
TOD: GPU-accelerated Outlier Detection via Tensor Operations
Yue Zhao

Carnegie Mellon University
Pittsburgh, PA
zhaoy@cmu.edu

George H. Chen
Carnegie Mellon University

Pittsburgh, PA
georgechen@cmu.edu

Zhihao Jia
Carnegie Mellon University

Pittsburgh, PA
zhihao@cmu.edu

ABSTRACT
Outlier detection (OD) is a key learning task for finding rare and
deviant data samples, with many time-critical applications such as
fraud detection and intrusion detection. In this work, we propose
TOD, the first tensor-based system for efficient and scalable outlier
detection on distributed multi-GPU machines. A key idea behind
TOD is decomposing complex OD applications into a small collec-
tion of basic tensor algebra operators. This decomposition enables
TOD to accelerate OD computations by leveraging recent advances
in deep learning infrastructure in both hardware and software.
Moreover, to deploy memory-intensive OD applications on modern
GPUs with limited on-device memory, we introduce two key tech-
niques. First, provable quantization speeds up OD computations and
reduces its memory footprint by automatically performing specific
floating-point operations in lower precision while provably guaran-
teeing no accuracy loss. Second, to exploit the aggregated compute
resources and memory capacity of multiple GPUs, we introduce
automatic batching, which decomposes OD computations into small
batches for both sequential execution on a single GPU and parallel
execution on multiple GPUs.

TOD supports a diverse set of OD algorithms. Extensive eval-
uation on 11 real and 3 synthetic OD datasets shows that TOD is
on average 10.9× faster than the leading CPU-based OD system
PyOD (with a maximum speedup of 38.9×), and can handle much
larger datasets than existing GPU-based OD systems. In addition,
TOD allows easy integration of new OD operators, enabling fast
prototyping of emerging and yet-to-discovered OD algorithms.

PVLDB Reference Format:
Yue Zhao, George H. Chen, and Zhihao Jia. TOD: GPU-accelerated Outlier
Detection via Tensor Operations. PVLDB, 16(1): XXX-XXX, 2022.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and other artifacts have been made available at
https://github.com/yzhao062/pytod.

1 INTRODUCTION
Outlier detection (OD) is a crucial machine learning task for identi-
fying data points deviating from a general distribution [4, 57, 100].
OD has numerous real-world applications, including anti-money
laundering [49], rare disease detection [75], rumor detection [89],
and network intrusion detection [45]. OD algorithms have been

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

serving a critical role in large cloud services for monitoring server
abnormality at Microsoft [81] and Amazon [11], as well as for fraud
detection at eBay [2] and Alibaba [55].
Scalability challenges of OD . Numerous OD algorithms have
been proposed recently to detect outliers for different types of data
(e.g., tabular data [4, 41, 54, 105], time series [16, 18, 23, 44], graphs
[5, 17]). Although there is no shortage of detection algorithms, OD
applications face challenges in scaling to large datasets, both in terms
of execution time and memory consumption, which prevents OD
algorithms from being deployed in data-intensive or time-critical
tasks such as real-time credit card fraud detection. To address these
challenges, recent work focuses on both developing distributed OD
algorithms on CPUs [8, 13, 62, 72, 74, 91, 97, 102, 104] and acceler-
ating certain OD algorithms on GPUs [9, 46]. However, existing
GPU-based OD solutions only target specific (families of) OD algo-
rithms and cannot support generic OD computations. For instance,
Angiulli et al. [9] showcases an example of using GPUs for distance-
based algorithms, while how to handle linear and probabilistic OD
algorithms remains unclear under the proposed solution.
Advances in deep neural networks . On the other hand, deep neu-
ral networks (DNNs) have revolutionized computer vision, natural
language processing, and various other fields [32, 48, 98] over the
last decade. This success is largely due to the recent development
of DNN systems (e.g., TensorFlow [1] and PyTorch [77]). These
systems achieve fast tensor algebra computations (e.g., matrix mul-
tiplication, convolution, etc.) on modern hardware accelerators (e.g.,
GPUs and TPUs) and use efficient parallelization strategies (e.g.,
data, model, and pipeline parallelism [1, 39, 69]) to aggregate the
compute resources across multiple accelerators, enabling efficient
and scalable DNN computations.

This paper explores a new approach to building GPU-accelerated
OD systems. Instead of following the methodology used in existing
GPU-based OD frameworks (i.e., providing efficient GPU imple-
mentations tailored to specific OD applications), we ask: can we
leverage the compilation and optimization techniques in DNN systems
to minimize the time and memory consumption of a wide range of
common OD computations?

1.1 Our Approach
In this paper, we present TOD, a tensor-based outlier detection
system that abstracts OD applications into tensor operations for
efficient GPU acceleration. TOD leverages both the software and
hardware optimizations in modern deep learning frameworks to
enable efficient and scalable OD computations on distributed multi-
GPU clusters. To the best of our knowledge, TOD is the first GPU-
based system for generic OD applications. Fig. 1 shows an overview
of TOD. Building a tensor-based OD system requires addressing
three major obstacles.

ar
X

iv
:2

11
0.

14
00

7v
3

 [
cs

.L
G

]
 1

7
Se

p
20

22

https://doi.org/XX.XX/XXX.XX
https://github.com/yzhao062/pytod
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

An Outlier Detection Task

Programming Model

Basic tensor

operator 1

Function

operator 1

Function

operator 2
…

Basic tensor

operator 2

Basic tensor

operator 3
…

Provable Quantization

Data

Quantization

Low-precision

Evaluation

Exactness

Verification

Automatic Batching Multi-GPU Support

GPU 1

GPU 2

…

Section 4

Section 5

Section 6

Decomposed to optimized operators

Save GPU memory without accuracy loss

Divide and conquer with single or multi-GPUs

Outlier Scores of the Input Task

Result

Aggr.

Figure 1: Systemoverview.TOD abstractsODalgorithms into
small building blocks via the programming model for deep
optimization, with a set of techniques including provable
quantization, automatic batching, andmulti-GPU support.

Representing OD computations using tensor operations. Un-
like DNN models, which are represented as a pipeline of tensor al-
gebra operators (e.g., matrix multiplication), many OD applications
involve a diverse collection of operators that have traditionally not
been implemented in terms of tensor operations, such as proximity-
based algorithms, statistical approaches, and linear methods (see
an overview of OD applications in §2.1). Implementing OD appli-
cations one at a time and accounting for software and hardware
optimizations is labor-intensive. To address this obstacle, TOD in-
troduces a new programming model for OD that decomposes a
broad set of OD applications into a small collection of basic tensor
operators and functional operators, which significantly reduces the
implementation and optimization effort and opens the possibility
of easily supporting new OD algorithms.
Quantizing OD computations. Quantization is commonly used
in existing DNN frameworks to reduce time and memory consump-
tion of DNN computations by executing intermediate operations of
DNNmodels in a low-precision floating-point representation. Quan-
tization in general does not preserve the end-to-end equivalence of
a DNNmodel and may introduce potential accuracy losses. To apply
quantization, the current practice is fine-tuning a quantized DNN
model on the training dataset in a supervised fashion and assessing
the accuracy loss; however, this approach is not directly applicable
to OD, since most OD algorithms are unsupervised and thus lack a
direct way for measuring accuracy. To address this challenge, TOD
introduces a novel quantization technique called provable quan-
tization, which leverages the numerical insensitivity of some OD
algorithms (e.g., 𝑘-nearest-neighbors may return identical results
for some samples when computing with different floating-point
precisions) and automatically performs specific OD operators in
lower precision. In contrast to prior quantization techniques that

also use lower precision calculations at the expense of accuracy,
our proposed provable quantization technique provably guarantees
no accuracy loss.
Enabling scalableOD computations. Existing deep learning frame-
works cannot directly support large-scale OD applications, since
modern deep learning systems are designed to iteratively process
a small batch of training samples even though the entire training
dataset can be large. For example, to train ResNet-50 [35] on the
ImageNet dataset [25], the DNN systems only handle small mini-
batches (e.g., 256 samples) in each training iteration, while the
dataset contains more than 14 million samples. However, many OD
applications involve operating on all samples, such as computing
distances between all sample pairs. Executing such an application
on a single GPU would typically run out of memory because GPUs
nowadays have limited memory capacities (e.g., compared to those
of CPU RAM). To overcome the difficulty of executing OD applica-
tions in iterations and the resource limits of a single GPU, TOD uses
an automatic batchingmechanism to execute memory-intensive OD
operators in small batches, which are distributed across multiple
GPUs in parallel in a pipeline fashion. The automatic batching and
multi-GPU support allow TOD to scale to datasets as large as those
commonly encountered in deep learning.

We compare TOD against existing CPU- and GPU-based OD sys-
tems on both real-world and synthetic datasets. TOD is on average
10.9 times faster than PyOD, a state-of-the-art comprehensive CPU-
based OD system [106], and can process a million samples within
an hour while PyOD cannot. Compared to existing GPU-based OD
systems, TOD can handle much larger datasets, while the GPU
baselines run out of GPU memory. Our evaluation further shows
that provable quantization, automatic batching, and multi-GPU
support are all critical for efficient and scalable OD computations.

In summary, this paper makes the following contributions:
• We propose TOD, the first tensor-based system for generic outlier
detection, enabling efficient and scalable OD computations on
distributed multi-GPU clusters.

• TOD uses a new programming model that abstracts complex OD
applications into a small collection of basic tensor operators for
efficient GPU acceleration.

• We introduce provable quantization that accelerates unsuper-
vised OD computations by performing specific floating-point
operators in lower precision while provably guaranteeing no
accuracy loss.

Extensibility and integration. TOD is open-sourced1 (see Appx.
§D for API demonstration), which enables easy development of new
OD algorithms by leveraging highly optimized tensor operators or
including new operators (see examples in §7.1). This extensibility
of TOD yields a large number of yet-to-be-discovered OD methods.
Thus, we believe that TOD also provides a platform that enables
rapid research and development of novel OD methods.

2 BACKGROUND AND RELATEDWORK
We provide background on existing OD algorithms for tabular
data and which ones are accelerated by TOD (§2.1), on the DNN
infrastructure that TOD builds off of to do acceleration (§2.2), and
on existing comprehensive OD systems (§2.3), including the current

1Open-sourced Library: https://github.com/yzhao062/pytod
2

https://github.com/yzhao062/pytod

Table 1: Key OD algorithms for tabular data and their time
and space complexitywith a brute-force implementation (ad-
ditional optimization is possible but not considered here),
where 𝑛 is the number of samples, and 𝑑 is the number of di-
mensions. Note that ensemble-based methods’ complexities
depend on the underlying base estimators. Algorithms that
can be accelerated in TOD are marked with ✓.

Category Algorithm Time
Compl.

Space
Compl.

