Neural Architecture Search as Program Transformation Exploration

Jack Turner, Elliot J. Crowley, Michael F.P. O’Boyle

Presented by Thomas Yuan
Goal: Improve performance of DNNs

Two main, distinct approaches
- Program Transformation (Compilers)
 - Hardware specific optimizations
- Neural Architecture Search
 - Replace components with computationally cheaper methods

Problems
- Inaccurate choice of program transformations for a powerful architecture
- NAS limited to pre-designed list of convolutional alternatives
Combine both approaches!

Example:

- Program transformation: Loop interleaving
- NAS technique: bottlenecking
Overview

Concerns:

Legality

- NAS methods change architecture
- do not guarantee transformation safety
- Need a way to measure new “transformation safety”
- Fisher Potential
Polyhedral Model

- Describes program transformations
- Domain
 - Collection of statement instances
- Set of accesses
 - Mapping of iteration space to memory
- Schedule
 - Assigns timestamps
- Legality of transformation
 - If data dependence -> relative ordering must be preserved
Algorithm 1 Naive implementation of 1×1 tensor convolution.

```c
for (co=0; co<Co; co++)
    for (oh=0; oh<OH; oh++)
        for (ow=0; ow<OW; ow++)
            S1 0[c_o][h][w] = 0.;
            for (ci=0; ci<Ci; ci++)
                S2 0[co][oh][ow] +=
                    W[co][1][1] *
                    I[ci][oh][ow];
```

We can also describe the schedule as follows:

$T_{S1}(c_o, h, w) = (c_o, h, w)$

$T_{S2}(c_o, h, w, c_i) = (c_o, h, w, c_i)$

Loop Interchange: $T_{S1}(c_o, h, w) = (c_o, w, h)$

Legality: $\forall i, j, S1, S2, D \quad i \rightarrow j \in d_{S1,S2} \rightarrow T(i) \leq T(j)$
Models and Implementation

Bottlenecking:
- Reduce number of filters from C_O to C_O/B

$$T_S(c_o, J') = (c'_o, J') \mid c'_o < C_o/B$$

Grouping
- Split C_I input channels into G groups
- Each group independently convolved
- C_O/G output channels -> concatenated

$$T_S(c_o, c_i, J'') = (g, c_o/G, c_i/G, J')$$

Depthwise Convolution
- Special case of grouping when $C_O = C_I = G$
Models and Implementation

<table>
<thead>
<tr>
<th>Optimization</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reorder</td>
<td>Interchange nested loops</td>
</tr>
<tr>
<td>tile</td>
<td>Cache and register blocking</td>
</tr>
<tr>
<td>unroll</td>
<td>Loop unrolling</td>
</tr>
<tr>
<td>prefetch</td>
<td>Memory coalescing between threads</td>
</tr>
<tr>
<td>split</td>
<td>Divide iteration into multiple axes</td>
</tr>
<tr>
<td>fuse</td>
<td>Combine two axes into one</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optimization</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>瓶颈 group</td>
<td>Reduce domain by factor B</td>
</tr>
<tr>
<td>Slice and offset two loops by factor G</td>
<td></td>
</tr>
</tbody>
</table>

Mapping to GPU

<table>
<thead>
<tr>
<th>Optimization</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>blockIdx</td>
<td>Block-wise parallelism</td>
</tr>
<tr>
<td>threadIdx</td>
<td>Threads within blocks</td>
</tr>
<tr>
<td>vthread</td>
<td>Striding thread access</td>
</tr>
</tbody>
</table>
Fisher Potential

- Total information that each loop nest (layer) contains about class labels under a simplifying assumption of conditional independence.
- Or, how much each layer would affect the loss if deleted

\[\Delta_c = \frac{1}{2N} \sum_n^N \left(- \sum_i^W \sum_j^H A_{nij} g_{nij} \right)^2. \]
Models and Implementation

Search over 1000 configurations

Check which candidates satisfy Fisher Potential test and select best performing one

Compared to TVM & NAS (applying NAS then using TVM to compile)
Results

(a) ResNet-34

(b) ResNext-29-2x64d

(c) DenseNet-161
3 Sequence of Operations Stood Out

1. [split → interchange → group → interchange → fuse]
 a. Group kernels over spatial domain

2. [unroll → group → interchange]
 a. Output channels unrolled by factor 16, then grouped by $G = 2$

3. [split → group → interchange → group]
 a. Splitting up iteration domain by applying different levels of grouping
Figure 6: Exploring different sequences of transformations for an individual layer of ResNet-34 on the Intel Core i7 CPU. NAS is the result of applying grouping with factor 2 first, then compiling with TVM. The other three sequences are interleaved transformations produced by our method.
Results
Critiques and Concerns

Experiments: Compare best performance? Average performance?

Scalability and deployability
- Retraining models when deployed
- Distributed training?

Skeptical about Fisher Potential
- Could have benefited from more data

Search process too naive

Usefulness of bottlenecking

Limited NAS techniques that can be applied in program transformation
Questions?