QTune: A Query-Aware Database Tuning System with Deep Reinforcement Learning

Paper Authors: Guoliang Li, Xuanhe Zhou, Shifu Li, Bo Gao
Presenter: Jiahao Gai
Background

- Knob tuning is an NP-hard problem and existing methods have several limitations.

1. Limited Scope and Time-Consuming for DBAs manual tuning
2. Dependency on High-Quality Training Data
3. Coarse-Grained Tuning
Contributions of the paper

1. A query-aware database tuning system using DRL
2. A SQL query featurisation model
3. A DS-DDPG model
4. A DL based query clustering method
5. Experiments on various query workloads and databases outperforming SOTA.
Architecture

Figure 1: The QTune Architecture
Workflow

Figure 2: Workflow of QTune
Query2Vector

1. Query information (0/1)
2. Cost Information (real value)
DS-DDPG model

1. Environment
2. Predictor
3. Actor
4. Critic
Training of DS-DDPG model

1. Training the Predictor

2. Training the Actor-Critic Module

Algorithm 1: Training DS-DDPG

| Input: | U: the query set \(\{q_1, q_2, \cdots, q_{|U|}\} \) |
|---------|--|
| Output: | \(\pi_P, \pi_A, \pi_C \) |
| 1 | Generate training data \(T_P \); |
| 2 | TrainPredictor\((\pi_P, T_P)\); |
| 3 | Generate training data \(T_A \); |
| 4 | TrainAgent\((\pi_A, \pi_C, T_A)\); |
Training the Predictor

Function TrainPredictor(π_P, T_P)

Input: π_P: The weights of a neural network; T_P: The training set

1. Initiate the weights in π_P;
2. while !converged do
 3. for each $(v, S, I, \Delta S) \in T_P$ do
 4. Generate the output G of (v, S, I);
 5. Accumulate the backward propagation error:
 \[E = E + \frac{1}{2} ||G - \Delta S||^2; \]
 6. Compute gradient $\nabla_{\theta_s}(E)$, update weights in π_P;
Training the Agent

```
Function TrainAgent(\(\pi_A\), \(\pi_C\), \(T_A\))

Input: \(\pi_A\): The actor’s policy; \(\pi_C\): The critic’s policy; \(T_A\): training data

1. Initialize the actor \(\pi_A\) and the critic \(\pi_C\);
2. while \(\text{not converged}\) do
3.   Get a training data
4.     \(T_A^{[1]} = (S'_1, A_1, R_1), (S'_2, A_2, R_2), \ldots, (S'_t, A_t, R_t)\);
5.   for \(i = t - 1\) to 1 do
6.     Update the weights in \(\pi_A\) with the action-value \(Q(S'_i, A_i|\pi_C)\);
7.     Estimate an action-value
8.     \(Y_i = R_i + \tau Q(S'_{i+1}, \pi_A(S'_{i+1}|\theta^A)|\pi_C)\);
9.   Update the weights in \(\pi_C\) by minimizing the loss value \(L = (Q(S'_i, A_t|\pi_C) - Y_i)^2\);
```
Granularities of tuning

1. **Query-level**: can optimise the query latency; but low throughput
2. **Workload-level**: cannot optimise the query latency; high throughput
3. **Cluster-level**: can optimise both the latency and throughput
Granularities of tuning

1. **Query-level**: can optimise the query latency; but low throughput

2. **Workload-level**: cannot optimise the query latency; high throughput

3. **Cluster-level**: can optimise both the latency and throughput
Evaluation

1. Three query workloads JOB, TPC-H and Sysbench

<table>
<thead>
<tr>
<th>Table 3: Workloads. RO, RW and WO denote read-only, read-write and write-only respectively.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>JOB</td>
</tr>
<tr>
<td>TPC-H</td>
</tr>
<tr>
<td>Sysbench</td>
</tr>
</tbody>
</table>

2. Metrics: latency, throughput, as well as the training and tuning time

3. Three kinds of databases

<table>
<thead>
<tr>
<th>Table 2: Database information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>PostgreSQL</td>
</tr>
<tr>
<td>MySQL</td>
</tr>
<tr>
<td>MongoDB</td>
</tr>
</tbody>
</table>
Evaluating three types of tuning

Figure 6: Performance by increasing knobs in Important First (IF) and Randomly Choosing (RC) respectively when running Sysbench (RO) on PostgreSQL.
Comparison with Existing Techniques
Reviews

Pros
- Comprehensive evaluations

Cons
- Feature vectorisation makes the database hard to add and delete future tables
- It is unclear why they did not provide cluster-level evaluations on the Sysbench dataset