Optimized
in TOD

Proximity 𝑘NNOD 𝑂 (𝑛2) 𝑂 (𝑛2) ✓

Proximity COF 𝑂 (𝑛3) 𝑂 (𝑛2) ✓

Proximity LOF 𝑂 (𝑛2) 𝑂 (𝑛2) ✓

Proximity LOCI 𝑂 (𝑛2) 𝑂 (𝑛2) ✓

Statistical KDE 𝑂 (𝑛3) 𝑂 (𝑛2) ✗

Statistical HBOS 𝑂 (𝑛𝑑) 𝑂 (𝑛𝑑) ✓

Statistical COPOD 𝑂 (𝑛𝑑) 𝑂 (𝑛𝑑) ✓

Statistical ECOD 𝑂 (𝑛𝑑) 𝑂 (𝑛𝑑) ✓

Ensemble LODA N/A N/A ✓

Ensemble FB N/A N/A ✓

Ensemble iForest N/A N/A ✗

Ensemble LSCP N/A N/A ✓

Linear PCA 𝑂 (𝑛𝑑) 𝑂 (𝑛) ✓

Linear OCSVM 𝑂 (𝑛3) 𝑂 (𝑛2) ✗

state-of-the-art PyOD [106]. In §2.4, we review additional systems,
algorithms, and applications for other data formats in addition to
tabular data (e.g., time series and graphs). Note that TOD primarily
focuses on OD in tabular data due to its popularity [4]; TOD can
be extended to support OD in other data types with modifications.

2.1 Existing OD Algorithms and Scalability
Outlier detection (also called anomaly detection) is a key machine
learning task that aims to find data points that deviate from a gen-
eral distribution [4, 57, 100]. As shown in Table 1, non-deep-learning
OD algorithms may be grouped into four categories (see the book
[4] by Aggarwal for more details on algorithms): (i) proximity-based
algorithms that rely on measuring sample similarity including 𝑘NN
[10], ABOD [43], COF [90], LOF [19], and LOCI [76]; (ii) statisti-
cal approaches including KDE [85], HBOS [31], COPOD [53], and
ECOD [54]; (iii) ensemble-based methods that build a collection of
detectors for aggregation like iForest [56], LODA [79], and LCSP
[105]; and (iv) linear models such as PCA [86].

Importantly, many OD algorithms suffer from scalability issues
[73, 104]. For example, Table 1 shows that various proximity-based
OD algorithms have at least 𝑂 (𝑛2) time and space complexities—
they all require estimating and storing pairwise distances among
all 𝑛 samples. The high time complexities of many OD algorithms
limit their applicability in real-world applications that require either
real-time responses (e.g., fraud detection [60]) or the concurrent
processing of millions of samples [107]. As shown in the table, TOD
supports nearly all the OD algorithms mentioned.

2.2 DNN Infrastructure and Acceleration
Deep neural networks have dramatically improved the accuracy of
artificial intelligence systems across numerous fields [28, 32, 75].

Its success is fueled by recent advances in both hardware and soft-
ware [47]. Specifically, DNN systems depend on tensor operations
that can often be parallelized and executed in small batches. These
operations are well-suited for GPUs, especially as a single GPU
nowadays often has many more cores than a single CPU; while
GPU cores are not as general purpose as CPU cores, they suffice
in executing the tensor operations of deep learning. Moreover, the
maturity of DNN programming interfaces such as PyTorch [77] and
TensorFlow [1] makes developing machine learning models easy
with a wide range of GPUs. Multiple works attempt to leverage
DNN systems for accelerating training data science and ML tasks,
including Hummingbird [68], Tensors [42], and AC-DBSCAN [37].

Differently, TOD for the first time, extends the acceleration us-
age of DNN systems to OD algorithms. We build TOD using the
DNN ecosystem, taking advantage of its established hardware ac-
celeration and software accessibility. This design choice also opens
the opportunity for unifying classical OD algorithms (see §2.1) and
DNN-based OD algorithms on the same platform—this emerging
direction has gained increasing attention in OD research [83].

2.3 Outlier Detection Systems
CPU-based systems . Over the years, comprehensive OD systems
on CPUs that cover a diverse group of algorithms have been de-
veloped in different programming languages, including ELKI Data
Mining [3] and RapidMiner [82] in Java, and PyOD [106] in Python.
Among these, PyOD is the state-of-the-art (SOTA) with deep op-
timization including just-in-time compilation and parallelization.
It is widely used in both academia and industry, with hundreds of
citations [103] and millions of downloads per year [87]. Recently,
the PyOD team proposed an acceleration system called SUOD to
further speed up the training and prediction in PyOD with a large
collection of heterogeneous OD models [104]. Specifically, SUOD
uses algorithmic approximation and efficient parallelization to re-
duce the computational cost and therefore runtime. There are other
distributed/parallel systems designed for specific (family of) OD
algorithms with non-GPU nodes (e.g., CPUs): (i) Parallel Bay, Paral-
lel LOF, DLOF for local OD algorithms [62, 72, 97], (ii) DOoR for
distance-based OD [13], (iii) distributed OD for mixed-attributed
data [74] (iv) PROUD for stream data [91] and (v) Sparx for Apache
Spark [102]. These distributed non-GPU systems do not constitute
as baselines as TOD is a comprehensive system covering differ-
ent types OD algorithms, while the specialized systems only cover
specific algorithms. Thus, we consider the SOTA comprehensive
system, PyOD, as the primary baseline (see exp. results in §7.3).

GPU-based systems . There are efforts to use GPUs for fast OD
calculations for LOF [6], distance-based methods [9], KDE [12],
and data stream [46]. These approaches rely on exploring the char-
acteristics of a specific OD algorithm for GPU acceleration. This
limits their generalization to a wide collection of OD algorithms.
Furthermore, none has direct multi-GPU support, leading to lim-
ited scalability. To the best of our knowledge, there is no existing
comprehensive GPU-based OD system that covers a diverse group
of algorithms. Thus, we use direct GPU implementations of OD
algorithms and selected works above as GPU baselines when ap-
propriate (see details in §7.2 and Table 3).

3

Outlier Detection Algorithms as Combinations of BTOs and FOs

kNNOD

(8+a)

ABOD

(8+a+d)

COF

(1+8)

LOF

(8+a+c)

LOCI

(8+a+c)

HBOS

(3+6+7)

SOD

(2+b)

LODA

(5+6+7)

PCA

(4+8)
COPOD

(7+f)

Model Selection & Ensemble Learning from BTOs and FOs

FB

(6+7)

LSCP

(7+8+a+b)
MetaOD

(4+8)
SUOD

(8+e)
…

Functional Operators (FO) Assembled by BTOs

a. kNN

(1+2)

d. cosine sim.

(1+8)

e. Dim.

reduction (4,6)
f. Density est.

(4,6)

Basic Tensor Operators (BTO) with Deep Optimization

1. cdist 4. SVD 5. Feat. sampler 8. Basic OPs6. Histogram 7. Agg.2. topk 3. Intersect

b. Shared neighbors

(1+2+3)

c. Neighbors within

Range (1+8)

ECOD

(7+f)

… … … … … …

Figure 2: With algorithmic abstraction, more than 20 OD algorithms (denoted by) are abstracted into eight basic tensor
operators (in) and six functional operators (in). This abstraction reduces the implementation and optimization effort, and
opens the possibility of including new algorithms. All operators are executed on GPUs using automatic batching (see §6), and
operators marked with⋆ are further accelerated using provable quantization (see §5).

2.4 Systems for Other Data Types and Scenarios
Over the years, various algorithms and systems have been devel-
oped for OD with different types of data other than tabular, in-
cluding time-series/sequence (TOP [23], NETS [99], GraphAn [17],
CPOD [92], Series2graph [16], SAND [18], etc.), and graph (e.g.,
Elle [41], PyGOD [58, 59], etc.). Also, different input data are also
assumed in streaming and feature-evolving fashions (e.g., xStream
[63], etc.). Meanwhile, emphasis has also been given to building
systems for explaining outliers (VSOutlier [22] and Exathlon [36],
etc.) and outlier repairing (IMR [101], etc.), other than detecting
them. In this paper, we focus on the detection task in the most
prevalent setting (i.e., static tabular data) [4], while future works
may extend to other data types and scenarios.

3 OVERVIEW
3.1 Definition and Problem Formulation
A comprehensive OD system implements a collection of OD models
M = {𝑀1, ..., 𝑀𝑚} such that given a user-specified OD model𝑀 ∈
M and input data X ∈ R𝑛×𝑑 without ground truth labels (rows
of X index data points, while columns index features), the system
outputs outlier scores O := 𝑀 (X) ∈ R𝑛 , which should be roughly
deterministic and irrespective of the underlying system (higher
values in O correspond to data points more likely to be identified
as outliers; threshold on outlier scores can be used to determine
which points are outliers). Given a hardware configuration C, e.g.,
CPU, RAM, and GPU (if available), the system performance can be
measured in efficiency (both runtime and memory consumption).

3.2 System Overview
As a reminder from Section 1, TOD is a comprehensive (i.e., cov-
ering a diverse group of methods) OD system as outlined in Fig. 1

and Table 1. For an outlier detection task, TOD decomposes it into
a combination of predefined tensor operators via the proposed pro-
gramming model for direct GPU acceleration (§4). Notably, TOD
opportunistically performs provable quantization on tensor opera-
tors to enable faster computation and reduce memory requirements,
while provably maintaining model accuracy (§5). To overcome the
resource limitation of a single GPU, we further introduce automatic
batching and multi-GPU support in TOD (§6).

4 PROGRAMMING MODEL
Motivation. As a comprehensive system, TOD aims to include a
diverse collection of OD algorithms, including proximity-based
methods, statistical methods, and more (see §2.1). However, not
all algorithms can be directly converted into tensor operations for
GPU acceleration. A key design goal of our programming model
is to allow for many OD algorithms to be implemented by piecing
together some basic commonly recurring building blocks. In par-
ticular, rather than manually implementing many OD algorithms
separately, which is a labor-intensive process, we instead define
OD algorithms in terms of basic building blocks that each just
needs to be implemented once. Moreover, the building blocks can
be optimized independently.

4.1 Algorithmic Abstraction
The key idea of our programming model is to decompose existing
OD algorithms into a set of low-level basic tensor operators (BTOs),
which can directly benefit from GPU acceleration. On top of these
BTOs, we introduce higher-level OD operators called functional
operators (FOs) with richer semantics. Consequently, OD algorithms
can be constructed as combinations of BTOs and FOs.

4

ABOD

(8+a+d)

a. kNN

(1+2)
d. cosine

sim.(1+8)

8. Basic OPs1. cdist2. topk

(a) Abstraction of ABOD

COPOD
(7+f)

f. Density
est. (4,6)

6. Histogram4. SVD7. Agg.

(b) Abstraction of COPOD

Figure 3: Examples of building complex OD algorithms with
FO and BTO conveniently.

Fig. 2 shows the hierarchy of TOD’s programming abstraction in
a bottom-up way, with increasing dependency: 8 BTOs are first con-
structed as the foundation of TOD (shown at the bottom in gray),
while 6 FOs are then created on top of them (shown in the middle).
Finally, OD algorithms and key functions on the top of the figure
can be assembled by BTOs and FOs. In other words, TOD uses a
tree-structured dependency graph, where the BTOs (as leaves of
the tree) are fully independent for deep optimization, and all the
algorithms depending on these BTOs can be collectively optimized.
Clearly, this abstraction process reduces the repetitive implementa-
tion and optimization effort, and improves system efficiency and
generalization. Additionally, it also facilities fast prototyping and
experimentation with new algorithms.

