we compare MASE IRwith
the MILR affine dialect [37], a commonly used hardware compil-
ers [7, 65, 73]. Table 3 compares the code size of MLIR and MASE IR
in directed acyclic graph (DAG) size. In the table, we observe that
MASE IR has shown a significantly smaller code size than MLIR
affine, because it expresses operations at the module level, hiding
the instruction-level details from users. The detailed MLIR enables
a finer-grained hardware optimization but the code size overhead
causes the compilation time to increase exponentially. In MASE,
the optimizations focus on the modules, where instruction-level
optimizations are manually carried out in the Verilog templates
and linked to the tunable parameters. This reduces the compilation
complexity while preserving high hardware efficiency. In addition,
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the hardware attributes in MASE IR also enables MASE to interface
with these hardware compilers to explore instruction-level opti-
mizations in MLIR by loading their generated hardware designs
instead of Verilog templates for regression modeling in Fig. 3.

4 MIXED-PRECISION MXINT QUANTIZATION
We will now demonstrate the exploration of MX formats quantiza-
tion using MASE. Insights derived from Table 1 indicate that among
the evaluated MX formats, MXInt is better suited for quantizing the
LLaMA model. Fig. 5 further verifies the same phenomenon across
10 different LLMs. To ensure fairness, every model is quantized
to a given format with an average bitwidth of 8 bits, and mapped
onto dataflow hardware using the same hardware optimizations.
The bars represent the normalized hardware area efficiency of each
design to the standard dataflow hardware implementation using
8-bit fixed point numbers (int8). Larger area efficiency means more
efficient hardware design. The curves plot the difference in accuracy
compared to the accuracy of the model in FP32. A larger accuracy
difference means higher accuracy.

MXInt is the most amenable for quantizing LLMs. In gen-
eral, MX formats require more complex circuit design, leading to
lower area efficiency compared to int8; however, their dynamic
ranges lead to better accuracy. Among these MX formats, we ob-
served that the MXInt format achieves both the best area efficiency
and the best accuracy for most models.1 This suggests that for most
values in these LLMs, their elements in each tenor have small dif-
ferences from their neighbor elements. We conclude that MXInt is
more suitable for quantizing LLMs. In this section, we take MXInt
for example, and illustrated our proposed mixed-precision MXInt
quantization for LLMs.

No mixed-arithmetic but mixed-precision quantization.
Another possibility is to mix arithmetic types as well as mixing
precisions, however, the area overhead is large. These formats,
such as MXInt and BL, have significant differences in both shared
and local elements. The casting function between these formats
requires complex dynamic shift operations to align their ranges
before any further calculations. This would lead to significant circuit
area compared to computing using a single arithmetic type. On the
other hand, casting values in different precisions of the same format
is more affordable in hardware. Here we take MXInt, for example.
Casting mantissas only requires bit extension or truncation, similar
to fixed-point numbers. The exponents may require dynamic shift,
but the shift operation can be fully unrolled into logic wires at
low cost because the bitwidth of mantissas is small. Therefore,
mixed-precision MXInt quantization has a low area overhead in
type casting between values.

4.1 Software Design Parameters
The quantization search for MXInt formats involves two sets of
constraints, software and hardware. Here we show how to formalize
the design parameters and restrict the search space for better search
efficiency. Search efficiency entails finding a precise quantization
solution with high accuracy and small circuit area using minimal
number of trails.

1There is a special case for OPT-2.7B because the original model in FP32 already has a
low zero-shot accuracy.
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Figure 5: Evaluation of three MX data formats for quantizing
LLMs on sst2. The area efficiency results are plotted relative
to int8 results (higher means better). The accuracy are repre-
sented as its difference with the accuracy using FP32 (higher
means better). To ensure fairness, all the formats have a block
size of 32 that contains an 8-bit shared component and 8-bit
local components, leading to an average bitwidth of 8 bits.
Overall, MXInt has shown both high area efficiency and high
accuracy for LLM quantization.

For each parameter or activation value, its MXInt format is a
3-tuple, (𝐵, 𝑒,𝑚).

