An Inquiry into Machine Learning-based Automatic Configuration Tuning Services on Real-World Database Management Systems

D. Aken, D. Yang, S. Brillard, A. Fiorino, B. Zhang, C. Bilien, and A. Pavlo, VLDB, 2021
Context & Motivations

Task: DBMS configuration tuning

- hundreds of knobs to tune for optimal performance (e.g. latency / throughput)
Prior Work: OtterTune

Important work: OtterTune

- An ML-based automatic DBMS configuration tuning system

D. Aken et al. 2017 Automatic Database Management System Tuning Through Large-scale Machine Learning

\[\theta^* = \arg\max_{\theta \in \Theta} f_w(\theta) \]
Prior Work: OtterTune

![Graphs showing evaluation results for OtterTune](image)

Figure 10: Efficacy Comparison (MySQL) – Throughput and latency measurements for the TPC-C benchmark using the (1) default configuration, (2) OtterTune configuration, (3) tuning script configuration, (4) Lithuanian DBA configuration, and (5) Amazon RDS configuration.

Figure 11: Efficacy Comparison (Postgres) – Throughput and latency measurements for the TPC-C benchmark using the (1) default configuration, (2) OtterTune configuration, (3) tuning script configuration, (4) expert DBA configuration, and (5) Amazon RDS configuration.

Evaluation of OtterTune: human-comparable efficacy on configuration tuning
Problems with evaluation of prior works (not just OtterTune):

Mismatch between experimental and real-world DBMS deployments

- Workload Complexity
- System Complexity

Figure 2: DBMS Tuning Comparison – Throughput measurements for the TPC-C benchmark running on three versions of MySQL (v5.6, v5.7, v8.0) and Postgres (v9.3, v10.1, v12.3) using the (1) default configuration, (2) buffer pool & redo log configuration, (3) GPR configuration, and (4) DDPG configuration.
Problems

Problems with evaluation of prior works (not just OtterTune):

Mismatch between environmental and real-world DBMS deployments

- Workload Complexity
- System Complexity
- Operating Environment

Figure 3: Operating Environment – I/O latency of local versus non-local storage for four different I/O workloads over a three-day period.
Methodology: Field Study

Field Study in real-world enterprise production environment:

- Evaluating OtterTune framework at Société Générale (SG), a multi-national bank

- Target database application: TicketTracker
 - (a private issue tracking system)
 - DBMS backend: Oracle
Methodology: Environmental Settings

- **database:** Snapshots
 - using the Oracle Recovery Manager tool
- **workload:** Trace Collection & Replay
 - TicketTracker workload trace collected by Oracle’s Real Application Testing (RAT)
- **deployment:** on cloud VMs with non-local storage
Methodology: More Tuning Algorithms

- **(BO) GPR and DNNs:**

 ![Diagram](image1)

 Figure 6: GPR/DNN Tuning Pipeline – The raw data for each previous workload is aggregated and compared with the target workload. Data from the most similar previous workload is then merged with the target workload data to build a machine learning model (DNN or GPR). Finally, the algorithm recommends the next configuration to run by optimizing the model.

- **(RL) DDPG and DDPG++**

 ![Diagram](image2)

 Figure 7: DDPG Tuning Pipeline – The raw data is converted to states, actions, and rewards and then inserted into the replay memory. The tuples in the replay memory are ranked by the error of the predicted Q-value. In the training process, the critic and actor are updated with a batch of the top tuples. After training, the prediction error in the replay memory is updated, and the actor recommends the next configuration to run.
Evaluation: Basic Strategies

- Baseline: Latin Hypercube Sampling (LHS)
- Target metric: DB Time
- Initial evaluation of the variability in the performance measurements for SG’s environment:
 - Oracle DBMS on multiple VMs on the same physical machine (shared storage)
 - measured the performance of multiple VMs once a week over six months

Figure 8: Performance Variability – Performance for the TicketTracker workload using the default configuration on multiple VMs over six months.
Evaluation: Basic Strategies

- Baseline: Latin Hypercube Sampling (LHS)
- Target metric: DB Time
- Initial evaluation of the variability in the performance measurements for SG’s environment:
 - Measure DBMS’s performance with CPU time and I/O latency for one VM during a tuning session

Figure 9: Effect of I/O Latency Spikes – Runtime measurements of DBMS performance with CPU utilization and I/O latency.
Evaluation: Basic Strategies

- Baseline: Latin Hypercube Sampling (LHS)
- Target metric: DB Time
- Initial evaluation of the variability in the performance measurements for SG’s environment

Given performance variability:

=> 3 tuning sessions on 3 VMs

=> for evaluating a tuned configuration from each tuning session, run the workload with it on DBMSs on 3 VMs for 3 times (9 times in total)

- overall performance of the configuration => average across all executions
Evaluation: Tuning Knobs Selected by human DBAs

- Performances of best configuration per algorithm on different VMs
- Best and worst overall performance of best configurations from 3 tuning sessions
Evaluation: Tuning Knobs Ranked by OtterTune

- ↑ performances of best configuration per algorithm on different VMs
- ⇔ best and worst overall performance of best configuration per tuning session

Figure 12: Tuning Knobs Ranked by OtterTune (Per VM) – The performance improvement of the best configuration per algorithm running on separate VMs relative to the performance of the SG default configuration measured at the beginning of the tuning session.

Figure 13: Tuning Knobs Ranked by OtterTune – Performance measurements for the ML algorithm configurations using 10 and 20 knobs selected by OtterTune’s Lasso ranking algorithm. The shading on each bar indicates the minimum and maximum performance of the optimized configurations from three tuning sessions.
Evaluation: Adaptability to Different Workload

Firstly tune for TPC-C workload, and then use trained model for tuning towards TicketTracker workload trace segment.
Criticism

Novelty/Advantages

● Production-level environments for evaluating SOTA methods
● Provide valuable environment results for reference in later works

Limitations

● Poor Reproducibility (almost infeasible for small research groups)
● Limited Scope / Not sufficient diversity of workloads,
● Many trivial observations in experiment part consisting of a hard-to-read long text (information scattered) and no good summary of single parts of experiments
● Lack in-depth analysis for certain algorithms
Discussion