4.2 Building Complete Algorithms
It is easy to build an end-to-end OD application by constructing its
computation graph using FOs and BTOs. For instance, angle-based
outlier detection (ABOD) is a classical OD algorithm [43], where
each sample’s outlier score is calculated as the average cosine sim-
ilarity of its neighbors. Fig. 3(a) highlights an implementation of
ABOD that uses an FO called 𝑘NN to obtain a list of neighbors for
each sample and then applies another FO called cosine sim. for
calculating cosine similarity. Note that the FOs are also built as
combinations of BTOs. For example, 𝑘NN is implemented as calcu-
lating pairwise sample distance using cdist and then identifying
the 𝑘 “neighbor” with smallest distances using topk. Addition-
ally, Fig. 3(b) shows the abstraction graph of copula-based outlier
detection (COPOD) [53]. Other OD algorithms follow the same
abstraction protocol as a combination of BTOs and FOs.

5 PROVABLE QUANTIZATION
Motivation. OD operators mainly depend on floating-point oper-
ations, namely {+,−,×, /}. For these operations, the main source
of the imprecision is rounding [51]. Of course, rounding errors in-
crease when storing numbers using fewer bits, e.g., 16-bit precision
leads to more inaccuracy than 64-bit precision. Manymachine learn-
ing algorithms therefore use high-precision floating-points when
possible to minimize the impact of the rounding errors. However,
working with high-precision floating-point numbers can increase
computation time and storage costs. This is especially critical for
GPU systems with limited memory.

To reduce memory usage and runtime, quantization has been
applied to many machine learning algorithms [14] and data-driven
applications [7, 95, 96]. Simply put, it refers to executing an opera-
tor (function) with lower-precision floating representations. If we

denote the original function by 𝑟 (𝑥) and its quantization by 𝑟𝑞 (𝑥),
the rounding error Err(·) of quantization is defined as the output dif-
ference between 𝑟 (𝑥) and 𝑟𝑞 (𝑥), namely Err(𝑟𝑞 (𝑥)) = 𝑟 (𝑥) − 𝑟𝑞 (𝑥).
Intuitively, quantization can save memory at the cost of accuracy.
How to balance the tradeoff between thememory cost and algorithm
accuracy is a key challenge for quantizing in machine learning [24].
In supervised ML, one may measure the inaccuracy caused by quan-
tization via using ground truth labels to evaluate the performance.
However, this is infeasible under unsupervised OD settings, where
no ground truth labels is available for evaluation as described in §3.
Thus, existing quantization techniques for supervised ML do not
suit the need of unsupervised OD.

In TOD, we design a correctness-preserving quantization for
(unsupervised) OD applications, termed provable quantization. The
key idea we use is that depending on the operator used, it is possible
to apply quantization to save memory consumption with no loss in
accuracy. As a motivating example, consider the sign function 𝑟 (𝑥)
that returns “+” if 𝑥 > 0 and returns “−” otherwise. Clearly, even
if we quantize 𝑥 to have a single bit (that precisely indicates the
sign of 𝑥), we can achieve an exact answer for 𝑟 (𝑥) that is the same
as if instead 𝑥 had more bits. Similarly, the ranking between two
floating-point numbers often only depends on the most significant
digits. Building on this simple intuition, we introduce provable
quantization for a collection of OD operators, where the output and
accuracy of the operators remain provably unchanged before and
after quantization.

5.1 (1 + 𝜖)-property for Rounding Errors
Provable quantization relies on a standard analysis technique for
floating-point numbers called the “(1 + 𝜖)-property” (e.g., [51]). Let
F denote the set of 64-bit floating-point numbers. For 𝑥,𝑦 ∈ F, we
define the floating-point operation “⊛” as 𝑥 ⊛ 𝑦 ≜ fl(𝑥 ∗ 𝑦), where
∗ ∈ {+,−,×, /} and fl(·) refers to the IEEE 754 standard for rounding
a real number to a 64-bit floating-point number [40]. For example, ⊕
is floating-point addition and ⊗ is floating-point multiplication. The
standard technique for calculating the rounding errors in floating-
point operations is the (1 + 𝜖)-property [51], which is formally
defined as follows.

Theorem 1 (Theorem 3.2 of Lee et al. 51). Let 𝑥,𝑦 ∈ F, and
∗ ∈ {+,−,×, /}. Suppose that |𝑥 ∗𝑦 | ≤ maxF. Then when we compute
𝑥 ∗ 𝑦 in floating-point, there exist multiplicative and additive error
terms 𝛿 ∈ R and 𝛿 ′ ∈ R respectively such that

𝑥 ⊛ 𝑦 = (𝑥 ∗ 𝑦) (1 + 𝛿) + 𝛿 ′, where |𝛿 | ≤ 𝜖, |𝛿 ′ | ≤ 𝜖 ′. (1)
In the above equation, 𝜖 and 𝜖 ′ are constants that do not depend on 𝑥
or 𝑦. For instance, when working with 64-bit floating-point numbers,
𝜖 = 2−53 and 𝜖 ′ = 2−1075.

As discussed by Lee et al. [51, Section 5], this property can be
further simplified when the exact result of the floating operation is
not in the so-called “subnormal” range: the addictive error term 𝛿 ′

can be soundly removed, leading to a simplified (1 + 𝜖)-property:
𝑥 ⊛ 𝑦 = (𝑥 ∗ 𝑦) (1 + 𝛿), where |𝛿 | ≤ 𝜖. (2)

5.2 Provable Quantization in TOD
TOD applies provable quantization for an applicable operator 𝑟 (·)
with input 𝑥 in three steps: (i) input quantization, (ii) low-precision

5

evaluation, and (iii) exactness verification and, if needed, recalcula-
tion. In a nutshell, the input is first quantized into lower precision,
and then the operator is evaluated in the lower precision, where
𝑟 (·) is evaluated as 𝑟𝑞 (𝑥). To verify the exactness of the quantiza-
tion, we calculate the rounding error Err(𝑟𝑞 (𝑥)) by the simplified
(1 + 𝜖)-property in eq. (2) and then check whether the result of 𝑟 (·)
may change with the rounding error. If it passes the verification,
then we output Err(𝑟𝑞 (𝑥)) as the final result; otherwise, we use
the original precision of 𝑥 to recalculate 𝑟 (𝑥). Note that we apply
this technique to the entire input data X ∈ R𝑛×𝑑 , and only need
to recalculate on the subset of X where the verification fails. Note
that provable quantization does not apply to all operators, and we
elaborate on the criteria in §5.4.

5.3 Case Study: Neighbors Within Range
We show the usage of provable quantization in TOD on neighbors
within range (NWR, one of the FOs of our programming model), a
common step in many OD algorithms, e.g., LOF [19] and LOCI [76].
NWR identifies nearest neighbors within a preset distance thresh-
old (usually a small number), which may be considered as a vari-
ant of 𝑘 nearest neighbors. More formally, given an input tensor
X := [𝑋1, 𝑋2, ..., 𝑋𝑛] ∈ R𝑛×𝑑 (𝑛 samples and 𝑑 dimensions) and
the distance threshold 𝜙 , NWR first calculates the pairwise distance
among each sample via the cdist operator, yielding a distance
matrix D ∈ R𝑛×𝑛 , where D𝑖, 𝑗 is the pairwise distance between
𝑋𝑖 and 𝑋 𝑗 . Then, each pairwise distance in D is compared with
𝜙 , and NWR outputs the indices of samples where D𝑖, 𝑗 ≤ 𝜙 . As the
pairwise distance calculation in NWR requires𝑂 (𝑛2) space, provable
quantization can provide significant GPU memory savings.

NWR meets the criterion we outline in §5.2, where eq. (2) can be
applied to estimate the rounding errors. Recall that the pairwise
Euclidean distance between two samples is

D𝑖 𝑗 =
𝑋𝑖 − 𝑋 𝑗

2
2 = ∥𝑋𝑖 ∥22 +

𝑋 𝑗

2
2 − 2𝑋𝑇

𝑖 𝑋 𝑗 . (3)

We shall compute this in floating-point. Importantly, in our analy-
sis to follow, the ordering of floating-point operations matters in
determining rounding errors. To this end, we calculate distance
using the right-most expression in eq. (3) (note that we do not first
compute the difference 𝑋𝑖 − 𝑋 𝑗 and then compute its squared Eu-
clidean norm). When calculating the first term in the RHS of eq. (3)
via floating-point operations, we get

fl(∥𝑋𝑖 ∥22)= (𝑋𝑖,1 ⊗ 𝑋𝑖,1) ⊕ (𝑋𝑖,2 ⊗ 𝑋𝑖,2) ⊕ · · · ⊕ (𝑋𝑖,𝑑 ⊗ 𝑋𝑖,𝑑)
= (𝑋 2

𝑖,1 (1+𝛿1)) ⊕ (𝑋 2
𝑖,2 (1+𝛿2)) ⊕ · · · ⊕ (𝑋 2

𝑖,𝑑
(1+𝛿𝑑)),

where the second equality uses eq. (2) and we note that the errors
𝛿1, . . . , 𝛿𝑑 across the floating-point multiplications (for squaring)
need not be the same (in fact, these need not be the same across sam-
ples 𝑖 = 1, 2, . . . , 𝑛 but we omit this indexing to keep the equation
from getting cluttered).

Next, by defining 𝑥max ≜ max𝑖∈{1,...,𝑛},𝑘∈{1,...,𝑑 } |𝑋𝑖,𝑘 | and re-
calling from Theorem 1 that each of 𝛿1, 𝛿2, . . . , 𝛿𝑑 above is at most

𝜖 , we get

fl(∥𝑋𝑖 ∥22)= (𝑋 2
𝑖,1 (1+𝛿1)) ⊕ (𝑋 2

𝑖,2 (1+𝛿2)) ⊕ · · · ⊕ (𝑋 2
𝑖,𝑑

(1+𝛿𝑑))

≤ [𝑥2max (1 + 𝜖)] ⊕ [𝑥2max (1 + 𝜖)] ⊕ · · · ⊕ [𝑥2max (1 + 𝜖)]︸ ︷︷ ︸
𝑑 terms added via floating-point addition

≤𝑑 · 𝑥2max (1 + 𝜖)1+⌈log2 𝑑 ⌉ ,

where for the last step, log2 𝑑 shows up since summation of 𝑑
elements in lower-level programming languages is implemented in
a divide-and-conquer manner that reduces to ⌈log2 𝑑⌉ operations
(there is still a “1+” term in the exponent for the floating-point
multiplication/squaring). The rounding error is bounded as follows:

Err(∥𝑋𝑖 ∥22) = ∥𝑋𝑖 ∥22 − fl(∥𝑋𝑖 ∥22)
≤ 𝑑 · 𝑥2max − fl(∥𝑋𝑖 ∥22)
≤
��𝑑 · 𝑥2max − fl(∥𝑋𝑖 ∥22)

��
≤ 𝑑 · 𝑥2max [(1 + 𝜖)1+⌈log2 𝑑 ⌉ − 1] .

