Enhancing LA-MCTS with SMAC
for Heterogeneous Search Space

Nov 29th, 2023
Wenxuan Li

Background: LA-MCTS (w. Lin et al. 2020)

LEARNING & SPLITTING i SELECT SAMPLING
min f(x) in selected partition Integration with TuURBO

A Bounding box_
pacy m(ng)inTuRBo

Initialized with x in Q

Splittable = Yes No leaf is splittable i select w.r.t UCB

Bounding box centered

Qr=Q,NnQp at max(x),x € Qg
] Only samples from Q3 N

@ e /G,\ Qg for the acquisition.
+min f(x), x € Qg

(c)

(a)

Figure 2: The workflow of LA-MCTS: In an iteration, LA-MCTS starts with building the tree via splitting,
then it selects a region based on UCB. Finally, on the selected region, it samples by BO.

Background: Heterogeneous Search Space

LA-MCTS has integrated GP-based BO algorithms as its local samplers

e Basicform of GP-BO assumes that the inputs are continuous
e Butthereare:
o Discrete/Ordinal Variables (e.g. number of layers in an MLP)
o Categorical Variables (e.g. choice of activation functions for a MLP layer)

GP-BO does not inherently support them and needs further pre-/post- processing
techniques

Approach: SMAC (r. Hutter et al. 2012)

Test Sample Input

Sequential Model-based Algorithm Configuration (SMAC)

Tree 1 Tree 600
Algorithm 1 Bayesian Optimization Framework @)
1: Input: Objective function f, Initial data Dy, Acquisition function a, Model O
M
2: Initialize dataset D < Dy
3: fort=1,2,...,T do
4: | Fit model M to D Average All Predictions
s Find x; by optimizing acquisition function: x; = argmax, a(z|D, M) .
6: Evaluate objective function: y; = f(x) Random Forest
& Augment data: D < DU {(x¢,y¢)}
8 ‘end, for , Random Forest
9: Output: Best observed x and corresponding y

Approach: SMAC3 (M. Lindauer et al. 2021)

from ConfigSpace import Configuration, ConfigurationSpace

SMACS3: A Versatile Bayesian Optimization Package -
. . . import numpy as np
fOI’ Hyperpal’ameter Optlmlzat|on from smac import HyperparameterOptimizationFacade, Scenario

from sklearn import datasets

) docs | passing from sklearn.svm import SVC

from sklearn.model_selection import cross_val_score

iris = datasets.load_iris()

def train(config: Configuration, seed: int = @) -> float:

classifier = SVC(C=confi C random_state=seed
0-0-0 _/\/\ ﬁﬁ @ (gl"c"l, _)

scores = cross_val_score(classifier, iris.data, iris.target, cv=5)

return 1 - np.mean(scores)
SMAC offers a robust and flexible framework for Bayesian Optimization to support users in determining well-

performing hyperparameter configurations for their (Machine Learning) algorithms, datasets and
applications at hand. The main core consists of Bayesian Optimization in combination with an aggressive configspace = ConfigurationSpace({"C": (8.100, 1000.8)})
racing mechanism to efficiently decide which of two configurations performs better.

Scenario object specifying the optimization environment

SMACS3 is written in Python3 and continuously tested with Python 3.8, 3.9, and 3.10. Its Random Forest is , A ; . 5
scenario = Scenario(configspace, deterministic=True, n_trials=200)

written in C++. In further texts, SMAC is representatively mentioned for SMAC3.

Documentation # Use SMAC to find the best configuration/hyperparameters
smac = HyperparameterOptimizationFacade(scenario, train)
Roadmap incumbent = smac.optimize()

Evaluation

Principle: High-dimensional and Heterogeneous Search Space

e Current thinking: ML model hyperparameter optimization tasks

Reference

e F. Hutter et al,, Sequential Model-Based Optimization for General Algorithm Configuration. 2011.
e L.Wanget al. Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. 2020
e M. Lindauer et al. SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization. 2021

Thank you