• 𝐵 ∈ N𝑁 denotes the shape of the block, indicating how
the exponent is shared among elements inside the block. A
block usually has two dimensions, where 𝑁 = 2;

• 𝑒 ∈ N is the bitwidth of the shared exponent of each block;
and

• 𝑚 ∈ N is the bitwidth of the mantissa for each element.
The average bitwidth 𝑝 of a value is the sum of the exponent bits
per element, the mantissa bits and the sign bit:

𝑝 =
𝑒

Π𝐵
+𝑚 + 1 (1)

For example, a value of MXint((16, 2), 8, 7) shown in Fig. 2b has an
average bitwidth of 8.25. Assume that all blocks have two dimen-
sions. We have the total search space 𝑆 as follows:

𝑆 = N4𝑣 (2)

𝑣 is the total number of values in the model to be quantized. Each
value has four parameters to explore for their precision. Such a
search space is significantly huge in a large model that contains
hundreds of values. We now show how to efficiently reduce the
search space, thus improving search efficiency.

Use a unified block shape for all values to reduce the search
space. A large block size allows an exponent to be shared by more
elements, reducing the average bitwidth, and a small block extends
the flexibility of element ranges due to relatively more localized
scaling factors. Mixed block shapes may achieve finer quantiza-
tion granularity for each value. However, casting between MXInt
formats with different block shapes also requires complex circuits
to denormalize and renormalize elements in different blocks. Us-
ing a unified block shape is beneficial for reducing quantization
search and hardware design complexity. Prior work has shown that
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a block size of 32 for MXInt can achieve accuracy comparable to
FP16 [14, 44]. Here we use a block shape of 16 by 2 for all MXInt
formats.

Use a fixed bitwidth for all shared exponents. A small ex-
ponent leads to a small average bitwidth. However, its effect is
negligible when the block size is large. For example, reducing by a
bit only causes a reduction of 1

32 in the average bitwidth for MX-
Int formats with a block size of 32. Searching for small exponent
bits exponentially expands the search space with nearly no benefit.
Instead, we use an 8-bit exponent for all MXInt formats. The de-
sign parameters now only have variable mantissa bits, leading to a
reduced search space 𝑆 ′:

𝑆 ′ = N𝑣 (3)

The mantissa bitwidths are essential for quantizing LLMs because
the value differences are small.

MXInt formats have a smaller search space than fixed-
point numbers. Our formalization and analysis of MXInt quanti-
zation significantly reduce the search space. Compared to mixed-
precision fixed-point search, which searches for both total bitwidth
and fraction bitwidth for each value (search space of N2𝑣 ), MX-
Int quantization searches for mantissa bitwidth of each element,
leading to a smaller search space.

4.2 Hardware Design Parameters
Hardware optimization techniques for dataflow accelerators have
been widely studied in existing hardware compilers [21, 56, 57, 65].
Dataflow hardware optimization techniques typically involve two
levels of parallelism.

Data Parallelism and Pipelining. The streaming tile of each
value needs to be efficiently sized. A larger tile exploits more oppor-
tunities for spatial parallelism in hardware operators, which also
take more hardware resources. The total hardware resources must
be efficiently shared among these hardware operators to achieve
high overall throughput. For example, different operators may com-
pute at different throughputs because of different hardware behav-
iors. This means that a set of tile sizes need to be determined for
balanced throughput between operators.

Memory Allocation. Fisrt, most parameter sizes of an LLM are
large, taking large memory sizes. These data need to be efficiently
allocated either on fast on-chip memory or large off-chip memory.
An efficient memory allocation solution must be determined to
maximize the efficient utilization of hardware resources and high
throughput. Second, the data dependency between operators may
cause pipeline stalls, affecting overall throughput. Buffers should
be inserted between operators to resolve pipeline stalls to improve
throughput.

These design considerations have beenwidely studied in dataflow
hardware architectures for ML inference. Related works [50, 66, 72,
74] propose efficient algorithms to automatically determine an effi-
cient dataflow hardware design, and these can be orchestrated by
MASE for efficient hardware exploration. In this work, our scope
focuses on optimization orchestration instead of algorithm effi-
ciency. We integrate these hardware design considerations into the
same TPE algorithm that runs the quantization search for resource-
constrained quantization. The circuit area is obtained from the

regression model of hardware operators, and the overall through-
put is the minimum throughput among all hardware operators
estimated from the regression model.

4.3 Resource-Constrained Mixed-Precision
Search

Adding hardware design parameters into the quantization search
enables efficient software and hardware co-design. The search ob-
jective is as follows.