This same analysis can be used to bound the floating-point errors
of the other terms in eq. (3). Overall, we get

Err(D𝑖 𝑗) ≤ 4𝑑 · 𝑥2max [(1 + 𝜖)1+⌈log2 𝑑 ⌉+2 − 1], (4)

where the “+2” shows up in the exponent due to the addition and
subtraction in the RHS of (3) that we compute in floating-point.

Inequality (4) provides a numerical way for checking whether a
single entry D𝑖 𝑗 is within the range of 𝜙 as |D𝑖 𝑗 − 𝜙 | > Err(D𝑖 𝑗).
More conveniently, we could scale the input X into the range of
[0, 1] before the distance calculation [80], so that 𝑥max ≤ 1 and
the implementation complexity can be further reduced. With this
treatment, a large amount of GPU memory can be saved in NWR
operations (see §7.5 for results).

5.4 Applicability and Opportunities of
Provable Quantization

Not all operators can benefit from provable quantization. To benefit
from provable quantization, an operator needs to satisfy two criteria.
First, the operator’s output values cannot require a floating-point
representation in the original precision, otherwise the exactness
verification would require executing the operator in the original
precision, resulting in no memory or time savings. For example,
provable quantization is not applicable to cdist since its outputs
are raw floating-point pairwise distances, and verifying its exact-
ness requires calculating cdist in the original precision. Second,
the performance gain in low-precision evaluation of the operator
needs to be larger than the overhead of verification. Based on these
two criteria, we mark the operators generally applicable for prov-
able quantization by ⋆ in Fig. 2. Also see §7.5 for experimental
results on this. Although the design of provable quantization is
motivated by unsupervised OD algorithms with extensive ranking
and selecting operations, other ML algorithms can also benefit if
they meet the above criteria. For OD algorithms in which provable
quantization does not apply, they could still benefit from TOD’s
other optimizations such as automatic batching (§6).

6

6 AUTOMATIC BATCHING AND MULTI-GPU
SUPPORT

Motivation. Unlike CPU nodes with up to terabytes of DRAM, to-
day’s GPU nodes face much more stringent memory limitations [30,
50, 66, 67]—modern GPUs are mostly equipped with 4-40 GB of
on-device memory [64, 88]. Out-of-memory (OOM) errors have
thus become common in GPU-based systems for machine learning
tasks [29]. To overcome this challenge, we design an automatic
batching mechanism to decompose memory-intensive BTOs into
multiple batches, which are executed on GPUs in a pipeline fash-
ion. Automatic batching also allows TOD to equally distribute OD
computation across multiple GPUs. TOD applies different mech-
anisms to decompose an operator into batches based on its data
dependency. Specifically, an operator has inter-sample dependency
if the computation of each sample requires accessing other samples,
such as cdist. On the other hand, an operator has inter-feature
dependency if the computation of each feature depends on other
features, such as Feat. sampler. Fig. 4 summarizes TOD batching
mechanisms for operators with and without these dependencies.
Direct batching. TOD automatically decomposes an operator into
small batches if the operator is: (i) sample-independent: the estima-
tion of each sample is independent, or (ii) feature-independent: the
contribution of each feature is independent. When either condition
holds, TOD directly partitions the operator into multiple batches
by splitting along the sample or feature dimension, computes these
batches in a pipeline fashion, and aggregates individual batches
to produce the final output, as shown in Fig. 5. For instance, topk
is a sample-independent operator. For an input tensor X ∈ R𝑛×𝑑 ,
topk outputs the indices of the largest 𝑘 values for each sample
(i.e., row), resulting in an output tensor IX := topk(X, 𝑘) ∈ R𝑛×𝑘 .
Therefore, we could split X into batches with full features, each
with 𝑏 samples (i.e.„ {X1,X2, ...} ∈ R𝑏×𝑑). As another example,
Histogram outputs the frequencies of each feature’s values, which
is feature-independent. Thus, we could partition X into blocks of 𝑏
features, e.g., {X1,X2, ...} ∈ R𝑛×𝑏 .
Customized batching. For operators with both inter-sample and
inter-feature dependencies, the computation of each data point
involves all samples and features, and therefore cannot be directly
decomposed into batches along the same or feature dimension. TOD
provides customized batching strategies for these operators. For
example, to automatically batch cdist, TOD uses the approach
introduced in Neeb and Kurrus [70], which splits an input dataset
across samples and calculates the pairwise distance of each pair of
split in batches.

6.1 Sequential Batching and Operator Fusion
Simple concatenation. Since BTOs are independent from each
other, executing a sequence of BTOs in batches is straightforward,
i.e., simply feed the output of a batch operator as an input to another
one. For example, 𝑘NN (see Fig. 2) finds the 𝑘 nearest neighbors by
first calculating pairwise distances of input samples via the cdist
BTO and then returns the index of𝑘 itemswith the smallest distance
via the topk BTO. Thus, 𝑘NN batching is achieved by running cdist
and topk sequentially, where each uses automatic batching and
the output of the former is the input of the latter. Note that simple
concatenation applies to all BTOs and FOs as the default choice.

Direct batching
across samples

Direct batching
across features

Direct batching
across samples

Customized
batching strategies

w/ inter-
sample dep.

w/ inter-
feature dep.

w/o inter-
sample dep.

w/o inter-
feature dep.

Figure 4: TOD applies automatic batching to operators with-
out inter-sample or inter-feature dependency, and uses cus-
tomized batching strategies for operators with both data de-
pendencies.

𝑓(batch 1)

𝑓(batch 1)

𝑓 is feature-independent

𝑓(batch 2)

𝑓(batch 3)

𝑓 is sample-independent

𝑓(batch 2) 𝑓(batch 3)

Input Dataset

Operator 𝑓

Aggregated
results

from indep.
batches

Figure 5: Direct batchingwith independence assumption cre-
ates batches along the sample or feature index.

Input Dataset Create Batches by

Pairing Data Splits

split 1

split 2

cdist(

split 1,

split 1)

cdist(

split 1,

split 2)

cdist(

split 2,

split 1)

cdist(

split 2,

split 2)
cdist

Split by Samples

Figure 6: Customized batching solution for cdist in TOD.
Operator fusion. Although the simple concatenation discussed
above is straightforward, a closer look unlocks deeper optimization
opportunities in automatic batching with a sequence of operators.
Notably, the output of 𝑘NN is the indices of the 𝑘 nearest neigh-
bors of an input dataset, where the pairwise distance generated
by cdist is only used in an intermediate step but not returned.
If we could prevent moving this large distance matrix between
operators (i.e., cdist and topk), space efficiency can be improved.
In deep learning systems, operator fusion is a common optimiza-
tion technique to fuse multiple operators into a single one in a
computational graph [15, 61, 65, 71, 93]. Fig. 7 compares simple
concatenation (subfigure a) and operator fusion (subfigure b) on
𝑘NN. Specifically, the latter executes the topk BTO on the cdist
BTO’s individual batches separately rather than running topk on
the full distance matrix outputted by cdist. Note that the global
𝑘 nearest neighbors (of the full dataset) can be identified from the
𝑘 local neighbor candidates from batches in the final aggregation,
so the result is still exact. This prevents moving the entire 𝑛 × 𝑛

distance matrix between operators, which often causes OOM. TOD
uses a rule-based approach to opportunistically fusing operators
to reduce the kernel launch overhead and data transfers between
CPUs and GPUs. TOD provides an interface that allows users to

7

Input Dataset cdist: Calculate
Pairwise Distance 𝐃

split 1

split 2

cdist(
split 1,
split 1)

cdist(
split 1,
split 2)

cdist(
split 2,
split 1)

cdist(
split 2,
split 2)cdist+topk

Split by Samples topk: Return the 𝑘
neighbors by topk(𝐃)

(a) Simple concatenation: topk is invoked on the full result of cdist—
we need to communicate the large distance matrix D.

Input Dataset topk+cdist: Get 𝑘 neighbor
candidates on batches

split 1

split 2

topk(cdist
(split 1,
split 1))

topk(cdist
(split 1,
split 2))

topk(cdist
(split 2,
split 1))

topk(cdist
(split 2,
split 2))

cdist+topk

Split by Samples Final
Aggregation

(b) Operator fusion: topk is directly invoked on the batch result of
cdsit, preventing the communication of distance matrix D.

Figure 7: The comparison of automatic batching for 𝑘NN be-
tween simple concatenation and operator fusion. The latter
has better scalability by not creating and moving large dis-
tance matrix D.

add fusion rules for new OD operators. Appx. C.3 provides a case
study on the effectiveness of operator fusion.

6.2 Multi-GPU Support
To further reduce the execution time of OD algorithms on GPUs,
TOD also supports multi-GPU execution, which is important for
time-critical OD applications and has been widely used for other
data-intensive applications such as graph neural networks [38].
Intuitively, if there is only one GPU, TOD iterates across multiple
batches sequentially and aggregates the results. When multiple
GPUs are available, we could achieve better performance by execut-
ing OD computations concurrently onmultiple homogeneous GPUs.
Specifically, TOD first applies automatic batching to an underly-
ing task—multiple subtasks are created and assigned to available
GPUs. TOD creates a subprocess for each available GPU to execute
the assigned subtasks and a shared global container to store the re-
sults returned from each GPU. Since we equally distribute subtasks
across GPUs, we deem the runtime of each GPU is close. Once all
the subtasks are complete, the final output is generated by aggregat-
ing the results in the global container. For example, automatically
batching cdist in Fig. 6 leads to 4 subtasks, each of which calculates
the pairwise distances for a pair of splits (denoted as blue blocks in
the figure). Each of the four available GPUs executes an assigned
subtask and sends the cdist results to the global container. Finally,
the full cdist result is obtained by aggregating the intermediate
results in the global container. Note that the multi-GPU execution
is at the operator level (e.g., cdist). §7.7 evaluates TOD’s scalability
across multiple GPUs..

