X-Stream

Pranav Talluri

Background: Graph Processing Problems

* Weakly/Strongly Connected Social Networks

Components * Internet (Search)
 Single-Source Shortest Paths e Telecommunications

* Minimum Cost Spanning Tree . Recommendation Systems
* Maximal Independent Set » Transport Networks

* Conductance e loT

* PageRank

* Alternating Least Squares
* Bipartite Matching

* Clustering

* Epidemiology

Background: Graph Processing Systems

Partitioning

Unit

Model

Dynamism

Workload

Computing

Edge-Cut

Vertex-Centric

Superstep

Static

Local

Single-

Machine

Vertex-Cut

Edge-Centric

Scatter-
Gather

Temporal

Global

Distributed

Hybrid-Cut

Gather-Apply-
Scatter (GAS)

Streaming

Background: Pregel

Partitioning

Unit

Model

Dynamism

Workload

Computing

Edge-Cut

Vertex-Centric

Superstep

Static

Local

Single-

Machine

Vertex-Cut

Edge-Centric

Scatter-
Gather

Temporal

Global

Distributed

Gather-Apply- :

Background: PowerGraph

Partitioning Edge-Cut Vertex-Cut

Wlali g V/Eertex=Centric Edge-Centric

Scatter-

Model Superstep Gather

Gather-Apply- :

Dynamism Static Temporal

Workload Local Global

Single-

Distributed

Computing

Machine

Background: Ligra

Partitioning Edge-Cut Vertex-Cut

Wlali g V/Eertex=Centric Edge-Centric

Scatter-

Model Superstep Gather

Gather-Apply- .

Dynamism Static Temporal Streaming

Workload Local Global

Single-

Distributed

Computing

Machine

Background: Problem

* Lack of solutions for single-machine graph processing
* Previous solutions do not take advantage of sequential bandwidth

* Pre-processing (e.g., sorting edge lists) is very expensive
* Ligra requires pre-processing to produce an inverted edge list

* Requires random access to a large data structure to switch the edges
* Source to destination ----> destination to source

* Dominates overall runtime

Background: X-Stream

Partitioning

Unit

Model

Dynamism

Workload

Computing

Edge-Cut

Vertex-Centric

Superstep

Static

Local

Single-

Machine

Vertex-Cut

Edge-Centric

Scatter-
Gather

Temporal

Global

Distributed

Hybrid-Cut

Gather-Apply-
Scatter (GAS)

Streaming

Stream-Based

Approach: Overview

* Single machine system
» System operates on an abstraction of slow and fast memory

* Data is divided into streaming partitions, which are streamed from
slow to fast memory

 Scatter-Shuffle-Gather iterations applied to streaming partitions to
implement various algorithms

Approach: Fast and Slow Memory

* Designed for two systems

1. Graph fits in system memory (in-memory)
* Main Memory -> On-Core Caches

2. Graph fits in secondary storage (out-of-core)
* SSD/HDD/Magnetic -> Main Memory

* Edge-centric approach identifies that storage offers greater sequential
bandwidth than random access bandwidth

* We stream unordered edges

* Trade-off between a few slower accesses, or many faster accesses

Approach: Streaming Partitions

* A streaming partition consists of:
* A vertex set
* An edge list
e An update list

* The vertex sets are mutually disjoint so that their union forms the
vertex set of the entire graph

* The edge lists contains the edges whose source is in the vertex set

* The update list contains all the updates whose destination is in the
vertex set

* A fixed number of partitions are chosen based on various constraints

Approach: Edge-Centric Scatter

1. Read vertex set
2. Stream edge list
3. Produce stream of updates

scatter phase:
for each streaming partition p
read in vertex set of p
for each edge e in edge list of p
edge_scatter(e) : append update to Uout

Approach: Edge-Centric Shuffle

1. Rearrange updates into update list of streaming partition containing
destination vertex

shuffle phase:
for each update u in Uout
let p = partition containing target of u
append u to Uin(p)
destroy Uout

Approach: Edge-Centric Gather

1. Read vertex set
2. Stream update list
3. Compute new vertex values

gather phase:
for each streaming partition p
read in vertex set of p
for each update u in Uin (p)
edge_gather (u)
destroy Uin (p)

gather

shuffle

Scatter

O,

pe.gather]|
pdate[5]]