𝑜𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒 : max(𝑎𝑐𝑐 + 𝑘
𝑏
+ 𝑘′𝜃 + 𝑘

′′

𝐴
) (4)

𝑎𝑐𝑐 is the model accuracy, 𝑏 is the average bitwidth of the model, 𝜃
is estimated overall throughput, and 𝐴 is the estimated total circuit
area. 𝑘 , 𝑘′, and 𝑘′′ are hyperparameters that normalize these design
constraints.

5 EXPERIMENTS
We evaluated MASE on ten well-known LLMs from three families,
including BERT [19], OPT [71] and LLaMA (including Vicuna and
Alpaca) [8, 42, 54]. All of them are obtained directly from Hug-
gingFace [30]. We evaluated the accuracy after mixed-precision
MXInt quantization on six downstream tasks, including boolq [9],
mnli [60], qnli [47], qqp [58], rte [12], and sst2 [51]. We eval-
uate the model accuracy following the same approach proposed
by Zhang et al. [71] and Brown et al. [5]. We use Alveo U250 FP-
GAs as the target platform for the evaluation of dataflow hardware
design, and the version of the Xilinx software used is 2023.1. The
throughput results are obtained from on-board measurements. The
area and power results were obtained from the Post Place & Route
report in Vivado.

In this section, we compare the accuracy and area efficiency
of our mixed-precision MXInt (MP MXInt) approach with other
metods. Second, we evaluate the effectiveness of our quantization
on accuracy and average bitwidths for different sizes of OPT on
six downstream tasks. Finally, we compare our mixed-precision
approach with uniform-precision MXInt, and provide insights for
ASIC accelerator designs.

5.1 Comparison with other quantization
approaches

Here we compared the quality of our co-design with a few base-
lines. Fig. 7 shows the area efficiency of the dataflow hardware
designs and model accuracy using different approach. int8 means
quantization using 8-bit fixed-point numbers.MP intmeans mixed-
precision quantization using fixed-point numbers. MP MXInt
means mixed-precision quantization using MXInt formats. Com-
pared to MP MXInt, MP MXInt (SW-only) does not include hard-
ware metrics for quantization search and uses the search objective
shown in Fig. 4.MXInt8means quantization using the MXInt with
8-bit mantissas.

Compared with int8 and MXInt8 (in Fig. 5). The overhead in
area efficiency of MP MXInt has significantly reduced compared to
MXInt8 in Fig. 5. A major reason is the average bitwidth of MXInt
mantissas has reduced to 4 bits thanks to themixed-precision search.
The bitwidth reduction significantly reduces the circuit area for MXInt
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Figure 6: Evaluation of performance in accuracy for OPT across five model sizes and six datasets. MASE IR supports training in
the hardware exploration loops, enabling resource-constrained quantization-aware training. For small models, all approaches
applied quantization-aware training (QAT); and for large models, all approaches applied post-training quantization (PTQ).
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Figure 7: Evaluation of MXInt data formats for quantizing
LLMs on sst2. The area efficiency results are plotted relative
to int8 (higher means better). The accuracy are represented
as its difference with the accuracy using FP32 (higher means
better).

while preserving the throughput, this leads to on average 1.31×
area efficiency improvement. On average, MP MXInt has achieved
similar area efficiency to int8. Also, the loss in accuracy caused by

bitwidth reduction is negligible, where both MP MXInt and MXInt8
achieve similar accuracy compared to FP32. This demonstrates
that our mixed-precision quantization effectively halves the average
bitwidth at no accuracy loss.

ComparedwithMP int. Prior work [17, 34, 46, 68] has observed
that mixed-precision quantization using fixed-point numbers can
lead to efficient hardware designs with high accuracy. In our ex-
periments, we apply fine-grained mixed-precision quantization at
the tensor level for both MP int and MP MXInt. Although MP int
has achieved higher area efficiency compared to int8, its accuracy
loss regarding the accuracy in FP32 is significant, making MP int
infeasible. This is due to the absence of dynamic ranges in fixed-
point numbers, leading to significant quantization errors in deeper
layers, as illustrated in Fig. 1a. Our approach, MP MXInt, preserves
high accuracy with an area efficiency overhead. The area efficiency
difference between MP MXInt and MP int closely mirrors that between
int8 and MXInt8.

ComparedwithMPMXInt (SW-only).Akey novelty ofMASE
is adding hardware design metrics to quantization search, poten-
tially leading to an efficient software and hardware co-design. Here
we compare the same quantization search without hardware met-
rics with the MASE approach. On average, MP MXInt achieves
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Figure 8: The energy efficiency of MP MXInt sits between
MXInt4 and MXInt6. MP MXInt excels in accuracy and out-
performs MXInt6 by 1% and MXInt4 by 8% respectively on
average when evaluated on the sst2 dataset.