7 EXPERIMENTAL EVALUATION
Our experiments answer the following questions:
(1) Is TODmore efficient (in time and space) than SOTA CPU-based

OD system (i.e., PyOD) and selected GPU baselines? (§7.3)
(2) How scalable is TODwhile handling more and more data? (§7.4)

(3) How effective are provable quantization and automatic batch-
ing), in comparison to PyTorch implementation? (§7.5 & 7.6)

(4) How much performance gain can TOD achieve on the multiple
GPUs? (§7.7)

7.1 Implementation and Environment
TOD is implemented on top of PyTorch [77]. We extend PyTorch in
the following aspects to support efficient OD. First, we implement
a set of BTOs and FOs (see Fig. 2) for fast tensor operations in OD.
Second, for operators that support provable quantization (see §5)
and batching (see §6), we create corresponding versions of them to
improve scalability. Additionally, we enable specialized multi-GPU
support in TOD by leveraging PyTorch’s multiprocessing. The
usage and APIs of the open-sourced system can be found in §D.
Adding new operators . In addition to the BTOs and FOs listed in
Fig. 2, users can add new operators in TOD by defining the oper-
ator’s interface (i.e., the input and output tensors of the operator)
and providing an implementation of the operator in PyTorch. This
implementation will be used by TOD to decompose the operator
into PyTorch’s tensor algebra primitives and execute these primi-
tives in parallel on multiple GPUs. For operators that do not have
inter-sample or inter-feature dependency (see §6), TOD automati-
cally decomposes the operator’s computation into multiple batches.
For operators that involve both inter-sample and inter-feature de-
pendencies, TOD require users to provide a customized strategy to
decompose the operator into batches.
Implementing new OD algorithms . One notable characteristic
of OD is that most algorithms involve only straightforward compu-
tation, which can be decomposed into 2-3 BTOs and FOs. Therefore,
we expect that implementing new OD algorithms in TOD should
only involve low cognitive complexity. Appx. A demonstrates an
implementation of a recent ECOD [54] detection algorithm in TOD
in less than ten lines of code.
Experimental setup. All the experiments were performed on an
Amazon EC2 cluster with an Intel Xeon E5-2686 v4 CPU, 61GB
DRAM, and an NVIDIA Tesla V100 GPU. For the multi-GPU support
evaluation, we extend it to multiple NVIDIA Tesla V100 GPUs with
the same CPU node.

7.2 Datasets, Baselines, and Evaluation Metrics
Datasets. Table 2 shows the 11 real-world benchmark datasets
used in this study, which are widely evaluated in OD research
[21, 53, 83, 105] and available in the latest ADBench1 [33]. Given the
limited size of real-world OD datasets, we also build data generation
function in TOD to create larger synthetic datasets (up to 1.5 million
samples) to evaluate the scalability of TOD (see §7.4 for details).
OD algorithms and operators. Throughout the experiments, we
compare the performance of five representative but diverse OD
algorithms across different systems (see §2.1): proximity-based al-
gorithms including LOF [19], ABOD [43], and 𝑘NN [10]; statistical
method HBOS [31], and linear model PCA [86]. We also provide an
operator-level analysis on selected BTOs and FOs to demonstrate
the effectiveness of certain techniques.
Evaluation metrics. Since TOD and the baselines do not involve
any approximation, the output results are exact and consistent

1Datasets available at ADBench: https://github.com/Minqi824/ADBench
8

https://github.com/Minqi824/ADBench

Table 2: Real-world OD datasets used in the experiments. To
demonstrate the results on larger datasets, we also create
and use synthetic datasets throughout the experiments.

Dataset Pts (n) Dim (d) % Outlier

musk 3,062 166 3.17
speech 3,686 400 1.65
mnist 7,603 100 9.21
mammography 11,183 6 2.32
ALOI 49,534 27 3.04
fashion-mnist 60,000 784 10
cifar-10 60,000 3072 10
celeba 202,599 39 2.24
fraud 284,807 29 0.17
census 299,285 500 6.20
donors 619,326 10 5.93

across systems. Therefore, we omit the accuracy evaluation, and
compare the wall-clock time and GPU memory consumption as
measures of time and space efficiency.
Baselines. As discussed in Section 2, there is no existing GPU sys-
tem that covers a diverse group of OD algorithms (not even the
above five algorithms) for a fair comparison. Therefore, we use
the SOTA comprehensive system PyOD [106] as a CPU baseline in
§7.3 and 7.4, which is deeply optimized with JIT compilation and
parallelization. Regarding GPU baselines, we compare two repre-
sentative OD algorithms (i.e., 𝑘NN-CUDA [9] and LOF-CUDA [6])
that have GPU support in §7.3, and direct implementation of opera-
tors in PyTorch in §7.5, 7.6, and 7.7. Note that the implementation
of 𝑘NN-CUDA and LOF-CUDA are not open-sourced, so we follow
the original papers to implement.

7.3 End-to-end Evaluation
TOD is significantly faster than the leading CPU-based sys-
tem. We first present the runtime comparison between TOD and
PyOD in Fig. 8 using seven real datasets (ALOI, fashion-mnist, and
cifar-10) and Appx. Fig. C3 with three synthetic datasets (where
Synthetic 1 contains 100,000 samples, Synthetic 2 contains 200,000
samples, and Synthetic 3 contains 400,000 samples (all are with 200
features). The results show that TOD is on average 10.9× faster
than PyOD on the five benchmark algorithms (13.0×, 15.9×, 9.3×,
7.2×, and 8.9× speed-up on LOF, 𝑘NN, ABOD, HBOS, and PCA,
respectively). For proximity-based algorithms, a larger speed-up
is observed for datasets with a higher number of dimensions: LOF
and 𝑘NN are 28.1× and 38.9× faster on cifar-10 with 3,072 features.
This is expected as GPUs are well-suited for dense tensor multipli-
cation, which is essential in proximity-based methods. Separately, a
larger improvement can be achieved for HBOS and PCA on datasets
with larger sample sizes. For instance, HBOS is 11.83× faster on
Synthetic 1 (100,000 samples), while the speedup is 17.16× on Syn-
thetic 2 (200,000 samples). This is expected as HBOS treats each
feature independently for density estimation on GPUs, so a large
number of samples with a small number of features should yield
a significant speed-up. In summary, all the OD algorithms tested
are significantly faster in TOD than in the SOTA PyOD system,

LOF (8.37x) ABOD (12.18x) HBOS (2.08x) KNN (8.9x) PCA (20.75x)
0

20

40

60

80

W
al

l T
im

e
in

 S
ec

on
ds

21.32

2.55

85.25

7.0
0.03 0.01

21.73

2.44 0.08 0.0

PyOD (cpu)
Ours

(a) ALOI (49,534 samples with 27 features)

LOF (28.09x) ABOD (6.31x) HBOS (8.66x) KNN (38.93x) PCA (3.13x)
0

250

500

750

1000

W
al

l T
im

e
in

 S
ec

on
ds

327.5

11.66

1096.13

173.65
34.05 3.93

424.25

10.9 5.96 1.91

PyOD (cpu)
Ours

(b) cifar-10 (60,000 samples with 784 features)

LOF (13.7x) ABOD (8.64x) HBOS (7.2x) KNN (26.4x) PCA (3.03x)
0

100

200

300

400

W
al

l T
im

e
in

 S
ec

on
ds

83.55

6.1

414.88

48.04
7.17 1.0

119.65

4.53 1.05 0.35

PyOD (cpu)
Ours

(c) fashion-mnist (60,000 samples with 3,072 features)

LOF (13.07x) ABOD (12.25x) HBOS (2.97x) KNN (14.27x) PCA (3.31x)
0

200

400

600
W

al
l T

im
e

in
 S

ec
on

ds
501.14

38.34

695.47

56.79
1.08 0.37

503.13

35.26 0.45 0.14

PyOD (cpu)
Ours

(d) celeba (202,599 samples with 39 features)

LOF (11.66x) ABOD (12.56x) HBOS (3.76x) KNN (12.8x) PCA (3.77x)
0

500

1000

W
al

l T
im

e
in

 S
ec

on
ds

920.89

79.0

1237.46

98.53
1.07 0.28

912.91

71.31 0.63 0.17

PyOD (cpu)
Ours

(e) fraud (284,807 samples with 29 features)

LOF (18.78x) ABOD (10.2x) HBOS (5.78x) KNN (20.82x) PCA (32.75x)
0

1000

2000

W
al

l T
im

e
in

 S
ec

on
ds

1655.76

88.16

2305.7

226.1
3.89 0.67

1674.51

80.43 6.88 0.21

PyOD (cpu)
Ours

(f) census (299,285 samples with 500 features)

LOF (2.92x) ABOD (3.43x) HBOS (3.45x) KNN (2.8x) PCA (4.27x)
0

500

1000

W
al

l T
im

e
in

 S
ec

on
ds

967.94

331.9

1287.43

375.27

1.03 0.3

927.23

331.41

0.7 0.16

PyOD (cpu)
Ours

(g) donors (619,326 samples with 10 features)
Figure 8: Runtime comparison between PyOD and TOD in
seconds on both real-world and synthetic datasets (see Appx.
Fig C3 for synthetic data results). TOD significantly outper-
forms PyOD in all w/ much smaller runtime, where the
speedup factor is shown in parenthesis by each algorithm.
On avg., TOD is 10.9× faster than PyOD (up to 38.9×).

9

Table 3: Runtime comparison among selectedGPUbaselines
(𝑘NN-CUDA [9] and LOF-CUDA [6]; neither supports multi-
GPU directly), and TOD (single GPU) and TOD-8 (8 GPUs).
The first column shows three synthetic datasets with an in-
creasing number of samples (100 dimensions), and the most
efficient result is highlighted in bold for each setting. TOD-
8 outperforms in all cases due to multi-GPU support, while
TODwith a single GPU is faster or on par with the baselines.
Note that the GPU baselines run out-of-memory (OOM) on
large datasets (e.g., the last row), while TOD does not.

Dataset 𝑘NN-CUDA TOD TOD-8 LOF-CUDA TOD TOD-8

500,000 205.33 208.84 28.59 312.55 209 28.64
1,000,000 850.12 827 112.35 OOM 819 113.72
2,000,000 OOM 3173.39 430.29 OOM 3174.05 434.18

with the precise amount of speed improvement varying across algo-
rithms. Appx. C.2 shows that GPU computation takes most of the
run time for various OD algorithms, explaining the significant time
reduction by TOD. We also provide ablation studies to evaluate
provable quantization and automatic batching in Appx. C.4.
TOD can handle larger datasets than the GPU baselines. Due
to the absence of GPU systems that support all five OD algorithms,
we specifically compare the performance of TOD to specialized
GPU algorithms 𝑘NN-CUDA [9] and LOF-CUDA [6]. Table 3 shows
that TOD with 8-GPUs outperforms in all three datasets due to the
multi-GPU support, which enables it to handle data more efficient
than the baselines and TOD with a single GPU. By focusing on the
use of a single GPU, we find that TOD is faster or on par with both
baselines due to provable quantization (e.g., 33.13% speedup to LOF-
CUDA). Also note that the GPU baselines face the out-of-memory
issue (OOM) on large datasets (e.g., the last row of the table with
2,000,000 samples), while TOD can still handle it due to automatic
batching. In comparison to these specialized GPU baselines, TOD
does not only provide more coverage of diverse algorithms, but
also yields better efficiency and scalability.

7.4 Scalability of TOD
We now gauge the scalability of TOD on datasets of varying sizes,
including ones larger than fashion-mnist and cifar-10. In Fig. 9,
we plot TOD’s runtime with five OD algorithms on the synthetic
datasets with sample sizes ranging from 50,000 to 1,500,000 (all with
200 features). To the best of our knowledge, none of the existing
comprehensive OD systems can handle datasets with more than
a million samples within a reasonable amount of time [4, 104],
as most of the OD algorithms are associated with quadratic time
complexity. Fig. 9 shows that TOD can process million-sample OD
datasets within an hour, providing a scalable approach to deploying
OD algorithms in many real-world tasks.

