PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs

Authors: J. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin
OSDI’12

Presenter: Grant Wilkins (gfw27)
Situating this Study

• Large graph processing becoming more pressing due to growing social media networks, NLP,
• Pregel and GraphLab existing software for large-scale graph processing
• The problem(s): *Power-law degree distribution*
Power-Law Distribution

Definition: Probability that vertex has degree d is $P(d) = d^{-\alpha}$ where α is skewness factor to control distribution.

Problem: When a few nodes have a lot of connections, they bottleneck typical systems.
What this study aims to address?

• Work Balance
 • *Power-law throws off symmetric graph computation*
• Partitioning
 • *Hard to split up a natural graph*
• Communication
 • *Difficult to update skewed graphs*
• Storage
 • *High-degree vertices carry lots of memory*
• Computation
 • *Individual vertex computation doesn’t scale*
Design of Powergraph
Gather, Apply, Scatter (GAS)

- D_u, D_v: vertex data (e.g. metadata & computation state)
- $D_{(u,v)}$: edge data between u, v
- Roughly same as GraphLab’s implementation, but with parallel gather
- Very similar to Map-Reduce

```java
interface GASVertexProgram(u) {
  // Run on gather_nbrs(u)
  gather($D_u, D_{(u,v)}, D_v$) → Accum
  sum(Accum left, Accum right) → Accum
  apply($D_u, Accum$) → $D_u^{new}$
  // Run on scatter_nbrs(u)
  scatter($D_u^{new}, D_{(u,v)}, D_v$) → ($D_{(u,v)}^{new}$, Accum)
}
```
Delta Caching

Algorithm 1: Vertex-Program Execution Semantics

Input: Center vertex u

- **if** cached accumulator a_u is empty **then**
 - **foreach** neighbor v in gather_nbrs(u) **do**
 - $a_u \leftarrow \text{sum}(a_u, \text{gather}(D_u, D_{(u,v)}, D_v))$
 - **end**
- **end**

$D_u \leftarrow \text{apply}(D_u, a_u)$

- **foreach** neighbor v in scatter_nbrs(u) **do**
 - $(D_{(u,v)}, \Delta a) \leftarrow \text{scatter}(D_{(u,v)}, D_u, D_{(u,v)}, D_v)$
 - **if** a_v and Δa are not Empty **then** $a_v \leftarrow \text{sum}(a_v, \Delta a)$
 - **else** $a_v \leftarrow \text{Empty}$
- **end**

- Maintains cached accumulator at each vertex to avoid redundant gather operations.
- Later results will show the advantage of keeping this, significant speedup.
- The scatter phase can return Δa, which gets added to the neighbor's accumulator, incrementally updating it.
Synchronous and Asynchronous Execution Model

- Synchronous schedules like Pregel. Executes GAS and commits at end.
- Asynchronous schedules like GraphLab. Changes occur instantaneously during apply and scatter.

Pregel: Synchronous Model

GraphLab: Asynchronous Model
Example Implementation

PageRank

```python
// gather_nbrs: IN_NBRS
gather(D_u, D_{(u,v)}, D_v):
    return D_v.rank / #outNbrs(v)

sum(a, b): return a + b

apply(D_u, acc):
    rnew = 0.15 + 0.85 * acc
    D_u.delta = (rnew - D_u.rank) / #outNbrs(u)
    D_u.rank = rnew

// scatter_nbrs: OUT_NBRS
scatter(D_u, D_{(u,v)}, D_v):
    if (|D_u.delta| > \varepsilon) Activate(v)
    return delta
```
Powergraph on Distributed Systems
Edge vs. Vertex Partitioning

- PowerGraph uses **vertex-cutting**!
- Increases replication of vertices, lowers copies of edges.
- Think about power distributed graphs, and how much data replicating edges would cost.

(a) Edge-Cut

(b) Vertex-Cut
Random vs. Greedy Partitioning

- **Random**: Randomize where you put vertices
- **Greedy**: do a minimization problem of expected number of replications
 - **Coordinated**: maintains a shared table
 - **Oblivious**: maintains a local model of data

Figure 8: (a,b) Replication factor and runtime of graph ingress for the Twitter follower network as a function of the number of machines for random, oblivious, and coordinated vertex-cuts.
How does PowerGraph actually perform?
Finding: **PowerGraph maintains constant behavior despite skewness factor α**

![Graphs showing performance metrics](image)

- **Std. dev. of worker computation time**
- **Average info communicated**

Average Runtime
Finding: PowerGraph’s synchronous engine exhibits
(a) good strong scalability
(b) reduces memory overhead with greedy partitioning
(c) saves time using delta caching
Finding: PowerGraph’s asynchronous engine exhibits
(a) nearly linear throughput increase with machine
(b) reduces operations with caching
(c) nearly linear weak-scaling
“Performance” of PowerGraph against competing software

| | Runtime | $|V|$ | $|E|$ | System |
|----------------|---------|-----|------|--------|
| PageRank | 198s | – | 1.1B | 50x8 |
| Hadoop [22] | 97.4s | 40M | 1.5B | 50x2 |
| Spark [37] | 36s | 50M | 1.4B | 64x4 |
| Twister [15] | | | | |
| PowerGraph (Sync) | 3.6s | 40M | 1.5B | 64x8 |

| | Runtime | $|V|$ | $|E|$ | System |
|----------------|---------|-----|------|--------|
| Triangle Count | | | | |
| Hadoop [36] | 423m | 40M | 1.4B | 1636x? |
| PowerGraph (Sync) | 1.5m | 40M | 1.4B | 64x16 |

<table>
<thead>
<tr>
<th></th>
<th>Tok/sec</th>
<th>Topics</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smola et al. [34]</td>
<td>150M</td>
<td>1000</td>
<td>100x8</td>
</tr>
<tr>
<td>PowerGraph (Async)</td>
<td>110M</td>
<td>1000</td>
<td>64x16</td>
</tr>
</tbody>
</table>
My critique

Cons:
• Comparison against other work could be better
• Use of consistent metrics in evaluation
• Consistent comparison between sync and async and async+serialization
• More careful mathematical text

Pros:
• Great motivating concept
• Very good theoretical basis for the results
• Melds two existing models together and then extends to create
• Was successful enough to get acquired by Apple
Questions?