1.11× area efficiency of MP MXInt (SW-only). Although both ap-
proaches have achieved designs with high accuracy, adding hard-
ware metrics can guide the quantization search process towards a
more area-efficient hardware design.

5.2 Evaluation across model sizes and
downstream tasks

Taking OPT for example, we demonstrate that our approach is
broadly applicable across various model sizes and tasks as shown
in Fig. 6. Different tasks share similar dataflow hardware designs,
thus we focus on model accuracy and average bitwidth. MASE IR
supports training concurrently with hardware exploration in the
quantization search process. For smaller models, QAT progressively
fine-tunes the model during the quantization process, achieving
high accuracy; and for large models, PTQ is applied instead. Overall,
Fig. 6 agrees with the previous observations. Individual discrepan-
cies are caused by quantization noise.

MPMXInt achieves smaller average bitwidths than MP int.
Over all the data points, MP MXInt has smaller average bitwidths
than MP int by 0.5 bit, leading to an overhead of 10%. This overhead
is due to the absence of dynamic ranges in fixed-point numbers,
and more bits are required to cover the data range. Even with a
larger bitwidth, MP int still fails to meet the same accuracy as MP
MXInt. This indicates that the actual overhead may be larger when
they have the same accuracy.

5.3 Insights for designing future ASIC
accelerators

MASE exploits mixed-precision quantization at the tensor level to
achieve high accuracy and area efficiency, leading to model-specific
quantization. In applications where an accelerator may run infer-
ences across multiple models, a more coarse-grained quantization
may be amenable. Fig. 8 compares MP MXInt with another extreme
of MXInt quantization that uniformly applies the same mantissa
bits across all tensors.MXInt6means quantization using theMXInt
format with 6-bit mantissas.

Table 4: Runtime breakdown of the proposed toolflow, where
the reported results are averaged across 10 LLMs. At the
search stage, 64 trials are explored for each model.

Stage Pass name Time

Pre-process front-end 12s
profile 97s

Search
(single trial)

quantize 5.3s
quantize (fine-tune) 3201s
parallelize 21 mins
evaluate 376s

Post-process emit 153s
synthesize 14.3 hours

Trade-off between model-specific quantization and design
quality remains challenging for MX formats. We evaluate the
energy efficiency of the dataflow hardware accelerators, where MP
MXInt sits between MXInt4 and MXInt6 due to its on average 4-bit
mantissas. An interesting observation is that despite using 2 bits
fewer on average, MP MXInt can still achieve better accuracy than
MXInt6. This shows that model-specific quantization can further
push hardware efficiency significantly with no accuracy loss. This
provides insights to future accelerator design, where a trade-off
needs to be explored between the granularity of model quantization
and the generality of hardware designs. Such a design problem is
application-specific and out of the scope of this work. However,
MASE serves as a general open-source compiler and provide a
platform for designers to explore potential ASIC accelerator archi-
tectures utilizing MX formats for domain-specific problems,

5.4 Optimization Compile Time
Table 4 illustrates the runtime of MASE passes. Both the pre-process
and the post-process are run once for eachmodel in the flow, and the
search process is iteratively called for a given number of trials. The
front-end of MASE pre-processes the model representation when
parsing from PyTorch. The search time for each step is relatively fast
compared to the synthesize time, where our hardware evaluation
model saves significant search time by source-level hardware design
analysis and avoids repeatedly calling downstream synthesis tools.

6 RELATEDWORK
In this section, we first revisit related work in quantization using
block arithmetic. Then we compare MASE and MASE IR with ex-
isting compilers and IRs. Finally, we review related work on LLM
accelerator designs.

6.1 Block Arithmetic-based Quantization
Sharing certain components for a block of values has been widely
recognized as the state-of-the-art technique for quantizing Con-
volutional Neural Networks (CNNs) [39, 70]. Further explorations
within this line of research have investigated grouping numbers at
various granularities, including layer-wise [61], channel-wise [35],
and vector-wise quantization [13]. In addition, many block floating-
point variants [13, 14, 28] have been proposed, with the core idea
of grouping values into multiple blocks, and elements within each
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block sharing common digits. Moreover, adjusting block sizes and
mantissa bitwidths across layers provides finer quantization.