7.5 Provable Quantization
Provable quantization (§5) in TOD can optimize the operator mem-
ory usage while provably preserving correctness (i.e., no accuracy
degradation). To demonstrate its effectiveness, we compare the GPU
memory consumption of two applicable operators, nwr and topk,
with and without provable quantization using the GPU baseline.

Table 4: Comparison of operator runtime (in seconds) with
provable quantization (i.e., 16-bit and 32-bit) and without
quantization (i.e., 64-bit) for nwr and topk. The best model
is highlighted in bold (per column), where provable quanti-
zation in 16-bit outperforms the rest in most cases.

Prec. mammog. mnist musk 10k 20k 30k
16-bit 2.66 0.54 0.06 0.87 3.02 6.56
32-bit 2.92 1.51 0.09 2.57 10.09 22.51
64-bit 3.31 1.53 0.09 3.49 12.7 27.32
(a) For nwr, 16-bit provable quantization outperforms in all

Prec. cifar-10 f-mnist speech 1M 2M 5M
16-bit 0.31 0.09 0.0054 0.58 1.16 2.90
32-bit 0.32 0.1 0.0048 0.70 1.40 3.52
64-bit 0.34 0.07 0.0038 0.71 1.73 3.88
(b) For topk, 16-bit provable quantization wins for large data

Multiple real-world and synthetic datasets are used in the compari-
son (see Table 2), where synthetic datasets’ names, such as “10k”
and “1M”, denote their sample sizes. We deem the 64-bit floating
point as the ground truth, and evaluate the provable quantization
results in 32- and 16-bit floating-point.

The results demonstrate that provable quantization always leads
to memory savings. Specifically, Fig. 10 (a-b) shows nwr with prov-
able quantization on average saves 71.27% (with 16-bit precision)
and 47.59% (with 32-bit precision) of the full 64-bit precision GPU
memory. Similarly, Fig. 10 (c-d) shows that topk with provable
quantization saves 73.49% (with 16-bit precision) and 49.58% (with
32-bit precision) of the full precision memory. Regarding the run-
time comparison, operating in lower precision may also lead to
an edge. Table 4 shows the operator runtime comparison between
using provable quantization (in 16-bit and 32-bit precision) and
using the full 64-bit precision. It shows that provable quantization
in 16-bit precision is faster than the computations in full preci-
sion in most cases, especially for large datasets (e.g., the last three
columns of Table 4). This empirical finding can be attributed to
lower-precision operations typically being faster, and this speed
improvement outweighs the overhead of post verification (see §5.4).
For small datasets (the first three columns of Table 4), provable
quantization does not necessarily improve the run time due to the
additional verification and data movement, both of which finish in
0.1 seconds.
Case study on runtime breakdown . In addition to comparing the
total runtime of an operator with or without provable quantization
(§7.5), it is interesting to see the time breakdown of each phase of
provable quantization. Specifically, the runtime of provable quanti-
zation can be divided into (i) operator evaluation in lower precision,
(ii) result verification and (iii) recalculation in the original precision
for the ones that fail in the verification. Taking nwr on 30k samples
as an example (the last column of Table 4a), we show the time break-
down of (i) low-precision evaluation (ii) correctness verification
and (iii) recalculation in higher precision in Table 5. In this case, the
performance improvement of provable quantization comes from
the reduced evaluation time in lower precision, which outweighs

10

50
00

0

20
00

00

50
00

00

75
00

00

10
00

00
0

12
50

00
0

15
00

00
0

0

1000

2000

3000

W
al

l T
im

e
in

 S
ec

on
ds

TOD runtime

(a) LOF (quadratic)

50
00

0

20
00

00

50
00

00

75
00

00

10
00

00
0

12
50

00
0

15
00

00
0

0

1000

2000

3000

4000
TOD runtime

(b) ABOD (quadratic)

50
00

0

20
00

00

50
00

00

75
00

00

10
00

00
0

12
50

00
0

15
00

00
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
TOD runtime

(c) HBOS (linear)

50
00

0

20
00

00

50
00

00

75
00

00

10
00

00
0

12
50

00
0

15
00

00
0

0

500

1000

1500

2000

2500

3000 TOD runtime

(d) 𝑘NN (quadratic)

50
00

0

20
00

00

50
00

00

75
00

00

10
00

00
0

12
50

00
0

15
00

00
0

0.0

0.5

1.0

1.5

2.0

TOD runtime

(e) PCA (linear)

Figure 9: Scalability plot of selected algorithms in TOD, where it scales well with an increasing number of samples.

mammography mnist musk
0

250

500

750

1000

M
em

or
y

us
ag

e
(m

b)

239

480

956

119
238

477

24 47 96

16-bit (quant.)
32-bit (quant.)
64-bit (orig.)

(a) Neighbor within range (real-world datasets)

10k samples 20k samples 30k samples
0

2000

4000

6000

8000

M
em

or
y

us
ag

e
(m

b)

198 398 794 779
1557

3116
1739

3483

696116-bit (quant.)
32-bit (quant.)
64-bit (orig.)

(b) Neighbor within range (synthetic datasets)

mammography mnist musk
0

500

1000

1500

M
em

or
y

us
ag

e
(m

b)

498
744

1452

93 183
361

6 12 25

16-bit (quant.)
32-bit (quant.)
64-bit (orig.)

(c) topk (real-world datasets)

1M samples 2M samples 5M samples
0

2500

5000

7500

10000
M

em
or

y
us

ag
e

(m
b)

58210031831 11632006
3664 2910

5017

915516-bit (quant.)
32-bit (quant.)
64-bit (orig.)

(d) topk (synthetic datasets)

Figure 10: GPU memory consumption comparison between using provable quantization (16-bit and 32-bit) and the full preci-
sion (64-bit). Clearly, provable quantization leads to significant memory consumption saving on nwr and topk.

Table 5: Runtime breakdown of using provable quantiza-
tion on nwr operator with a 30,000 sample synthetic dataset.
Column 1 shows the runtime for low-precision evaluation,
where column 2 and 3 show the runtime for correctness
verification and recalculation, respectively. It shows the pri-
mary speed-up comes from low-precision evaluation, while
the overhead of verification and recalculation is marginal.

Prec. Low Prec. Verification Recalculation Total

16-bit 5.91 0.05 0.61 6.56
32-bit 22 0.05 0.47 22.51
64-bit N/A N/A N/A 27.32

the cost of verification and recalculation. To further demonstrate
the necessity of post-verification, we also measure the accuracy
variation (e.g., ROC-AUC [4]) by simply running 𝑘NN detector
on fraud, census, and donors datasets in 16-bit precision without
post-verification, which leads to −3.48%, +1.05%, −4.27% accuracy
variation. These results show the merit of provable quantization
over direct quantization.

7.6 Automatic Batching
To evaluate the effectiveness of automatic batching, we compare
the runtime of multiple BOs and FOs under (i) an Numpy imple-
mentation on a CPU [34], (ii) a direct PyTorch GPU implementation
without batching [77], and (iii) TOD’s automatic batching.

Table 6 compares the three implementations of key operators in
OD systems. Clearly, TOD with automatic batching achieves the
best balance of efficiency and scalability, leading to 7.22×, 17.46×,
and 11.49× speedups compared to a highly optimized NumPy im-
plementation on CPUs. TOD can also handle more than 10× larger
datasets where the direct PyTorch implementation faces out of
memory (OOM) errors. TOD is only marginally slower than Py-
Torch when the input dataset is small (see the first row of each
operator). In this case, batching is not needed, and TOD is equiva-
lent to PyTorch; TOD is slightly slower due to the overhead of TOD
deciding whether or not to enable automatic batching.

7.7 Multi-GPU Results
We now evaluate the scalability of TOD on multiple GPUs on a
single compute node. Specifically, we compare the run time of three
compute-intensive OD algorithms (i.e., LOF, ABOD, and 𝑘NN) with
1,2,4, and 8 NVIDIA Tesla V100 GPUs.

11

Table 6: Operator runtime comparison among implementa-
tions in NumPy (no batching), PyTorch (no batching) and
TOD (with automatic batching); the most efficient result is
highlighted in bold per row. Automatic batching in TOD
prevents out-of-memory (OOM) errors yet shows great effi-
ciency, especially on large datasets.

Operator Size NumPy PyTorch TOD
topk 10,000,000 7.88 1.08 1.09
topk 20,000,000 15.77 OOM 2.44
topk 100,000,000 OOM OOM 10.83

intersect 20,000,000 1.99 0.12 0.14
intersect 100,000,000 11 0.63 0.63
intersect 200,000,000 21.65 OOM 2.11

𝑘NN 50,000 20.15 0.27 0.28
𝑘NN 200,000 194.43 OOM 19.65
𝑘NN 400,000 818.32 OOM 71.22

500,000 samples 1,000,000 samples 2,000,000 samples
0

500
1000
1500
2000
2500
3000

W
al

l T
im

e
in

 S
ec

on
ds

209.0 109.52 56.06 28.64

819.0
423.39

222.05113.72

3174.05

1680.81

861.39
434.18

1 GPU
2 GPUs
4 GPUs
8 GPUs

500,000 samples 1,000,000 samples 2,000,000 samples
0

1000

2000

3000

W
al

l T
im

e
in

 S
ec

on
ds

252.86135.92 69.38 35.5

920.22
504.45

250.0 127.85

3464.62

1871.96

971.9
488.14

1 GPU
2 GPUs
4 GPUs
8 GPUs

500,000 samples 1,000,000 samples 2,000,000 samples
0

500
1000
1500
2000
2500
3000

W
al

l T
im

e
in

 S
ec

on
ds

208.84108.64 56.14 28.59

827.0
431.54

222.05112.35

3173.79

1652.67

842.21
430.29

1 GPU
2 GPUs
4 GPUs
8 GPUs

Figure 11: Runtime comparison of using different numbers
of GPUs (top: LOF; middle: ABOD; bottom: 𝑘NN). TOD can
efficiently leverage multiple GPUs for faster OD.

Fig. 11 shows that for three OD algorithms tested, TOD can
achieve nearly linear speed-upwithmore GPUs—the GPU efficiency
is mostly above 90%. For instance, the 𝑘NN result shows that using
2, 4, and 8 GPUs are 1.91×, 3.73×, and 7.34× faster than the single-
GPU performance. As a comparison, using 2, 4, and 8 GPUs with
ABOD and LOF are 1.85×, 3.63×, 7.14× faster and 1.91×, 3.70×,
7.27× faster, respectively. First, there is inevitably a small overhead
in multi-processing, causing the speed-up to not exactly be linear.
Second, the minor efficiency difference between 𝑘NN and ABOD
is due to most OD operations in the former being executed on
multiple GPUs, while the latter involves several sequential steps

that have to be run on CPUs. To sum up, TOD can leverage multiple
GPUs efficiently to process large datasets.

