TASO: Optimizing Deep Learning Computation with Automatic Generation of Graph Substitutions

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, Alex Aiken

Presented By
Pranav Talluri
Background

- DNNs are expressed as computation graphs
- Multiple formulations can achieve the same goal, with differing costs
- Introduces the desire to optimise DNN computation graphs
- Before TASO, the specific optimisations were manually designed by human experts
- TASO automates the generation of graph substitutions in order to programmatically optimise DNN graphs
Background
Background
Overview

• TASO automates generation of graph substitutions
• Framework agnostic (cuDNN + TVM)
• Takes operator specifications as an input
• Does so in a few stages:
 • Programmatically generate candidate graph substitutions
 • Generate
 • Quick test to prune impossible substitutions
 • Formally verify validity
 • Cost-based backtracking search to find an optimised graph
 • Includes co-optimisation of data locality
Overview

Operator Specifications -> Graph Subst. Generator (§2) -> Graph Subst. Verifier (§3) -> Verified Graph Subst. -> Joint Optimizer (§5) -> Optimized Comp. Graph
Approach: Generate Substitutions

- Substitution = source, target, mapping
- Configuration parameter dependent operators
- Generation algorithm
 - Enumerate potential graphs
 - Create graphs iteratively
 - Collect fingerprints
 - Test graphs with identical fingerprints
- Special Cases

Algorithm 1 Graph substitution generation algorithm.

1: Input: A set of operators \mathcal{P}, and a set of input tensors \mathcal{I}.
2: Output: Candidate graph substitutions \mathcal{S}.
3:
4: // Step 1: enumerating potential graphs.
5: $\mathcal{D} = \{\}$ // \mathcal{D} is a graph hash table indexed by their fingerprints.
6: BUILD(1, 0, \mathcal{I})
7: function BUILD(n, \mathcal{G}, \mathcal{I})
8: if \mathcal{G} contains duplicated computation then
9: return
10: $\mathcal{D} = \mathcal{D} + \{\text{FINGERPRINT}(\mathcal{G}), \mathcal{G}\}
11: if $n < \text{threshold}$ then
12: for $op \in \mathcal{P}$ do
13: for $i \in \mathcal{I}$ and i is a valid input to op do
14: Add operator op into graph \mathcal{G}.
15: Add the output tensors of op into \mathcal{I}.
16: BUILD($n + 1$, \mathcal{G}, \mathcal{I})
17: Remove operator op from \mathcal{G}.
18: Remove the output tensors of op from \mathcal{I}.
19:
20: // Step 2: testing graphs with identical fingerprint.
21: $\mathcal{S} = \{\}$
22: for \mathcal{G}_1, $\mathcal{G}_2 \in \mathcal{D}$ with the same FINGERPRINT(·) do
23: if \mathcal{G}_1 and \mathcal{G}_2 are equivalent for all test cases then
24: $\mathcal{S} = \mathcal{S} + (\mathcal{G}_1, \mathcal{G}_2)$
25: return \mathcal{S}
Approach: Formal Verification

• Verify generated substitutions
• Operator properties expressed in FOL
 • Manually written and reviewed
 • Further validated using symbolic execution
 • Properties are added when required
 • Checked for consistency and redundancies are removed
• Uses Z3 (SMT Solver)
• Shapes of tensors are not modelled
• Data layout not included
Approach: Formal Verification

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensor Operators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ewadd</td>
<td>Element-wise addition</td>
<td></td>
</tr>
<tr>
<td>ewmul</td>
<td>Element-wise multiplication</td>
<td></td>
</tr>
<tr>
<td>smul</td>
<td>Scalar multiplication</td>
<td></td>
</tr>
<tr>
<td>transpose</td>
<td>Transpose</td>
<td></td>
</tr>
<tr>
<td>matmul</td>
<td>Batch matrix multiplication¹</td>
<td></td>
</tr>
<tr>
<td>conv</td>
<td>Grouped convolution²</td>
<td></td>
</tr>
<tr>
<td>enlarge</td>
<td>Pad conv. kernel with zeros³</td>
<td></td>
</tr>
<tr>
<td>relu</td>
<td>Relu operator</td>
<td>stride, padding, activation</td>
</tr>
<tr>
<td>poolavg</td>
<td>Average pooling</td>
<td>kernel size</td>
</tr>
<tr>
<td>poolmax</td>
<td>Max pooling</td>
<td></td>
</tr>
<tr>
<td>concat</td>
<td>Concatenation of two tensors</td>
<td></td>
</tr>
<tr>
<td>split₀</td>
<td>Split into two tensors</td>
<td></td>
</tr>
<tr>
<td>split₁</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant Tensors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{pool}</td>
<td>Average pooling constant</td>
<td>kernel size</td>
</tr>
<tr>
<td>I_{conv}</td>
<td>Convolution id. kernel</td>
<td></td>
</tr>
<tr>
<td>I_{matmul}</td>
<td>Matrix multiplication id.</td>
<td></td>
</tr>
<tr>
<td>I_{ewmul}</td>
<td>Tensor with 1 entries</td>
<td></td>
</tr>
<tr>
<td>I_{ewmul}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Approach: Formal Verification