There are two closest pieces of work. [14] proposes an approach
of MXInt quantization using the same precision, while we exploit
mixed-precision MXInt quantization to further push the hardware
efficiency on dataflow accelerators. [15] proposes multi-level MX
formats, also known as Microscaling floating-point (MXFP), where
the shared component can be non-integers, while we only restrict
our scope on sharing integer components as illustrated in Fig. 1c.
Exploring the hardware efficiency of MXFP operators involves
different challenges in both quantization search and hardware real-
ization, which will be our future work.

6.2 ML Dataflow Compilers and IRs
Most dataflow compilers for ML inference focus on DNNs. Xilinx
FINN [56], HLS4ML [21], DNNBuilder [72], FPGAConvNet [57],
and HIDA [66] have shown promising results in generating effi-
cient dataflow accelerators. However, they only support hardware
mapping from quantized models using fixed-point numbers, while
MASE is the first dataflow compiler that supports MX for-
mats.MASE comes with an open-source MX hardware operator
library, and can automatically generate dataflow hardware accelera-
tors using MX formats. Optimizations for dataflow architectures are
actively studied [50, 74], and these techniques can be orchestrated
into MASE for systematic exploration with MX formats.

Most compilers for ML training and inference use software IRs,
such as TorchScript [18], ONNX [1] and FX Torch [48]. These IRs
are often target-independent. Users need to manually add hardware
intrinsic to explore target-specific optimizations, while MASE IR tar-
gets dataflow hardware architecture with built-in hardware intrin-
sics. TVM [6] has similar IRs for GPU-specific optimizations, while
MASE focuses on dataflow architectures. Languages implemented
in MLIR [37] or LLVM IR [36] are commonly used in hardware com-
pilers but do not support training because the back propagation
functions are lost when the model is lowered from PyTorch, while
MASE IR is target-specific and keeps the model trainable for
optimizations such as QAT.

6.3 Quantized LLM-related Accelerators
Quantization for efficient accelerator designs has been widely stud-
ied, especially using fixed-point numbers [17, 20, 25, 62, 64]. Prior
work focuses on custom hardware architecture for efficient infer-
ence [22, 26, 27, 29, 33, 38, 41]. GOBO [67], EdgeBERT [53] exploits
software and hardware co-designs for accelerating transformers.
FACT [46] and FlightLLM [68] exploits mixed-precision quantiza-
tion using fixed-point numbers for linear layers. They only focus on
quantization using fixed-point numbers, andMASE is the first ap-
proach to designing LLM accelerators using mixed-precision
MX quantization.

7 CONCLUSION
LLM inference today suffers from a rapid increase of the number
of parameters, leading to both memory and computing challenges.
While most existing methods address these challenges by quantiz-
ing LLMs into low-precision data formats, our work highlights the
“scaling offsets” observed in such quantization. We propose a novel

dataflow compiler named MASE to explore MX formats for efficient
LLM inference on dataflow hardware accelerators. MASE is the
first hardware compiler to exploit hardware-aware quantiza-
tion using mixed-precision MX formats. Another contribution
of MASE is that it comes with a set of open-source MX hardware
operator IPs and can directly map a quantized model using MX
formats into efficient dataflow hardware accelerator.

We also propose MASE IR, an efficient software and hardware
co-design IR, and show how to orchestrate existing optimizations
for new data formats in MASE IR. MASE IR provides an open plat-
form for designers to explore new data formats for ML hardware
accelerators, minimizing their development effort and time. By ex-
ploiting mixed-precision MXInt quantization on LLMs,we verified
the great potential in MXInt formats for hardware-efficient
LLM inference acceleration. Experimental data reveal that a
hardware design employing mixed-precision MXInt has achieved
similar area efficiency with int8 implementation with 24% accuracy
improvements. Our results provide a performance upper bound
reference for future MXInt-based accelerator designs, including
ASIC accelerators.

Future ML accelerators should exploit mixed-precision
MXInt formats. Our proposed MASE compiler is the first attempt
to enable exploration of future accelerators. Our future work will
involve several directions. First, we plan to improve our analysis
and optimization passes for deeper integration of complex MX
formats, such as MXFP [15]. This would expand the existing MX
hardware design space. Second, we plan to extend MASE to support
other hardware architectures, such as systolic arrays, and explore
MX formats across different granularities. This might be further
extended to explore the possibility of using MASE to model and
simulate ASIC MX accelerators. Finally, we will evaluate MASE on
other data formats to understand the practical limitations of the
approach.
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