8 LIMITATIONS AND FUTURE DIRECTIONS
Tree-based OD algorithms. One limitation of TOD is that it does
not support tree-based OD algorithms such as isolation forests [56].
Tree-based operations involve random data access [52], which is not
friendly for GPUs designed for batch operations. Future work can
consider converting trees to tensor operations [68] for acceleration.
Approximate solutions. Our focus in this paper has been on exact
efficient, scalable implementations of OD algorithms. In particular,
we have not considered implementations that intentionally are
meant to be approximate, where for instance, one could trade off
between accuracy, computation time, and memory usage. Note
that even with our provable quantization technique, we ask for the
lower-precision computation to yield the correct (exact) output. A
future research direction is to extend TOD to support approximate
solutions for even better scalability and efficiency when reduced
accuracy is acceptable. For instance, exact nearest neighbor search
in can be switched to approximate nearest neighbor search [27, 94].
Heterogeneous GPUs. Thus far, we have not studied the use of
TOD with heterogeneous GPUs. In this setting, incorporating a
cost model could be helpful in balancing the workload between the
different GPUs, accounting for their different characteristics such
as varying memory capacities.
Gradient-based operators. Currently, TOD does not support op-
erators that involve solving an optimization problem via gradient
descent. Future work may consider incorporating optimization-
based operators to support (a small group of) optimization-based
OD algorithms, e.g., OCSVM [84].
Extension to classification. It is possible to use TOD to build
classification models, as the operators in TOD are generic and
may serve the tasks beyond OD. We provide an example of using
TOD to construct 𝑘 nearest neighbor classifier in Appx. B, which
also exhibits a significant performance improvement over the CPU
implementation in scikit-learn [78]. Note that classification tasks
often involve optimization (e.g., via gradient descent), which we
already pointed out that TOD does not yet support. Thus, only
calculation-based classifiers can be implemented by TOD for now.

9 CONCLUSION
In this paper, we propose the first comprehensive GPU-based outlier
detection system called TOD, which is on average 10.9 times faster
than the leading system PyOD and is capable of handling larger
datasets than existing GPU baselines. The key idea is to decompose
complex outlier detection algorithms into a combination of tensor
operations for effective GPU acceleration. Our system enables many
large-scale real-world outlier detection applications that could have
stringent time constraints. With ease of extensibility, TOD can
prototype and implement new detection algorithms.

ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers for their helpful
comments. Yue Zhao is partially supported by a Norton Graduate
Fellowship. George H. Chen is supported by NSF CAREER award
#2047981. Zhihao Jia is partially supported by a National Science
Foundation award CNS-2147909, and a Tang Endowment.

12

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-
nath Kudlur, Josh Levenberg, Rajat Monga, SherryMoore, Derek GordonMurray,
Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale
Machine Learning. In 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, Kim-
berly Keeton and Timothy Roscoe (Eds.). USENIX Association, 265–283. https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

[2] Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. 2021. Practical ap-
proach to asynchronous multivariate time series anomaly detection and localiza-
tion. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining. ACM, 2485–2494.

[3] Elke Achtert, Hans-Peter Kriegel, Lisa Reichert, Erich Schubert, Remigius
Wojdanowski, and Arthur Zimek. 2010. Visual Evaluation of Outlier De-
tection Models. In Database Systems for Advanced Applications, 15th Inter-
national Conference, DASFAA 2010, Tsukuba, Japan, April 1-4, 2010, Proceed-
ings, Part II (Lecture Notes in Computer Science), Hiroyuki Kitagawa, Yoshiharu
Ishikawa, Qing Li, and Chiemi Watanabe (Eds.), Vol. 5982. Springer, 396–399.
https://doi.org/10.1007/978-3-642-12098-5_34

[4] Charu C. Aggarwal. 2013. Outlier Analysis. Springer.
[5] Charu C Aggarwal, Yuchen Zhao, and S Yu Philip. 2011. Outlier detection in

graph streams. In 2011 IEEE 27th international conference on data engineering.
IEEE, IEEE, 399–409.

[6] Malak Alshawabkeh, Byunghyun Jang, and David R. Kaeli. 2010. Accelerating
the local outlier factor algorithm on a GPU for intrusion detection systems. In
Proceedings of 3rd Workshop on General Purpose Processing on Graphics Process-
ing Units, GPGPU 2010, Pittsburgh, Pennsylvania, USA, March 14, 2010 (ACM
International Conference Proceeding Series), David R. Kaeli and Miriam Leeser
(Eds.), Vol. 425. ACM, 104–110. https://doi.org/10.1145/1735688.1735707

[7] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2016. Cache
locality is not enough: High-performance nearest neighbor search with product
quantization fast scan. In VLDB, Vol. 9. VLDB Endowment, 12.

[8] Fabrizio Angiulli, Stefano Basta, Stefano Lodi, and Claudio Sartori. 2010. A
Distributed Approach to Detect Outliers in Very Large Data Sets. In Euro-Par
2010 - Parallel Processing. Springer Berlin Heidelberg, Berlin, Heidelberg, 329–
340.

[9] Fabrizio Angiulli, Stefano Basta, Stefano Lodi, and Claudio Sartori. 2016. GPU
Strategies for Distance-Based Outlier Detection. IEEE Trans. Parallel Distributed
Syst. 27, 11 (2016), 3256–3268.

[10] Fabrizio Angiulli and Clara Pizzuti. 2002. Fast Outlier Detection in High Dimen-
sional Spaces. In Principles of DataMining and Knowledge Discovery, 6th European
Conference, PKDD 2002, Helsinki, Finland, August 19-23, 2002, Proceedings (Lecture
Notes in Computer Science), Tapio Elomaa, Heikki Mannila, and Hannu Toivonen
(Eds.), Vol. 2431. Springer, 15–26. https://doi.org/10.1007/3-540-45681-3_2

[11] Fadhel Ayed, Lorenzo Stella, Tim Januschowski, and Jan Gasthaus. 2020. Anom-
aly detection at scale: The case for deep distributional time series models. In
International Conference on Service-Oriented Computing. Springer, 97–109.

[12] Fatemeh Azmandian, Ayse Yilmazer, Jennifer G. Dy, Javed A. Aslam, and David R.
Kaeli. 2012. GPU-Accelerated Feature Selection for Outlier Detection Using the
Local Kernel Density Ratio. In 12th IEEE International Conference on Data Mining,
ICDM 2012, Brussels, Belgium, December 10-13, 2012, Mohammed Javeed Zaki,
Arno Siebes, Jeffrey Xu Yu, Bart Goethals, Geoffrey I. Webb, and Xindong Wu
(Eds.). IEEE Computer Society, 51–60. https://doi.org/10.1109/ICDM.2012.51

[13] Kanishka Bhaduri, Bryan L Matthews, and Chris R Giannella. 2011. Algorithms
for speeding up distance-based outlier detection. In KDD. ACM, 859–867.

[14] Davis W Blalock and John V Guttag. 2017. Bolt: Accelerated data mining with
fast vector compression. In KDD. ACM, 727–735.

[15] Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexan-
dre V. Evfimievski, and Niketan Pansare. 2018. On Optimizing Operator Fusion
Plans for Large-Scale Machine Learning in SystemML. Proc. VLDB Endow. 11,
12 (2018), 1755–1768. https://doi.org/10.14778/3229863.3229865

[16] Paul Boniol and Themis Palpanas. 2020. Series2graph: Graph-based subsequence
anomaly detection for time series. VLDB 13, 12 (2020), 1821–1834.

[17] Paul Boniol, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2020.
GraphAn: Graph-based subsequence anomaly detection. VLDB 13, 12 (2020),
2941–2944.

[18] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J Franklin. 2021.
SAND: streaming subsequence anomaly detection. VLDB 14, 10 (2021), 1717–
1729.

[19] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000.
LOF: Identifying Density-Based Local Outliers.. In SIGMOD. ACM, 93–104.

[20] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and
Gaël Varoquaux. 2013. API design for machine learning software: experiences

from the scikit-learn project. In Proceedings of ECML PKDDWorkshop: Languages
for Data Mining and Machine Learning. ECML, 108–122.

[21] Guilherme O Campos, Arthur Zimek, Jörg Sander, Ricardo JGB Campello,
Barbora Micenková, Erich Schubert, Ira Assent, and Michael E Houle. 2016.
On the evaluation of unsupervised outlier detection: measures, datasets, and an
empirical study. Data mining and knowledge discovery 30, 4 (2016), 891–927.

[22] Lei Cao, Qingyang Wang, and Elke A Rundensteiner. 2014. Interactive outlier
exploration in big data streams. VLDB 7, 13 (2014), 1621–1624.

[23] Lei Cao, Yizhou Yan, Samuel Madden, Elke A Rundensteiner, and Mathan Gopal-
samy. 2019. Efficient discovery of sequence outlier patterns. VLDB 12, 8 (2019),
920–932.

[24] Steve Dai, Rangharajan Venkatesan, Haoxing Ren, Brian Zimmer, William J.
Dally, and Brucek Khailany. 2021. VS-Quant: Per-vector Scaled Quantiza-
tion for Accurate Low-Precision Neural Network Inference. CoRR (2021).
arXiv:2102.04503

[25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition. IEEE, 248–255.

[26] Evelyn Fix and Joseph Lawson Hodges. 1989. Discriminatory analysis. Non-
parametric discrimination: Consistency properties. International Statistical
Review/Revue Internationale de Statistique 57, 3 (1989), 238–247.

[27] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast approximate
nearest neighbor search with the navigating spreading-out graph. VLDB 12, 5
(2019), 461–474.

[28] Tianfan Fu, Cao Xiao, Cheng Qian, Lucas M Glass, and Jimeng Sun. 2021. Proba-
bilistic and DynamicMolecule-Disease InteractionModeling for Drug Discovery.
In KDD. ACM, 404–414.

[29] Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin,
and Mao Yang. 2020. Estimating GPU memory consumption of deep learning
models. In ESEC/FSE. ACM, 1342–1352.

[30] Prasun Gera, Hyojong Kim, Piyush Sao, Hyesoon Kim, and David Bader. 2020.
Traversing large graphs on GPUs with unified memory. VLDB 13, 7 (2020),
1119–1133.

[31] Markus Goldstein and Andreas Dengel. 2012. Histogram-based outlier score
(hbos): A fast unsupervised anomaly detection algorithm. KI (2012), 59–63.

[32] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT.
[33] Songqiao Han, Xiyang Hu, Hailiang Huang, Mingqi Jiang, and Yue Zhao. 2022.

ADBench: Anomaly Detection Benchmark. arXiv preprint arXiv:2206.09426
(2022).

[34] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, et al. 2020. Array programming with NumPy. Nature (2020).

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. IEEE, 770–778.

[36] Vincent Jacob, Fei Song, Arnaud Stiegler, Bijan Rad, Yanlei Diao, and Nesime
Tatbul. 2021. A demonstration of the exathlon benchmarking platform for
explainable anomaly detection. VLDB (PVLDB) (2021).