<table>
<thead>
<tr>
<th>Operator Property</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall x, y, z. \ ewadd(x, \ ewadd(y, z)) = \ ewadd(\ewadd(x, y), z)$</td>
<td>\ewadd is associative</td>
</tr>
<tr>
<td>$\forall x, y. \ \ewadd(x, y) = \ewadd(y, x)$</td>
<td>\ewadd is commutative</td>
</tr>
<tr>
<td>$\forall x, y, z. \ \ewmul(x, \ ewmul(y, z)) = \ ewmul(\ewmul(x, y), z)$</td>
<td>\ewmul is associative</td>
</tr>
<tr>
<td>$\forall x, y. \ \ewmul(x, y) = \ewmul(y, x)$</td>
<td>\ewmul is commutative</td>
</tr>
<tr>
<td>$\forall x, y, z. \ \ewmul(\ewadd(x, y), z) = \ ewadd(\ewmul(x, z), \ewmul(y, z))$</td>
<td>Distributivity</td>
</tr>
<tr>
<td>$\forall x, y, w. \ \smul(x, \ smul(y, w)) = \smul(x, \smul(y, w))$</td>
<td>\smul is associative</td>
</tr>
<tr>
<td>$\forall x, y, w. \ \smul(\ewadd(x, y), w) = \ ewadd(\smul(x, w), \smul(y, w))$</td>
<td>Distributivity</td>
</tr>
<tr>
<td>$\forall x, y, w. \ \smul(\ewmul(x, y), w) = \ ewmul(\smul(x, w), \smul(y, w))$</td>
<td>Operator commutativity</td>
</tr>
<tr>
<td>$\forall x. \ \transpose(\transpose(x)) = x$</td>
<td>\transpose is its own inverse</td>
</tr>
<tr>
<td>$\forall x, y. \ \transpose(\ewadd(x, y)) = \ewadd(\transpose(x), \transpose(y))$</td>
<td>Operator commutativity</td>
</tr>
<tr>
<td>$\forall x, y. \ \transpose(\ewmul(x, y)) = \ewmul(\transpose(x), \transpose(y))$</td>
<td>Operator commutativity</td>
</tr>
<tr>
<td>$\forall x, w. \ \transpose(\smul(x, w)) = \smul(\transpose(x), \transpose(w))$</td>
<td>Operator commutativity</td>
</tr>
<tr>
<td>$\forall x, y, z. \ \matmul(x, \ matmul(y, z)) = \ matmul(\matmul(x, y), z)$</td>
<td>\matmul is associative</td>
</tr>
<tr>
<td>$\forall x, y, w. \ \matmul(\ewadd(x, y), w) = \ ewadd(\matmul(x, w), \matmul(y, w))$</td>
<td>\matmul is linear</td>
</tr>
<tr>
<td>$\forall x, w. \ \matmul(\ewmul(x, y), w) = \matmul(\ewmul(x, \smul(y, w)))$</td>
<td>\matmul is linear</td>
</tr>
</tbody>
</table>

...
Approach: Pruning Redundant Substitutions

- Redundant substitutions are subsumed by more general, valid substitutions
- Input tensor renaming
- Common subgraph
Approach: Joint Optimisation

• Utilises MetaFlow cost-based backtracking search algorithm
• Considers data layout optimisation opportunities
• Joint optimisation uncovers otherwise impossible optimisations
• Costs are given by execution times of specific operators
• Cycle removal
• Alpha parameter prunes search space

Algorithm 2 Cost-Based Backtracking Search

1: **Input:** an input graph G_{in}, verified substitutions S, a cost model $\text{Cost}(\cdot)$, and a hyper parameter α.
2: **Output:** an optimized graph.
3:
4: $P = \{G_{in}\}$ // P is a priority queue sorted by Cost.
5: while $P \neq \{\}$ do
6: $G = P$.dequeue()
7: for substitution $s \in S$ do
8: // $\text{LAYOUT}(G, s)$ returns possible layouts applying s on G.
9: for layout $l \in \text{LAYOUT}(G, s)$ do
10: // $\text{APPLY}(G, s, l)$ applies s on G with layout l.
11: $G' = \text{APPLY}(G, s, l)$
12: if G' is valid then
13: if $\text{Cost}(G') < \text{Cost}(G_{opt})$ then
14: $G_{opt} = G'$
15: if $\text{Cost}(G') < \alpha \times \text{Cost}(G_{opt})$ then
16: P.enqueue(G')
17: return G_{opt}
Evaluation: Optimisation

- Setup – tested on 5 DNNs
- Successful automatic optimisation – inference time reduction
 - cuDNN: 1.3x to 2.8x
 - TVM: 1.1x to 1.8x
Evaluation: Substitutions

- NasNet was produced using neural architecture search
- Unconventional optimisations were discovered
Evaluation: Substitutions

- Different DNNs used different optimisations, showing usefulness of TASO
- Scalability
 - Larger operator substitutions could be useful
Evaluation: Substitutions

- Joint optimisation
 - Better than individual or sequential
 - $(A \times B) \rightarrow ((B^T \times A^T)^T)$ with B^T in row-major and A^T in column-major
 - Phase ordering?
- Relatively quick - <10 minutes for each DNN

![Execution Time Graph](image-url)
Review

Positives
• Novel idea
• Successful execution
 • Improves DNN performance
 • Reduces human effort
 • Extensible framework
• Seminal work in an exciting research area
 • Graph transformation backend still in use

Negatives
• Reliant on user provided operator properties
• Scalability of generator
• Phase ordering problem + search procedure
• Cost model has issues
Future Works

• Future works have built on this approach
• PET
 • Partially equivalent optimisations
• TENSAT
 • Equality saturation
• X-RLflow
 • RL approach to searching optimisation space
• REGAL
 • Transfer knowledge