U

/

e e e o e e e |||||._...f||||| ||||||....1|||||
- _
5 8 =0
i R-M | £
= & / _ ﬁ
P :]
- | 5
- | 2
T 2T _ =
> @ a _ m
llllllllllllllllllllllll ..-l 'S FT FTFT! -llI.iI.iI.lﬂlI.ilill ﬂ
- =
2 =
A A A A A A M;
R AT ATLeTE, LR, el il b
b M, &8, M, 83, o wml Wl 2
= @ . T Q. [: T = < T =TI
: 3 8:8:§ 2848 =
= o ! o ! = . = a'
€ =5 3 =5: = E 5 = —
M | Dl e R o iy i I h e e Sy A
I | |
5 L !
£ | £ | :
r |
T] ' BLT T
v | g A |]
- a1 !
3 | 8 "
_
B e i i, s s Sl] DA I
-~ B

Sequential read edges

e e e R e e B e e i e e i i e B e e e e e e o e A e i B e e o e e e e B

Example

(ﬂ:) Graph example

Approach: Out-of-Core Graphs

* We want to achieve sequential access for the shuffle phase as well
* We achieve this by merging the scatter and shuffle phases

* We then use an in-memory buffer to hold updates
* This is shuffled in-memory when it becomes full

* We also have additional in-memory data structures to hold input from the disk, input/output for the shuffle,
and output to the disk

Index Array (K entries)

/7 NN O

Chunk

Chunk Array

merged scatter/shuffle phase:
for each streaming partition s
while edges left in s
load next chunk of edges into input buffer
for each edge e in memory
edge_scatter (e) appending to output buffer
if output buffer is full or no more edges
in-memory shuffle output buffer
for each streaming partition p
append chunk p to update file for p

gather phase:
for each streaming partition p

read in vertex set of p

while updates left in p
load next chunk of updates into input buffer
for each update u in input buffer

edge_gather (u)
write vertex set of p

Approach: In-Memory Graphs

* Utilise all cores to maximise bandwidth
* In-Memory Streaming Buffer is sliced

 Parallelisation as threads are executing different streaming partitions — they atomically reserve and fill space in the

buffer

* Far more partitions

* Multi-stage shuffler to deal with increased partition count, as more partitions in a single stage shuffler would lead to

challenges in exploiting sequential bandwidth |

* Partitions are placed in a tree hierarchy Thread 1{

>

Write l TReadIWritel TRead

Thread 2

o

|
Thread P

2

Writel TRead

4 | | N\
2 E2 k] looo
/\/\ |

|

|
__Slice 1| _ Slice 2 Slice P/

Performance

Twitter graph, 16 threads

BFS on scale-free graph (32M vertices/256M edges) 400
gg . Local Queue C—— @ 350
Hybrid ©
70 | X-Stream g 300
Z 60} 5 250 |
)) _g 50 = 200 |
Threads || Ligra(s) X-Stream (s) | Ligra-pre (s) E gg 3 150 }
BFS pod £ 100 |
1 11.10 168.50 1250.00 10 | ﬂ’ - 2 s0}
S o e
2 5.59 86.97 647.00 0 — PR } —
0 500 1000 1500 2000 2500 3000
4 2.83 45.12 352.00 Threads 00 200
8 1.48 26.68 209.40 Accumulated Graph size (millions of edges)
16 0.85 18.48 157.20
Pagerank
1 990.20 455.06 1264.00 e sort 6 Rime 6 Resort (9 -stieam raphni
2 510.60 241.56 654.00 Twitter pagerank B 800 aggregate:416.15 aggregate: 141.04
X-Stream (1) 397.57+1.83
4 269.60 129.72 355.00 Grapl:?}lllin(32) 752324907 || 11751242562 S 600
8 145.40 83.42 211.40 Netflix ALS g 4007 w MMM
X-Stream (1) none 76.74+£0.16 © 200 H
16 79.24 50.06 160.20 Graphchi (14) 123.73£4.06 138.68+26.13 o
RMAT27 WCC @ 800 | aggregate: 177.42 aggregate: 48.28
X-Stream (1) none 867.59+2.35 @ 600 |
Graphchi (24) 214938 +41.35 || 2823.99+704.99 =
Twitter belief prop. 8 400 1
X-Stream (1) none 2665.64 +6.90 E 200 [
Graphchi (17) 742.42413.50 || 4589.52:322.28 0

