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Background: LA-MCTS (w. Lin et al. 2020)
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Figure 2: The workflow of LA-MCTS: In an iteration, LA-MCTS starts with building the tree via splitting,
then it selects a region based on UCB. Finally, on the selected region, it samples by BO.



Background: Heterogeneous Search Space

LA-MCTS has integrated GP-based BO algorithms as its local samplers

e Basicform of GP-BO assumes that the inputs are continuous
e Butthereare:
o Discrete/Ordinal Variables (e.g. number of layers in an MLP)
o Categorical Variables (e.g. choice of activation functions for a MLP layer)

GP-BO does not inherently support them and needs further pre-/post- processing
techniques



Approach: SMAC (r. Hutter et al. 2012)

Test Sample Input

Sequential Model-based Algorithm Configuration (SMAC)
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Algorithm 1 Bayesian Optimization Framework @)
1: Input: Objective function f, Initial data Dy, Acquisition function a, Model O
M
2: Initialize dataset D < Dy
3: fort=1,2,...,T do
4: | Fit model M to D Average All Predictions
s Find x; by optimizing acquisition function: x; = argmax, a(z|D, M) .
6: Evaluate objective function: y; = f(x) Random Forest
& Augment data: D < DU {(x¢,y¢)}
8 ‘end, for , Random Forest
9: Output: Best observed x and corresponding y




Approach: SMAC3 (M. Lindauer et al. 2021)

from ConfigSpace import Configuration, ConfigurationSpace

SMACS3: A Versatile Bayesian Optimization Package -
. . . import numpy as np
fOI’ Hyperpal’ameter Optlmlzat|on from smac import HyperparameterOptimizationFacade, Scenario

from sklearn import datasets

) docs | passing from sklearn.svm import SVC

from sklearn.model_selection import cross_val_score

iris = datasets.load_iris()

def train(config: Configuration, seed: int = @) -> float:

classifier = SVC(C=confi C random_state=seed
0-0-0 _/\/\ ﬁﬁ @ ( gl"c"l, _ )

scores = cross_val_score(classifier, iris.data, iris.target, cv=5)

return 1 - np.mean(scores)
SMAC offers a robust and flexible framework for Bayesian Optimization to support users in determining well-

performing hyperparameter configurations for their (Machine Learning) algorithms, datasets and
applications at hand. The main core consists of Bayesian Optimization in combination with an aggressive configspace = ConfigurationSpace({"C": (8.100, 1000.8)})
racing mechanism to efficiently decide which of two configurations performs better.

# Scenario object specifying the optimization environment

SMACS3 is written in Python3 and continuously tested with Python 3.8, 3.9, and 3.10. Its Random Forest is , A ; . 5
scenario = Scenario(configspace, deterministic=True, n_trials=200)

written in C++. In further texts, SMAC is representatively mentioned for SMAC3.

Documentation # Use SMAC to find the best configuration/hyperparameters
smac = HyperparameterOptimizationFacade(scenario, train)
Roadmap incumbent = smac.optimize()



Evaluation

Principle: High-dimensional and Heterogeneous Search Space

e Current thinking: ML model hyperparameter optimization tasks
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