Performance

WCC SCC SSSP MCST MIS Cond. SpMV Pagerank BP # iters ratio wasted %
memory memory

amazon0601 0.61s 1.12s 0.83s| 0.37s 3.31s| 0.07s| 0.09s 0.25s 1.38s amazon(0601 19 |2.58 63
cit-Patents 2.98s 0.69s 0.29s| 2.35s 3.72s] 0.19s| 0.19s 0.74s 6.32s cit-Patents 21 |2.20 50
soc-livejournal 7.22s 11.12s 9.60s| 7.66s 15.54s| 0.78s| 0.74s 2.90s Im21s soc-livejournal| 13 |2.13 57
dimacs-usa 6m 12s 9m 54s| 38m 32s| 4.68s 9.60s| 0.26s| 0.65s 2.58s 12.01s dimacs-usa | 6263 |1.94 98

ssd ssd
Friendster 38m 38s| 1h 8m 12s|1h 57m 52s(19m 13s|{1h 16m 29s| 2m 3s| 3m4ls 15m 31s| 52m 24s Friendster 24 11.06 63
sk-2005 44m 3s{1h 56m 58s| 2h 13m 5s{19m 30s|3h 21m 18s| 2m 14s| 1m 59s 8m9s| 56m 29s sk-2005 25 |1.04 67
Twitter 19m 19s| 35m23s| 32m25s{10m 17s| 47m43s| 1m 40s| 1m 29s 6m 12s| 42m 52s Twitter 16 |1.04 55

disk disk
Friendster |1h 17m 18s|2h 29m 39s|3h 53m 44s|43m 19s|2h 39m 16s| 4m 25s| 7m 42s| 32m 16s|1h 57m 36s Friendster 24 [1.04 63
sk-2005 1h 30m 3s(4h 40m 49s|4h 41m 26s|39m 12s| 7h 1Im 21s| 4m 45s| 4m 12s| 17m 22s|2h 24m 28s sk-2005 25 [1.04 67
Twitter 39m 47s| 1h 39m 9s|1h 10m 12s| 29m 8s|1h 42m 14s| 3m 38s| 3m 13s| 13m21s| 2h 8m 13s Twitter 16 (1.04 55
yahoo-web — — — — — 16m 32s{14m 40s|1h 21m 14s| 8h 2m 58s yahoo-web — | — —

(@) (b)

Graph # steps
In-memory]
amazon(0601 19
cit-Patents 20
soc-livejournal 15
dimacs-usa 8122
Out-of-core
sk-2005 28
yahoo-web over 155

Evaluation: Positives

* Single-machine lowers barrier to entry
 Compared to large-scale distributed systems, at the cost of size capacity

* Exploits sequential bandwidth
* Flexible framework for in-memory and cache
* Performant for certain applications

* Removes need for sorting
* Major consideration for other systems

Evaluation: Negatives

* The Scatter-Gather programming model can be restrictive
* X-Stream supports more, but the paper does not go into detail

 Parallelism for in-memory graphs is dependent on effective work distribution
» X-Stream supports work stealing, but the paper does not go into detail

* Some issues in evaluation
* Comparisons against other systems is very limited and seems cherry-picked
* Especially inadequate in comparing to well-established distributed systems, which would
ground results

* There is no discussion of fault tolerance, which suggests it was not a major
consideration

* Makes the system unsuitable for many applications

* Does choosing sequential over random access have power consumption
implications?

Thank You

	X-Stream
	Background: Graph Processing Problems
	Background: Graph Processing Systems
	Background: Pregel
	Background: PowerGraph
	Background: Ligra
	Background: Problem
	Background: X-Stream
	Approach: Overview
	Approach: Fast and Slow Memory
	Approach: Streaming Partitions
	Approach: Edge-Centric Scatter
	Approach: Edge-Centric Shuffle
	Approach: Edge-Centric Gather
	Example
	Approach: Out-of-Core Graphs
	Approach: In-Memory Graphs
	Performance
	Performance
	Evaluation: Positives
	Evaluation: Negatives
	Thank You