[37] Zhuoran Ji and Cho-Li Wang. 2021. Accelerating DBSCAN Algorithm with
AI Chips for Large Datasets. In ICPP 2021: 50th International Conference on
Parallel Processing, Lemont, IL, USA, August 9 - 12, 2021, Xian-He Sun, Sameer
Shende, Laxmikant V. Kalé, and Yong Chen (Eds.). ACM, 51:1–51:11. https:
//doi.org/10.1145/3472456.3473518

[38] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020. Im-
proving the Accuracy, Scalability, and Performance of Graph Neural Networks
with Roc. In MLSys. mlsys.org.

[39] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond Data and Model
Parallelism for Deep Neural Networks. In Proceedings of Machine Learning
and Systems 2019, MLSys 2019, Stanford, CA, USA, March 31 - April 2, 2019,
Ameet Talwalkar, Virginia Smith, and Matei Zaharia (Eds.). mlsys.org. https:
//proceedings.mlsys.org/book/265.pdf

[40] William Kahan. 1996. IEEE standard 754 for binary floating-point arithmetic.
Lecture Notes on the Status of IEEE 754, 94720-1776 (1996), 11.

[41] Kyle Kingsbury and Peter Alvaro. 2020. Elle: inferring isolation anomalies from
experimental observations. VLDB 14, 3 (2020), 268–280.

[42] Dimitrios Koutsoukos, Supun Nakandala, Konstantinos Karanasos, Karla Saur,
Gustavo Alonso, and Matteo Interlandi. 2021. Tensors: An abstraction for
general data processing. VLDB 14, 10 (2021), 1797–1804.

[43] Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. 2008. Angle-based
outlier detection in high-dimensional data.. In KDD. ACM, 444–452.

[44] Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang,
and Xia Hu. 2021. Revisiting Time Series Outlier Detection: Definitions
and Benchmarks. In Proceedings of the Neural Information Processing Sys-
tems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Bench-
marks 2021, December 2021, virtual. Joaquin Vanschoren and Sai-Kit Ye-
ung. https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/
ec5decca5ed3d6b8079e2e7e7bacc9f2-Abstract-round1.html

13

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1007/978-3-642-12098-5_34
https://doi.org/10.1145/1735688.1735707
https://doi.org/10.1007/3-540-45681-3_2
https://doi.org/10.1109/ICDM.2012.51
https://doi.org/10.14778/3229863.3229865
https://doi.org/10.1145/3472456.3473518
https://doi.org/10.1145/3472456.3473518
https://proceedings.mlsys.org/book/265.pdf
https://proceedings.mlsys.org/book/265.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/ec5decca5ed3d6b8079e2e7e7bacc9f2-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/ec5decca5ed3d6b8079e2e7e7bacc9f2-Abstract-round1.html

[45] Aleksandar Lazarevic, Levent Ertöz, Vipin Kumar, Aysel Ozgur, and Jaideep
Srivastava. 2003. A Comparative Study of Anomaly Detection Schemes in
Network Intrusion Detection. In SDM. SIAM, 25–36.

[46] Eleazar Leal and Le Gruenwald. 2018. Research Issues of Outlier Detection in
Trajectory Streams Using GPUs. SIGKDD Explor. 20, 2 (2018), 13–20.

[47] Yann LeCun. 2019. 1.1 deep learning hardware: past, present, and future. In
2019 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, 12–19.

[48] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436–444.

[49] Meng-Chieh Lee, Yue Zhao, Aluna Wang, Pierre Jinghong Liang, Leman Akoglu,
Vincent S. Tseng, and Christos Faloutsos. 2020. AutoAudit: Mining Accounting
and Time-Evolving Graphs. In Big Data. IEEE, 950–956.

[50] Rubao Lee, Minghong Zhou, Chi Li, Shenggang Hu, Jianping Teng, Dongyang
Li, and Xiaodong Zhang. 2021. The art of balance: a RateupDB™ experience of
building a CPU/GPU hybrid database product. VLDB 14, 12 (2021), 2999–3013.

[51] Wonyeol Lee, Rahul Sharma, and Alex Aiken. 2018. On automatically proving
the correctness of math.h implementations. Proc. ACM Program. Lang. 2, POPL
(2018), 47:1–47:32. https://doi.org/10.1145/3158135

[52] Aaron E Lefohn, Shubhabrata Sengupta, Joe Kniss, Robert Strzodka, and John D
Owens. 2006. Glift: Generic, efficient, random-access GPU data structures. ACM
Transactions on Graphics (TOG) 25, 1 (2006), 60–99.

[53] Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. 2020. COPOD:
Copula-Based Outlier Detection. In ICDM. IEEE, 1118–1123.

[54] Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, and George Chen.
2022. ECOD: Unsupervised Outlier Detection Using Empirical Cumulative
Distribution Functions. IEEE Transactions on Knowledge and Data Engineering
(2022), 1–1. https://doi.org/10.1109/TKDE.2022.3159580

[55] Can Liu, Li Sun, Xiang Ao, Jinghua Feng, Qing He, andHao Yang. 2021. Intention-
aware heterogeneous graph attention networks for fraud transactions detection.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining. 3280–3288.

[56] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest. In ICDM.
IEEE Computer Society, 413–422.

[57] Haoyu Liu, Fenglong Ma, Shibo He, Jiming Chen, and Jing Gao. 2021. Fairness-
aware Outlier Ensemble. arXiv preprint arXiv:2103.09419 (2021).

[58] Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang,
Kaize Ding, Canyu Chen, Hao Peng, Kai Shu, et al. 2022. Benchmarking Node
Outlier Detection on Graphs. arXiv preprint arXiv:2206.10071 (2022).

[59] Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang,
Kaize Ding, Canyu Chen, Hao Peng, Kai Shu, et al. 2022. PyGOD: A Python
Library for Graph Outlier Detection. arXiv preprint arXiv:2204.12095 (2022).

[60] Zhiwei Liu, Yingtong Dou, Philip S. Yu, Yutong Deng, and Hao Peng. 2020.
Alleviating the Inconsistency Problem of Applying Graph Neural Network to
Fraud Detection. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval, SIGIR 2020, Virtual Event,
China, July 25-30, 2020, Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap Kamps,
Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu (Eds.). ACM, 1569–1572. https:
//doi.org/10.1145/3397271.3401253

[61] Moshe Looks, Marcello Herreshoff, DeLesley Hutchins, and Peter Norvig. 2017.
Deep Learning with Dynamic Computation Graphs. In ICLR. OpenReview.net.

[62] Elio Lozano and Edgar Acuña. 2005. Parallel Algorithms for Distance-Based
and Density-Based Outliers. In ICDM. IEEE Computer Society, 729–732.

[63] Emaad Manzoor, Hemank Lamba, and Leman Akoglu. 2018. xstream: Outlier
detection in feature-evolving data streams. In KDD. ACM, 1963–1972.

[64] Chen Meng, Minmin Sun, Jun Yang, Minghui Qiu, and Yang Gu. 2017. Training
deeper models by GPU memory optimization on TensorFlow. In Proc. of ML
Systems Workshop in NIPS. NIPS.

[65] Prashanth Menon, Todd C Mowry, and Andrew Pavlo. 2017. Relaxed opera-
tor fusion for in-memory databases: Making compilation, vectorization, and
prefetching work together at last. VLDB 11, 1 (2017), 1–13.

[66] Seung Won Min, Vikram Sharma Mailthody, Zaid Qureshi, Jinjun Xiong, Eiman
Ebrahimi, and Wen-mei Hwu. 2020. EMOGI: efficient memory-access for out-
of-memory graph-traversal in GPUs. VLDB 14, 2 (2020), 114–127.

[67] Seung Won Min, Kun Wu, Sitao Huang, Mert Hidayetoğlu, Jinjun Xiong, Eiman
Ebrahimi, Deming Chen, and Wen Mei Hwu. 2021. Large graph convolutional
network training with GPU-oriented data communication architecture. VLDB
14, 11 (2021), 2087–2100.

[68] Supun Nakandala, Karla Saur, Gyeong-In Yu, Konstantinos Karanasos, Carlo
Curino, Markus Weimer, and Matteo Interlandi. 2020. A Tensor Compiler for
Unified Machine Learning Prediction Serving. In OSDI. OSDI, 899–917.

[69] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R.
Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. 2019.
PipeDream: Generalized Pipeline Parallelism for DNN Training. In Proceed-
ings of the 27th ACM Symposium on Operating Systems Principles (Huntsville,
Ontario, Canada) (SOSP ’19). Association for Computing Machinery, New York,
NY, USA, 1–15. https://doi.org/10.1145/3341301.3359646

[70] Henry Neeb and Christopher Kurrus. 2016. Distributed k-nearest neighbors.

[71] Graham Neubig, Yoav Goldberg, and Chris Dyer. 2017. On-the-fly Operation
Batching in Dynamic Computation Graphs. In NeurIPS. 3971–3981.

[72] Junki Oku, Keiichi Tamura, and Hajime Kitakami. 2014. Parallel processing
for distance-based outlier detection on a multi-core CPU. In IEEE International
Workshop on Computational Intelligence and Applications (IWCIA). IEEE, 65–70.

[73] Gustavo H Orair, Carlos HC Teixeira, Wagner Meira Jr, Ye Wang, and Srini-
vasan Parthasarathy. 2010. Distance-based outlier detection: consolidation and
renewed bearing. VLDB 3, 1-2 (2010), 1469–1480.

[74] Matthew Eric Otey, Amol Ghoting, and Srinivasan Parthasarathy. 2006. Fast
Distributed Outlier Detection in Mixed-Attribute Data Sets. Data Min. Knowl.
Discov. 12, 2-3 (2006), 203–228. https://doi.org/10.1007/s10618-005-0014-6

[75] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel.
2021. Deep learning for anomaly detection: A review. CSUR 54, 2 (2021), 1–38.

[76] Spiros Papadimitriou, Hiroyuki Kitagawa, Phillip B. Gibbons, and Christos
Faloutsos. 2003. LOCI: Fast Outlier Detection Using the Local Correlation
Integral. In ICDE. IEEE Computer Society, 315–326.

[77] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. Pytorch: An imperative style, high-performance deep learning library.
NeuIPS 32 (2019), 8026–8037.

[78] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, RonWeiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[79] Tomás Pevný. 2016. Loda: Lightweight on-line detector of anomalies. Mach.
Learn. 102, 2 (2016), 275–304.

[80] Sebastian Raschka. 2015. Python machine learning. Packt publishing ltd.
[81] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou,

Tony Xing, Mao Yang, Jie Tong, and Qi Zhang. 2019. Time-series anomaly detec-
tion service at microsoft. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. ACM, 3009–3017.

[82] Petar Ristoski, Christian Bizer, and Heiko Paulheim. 2015. Mining the Web
of Linked Data with RapidMiner. J. Web Semant. 35 (2015), 142–151. https:
//doi.org/10.1016/j.websem.2015.06.004

[83] Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel
Müller, Klaus-Robert Müller, and Marius Kloft. 2020. Deep Semi-Supervised
Anomaly Detection. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https:
//openreview.net/forum?id=HkgH0TEYwH

[84] Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alexander J. Smola, and
Robert C. Williamson. 2001. Estimating the Support of a High-Dimensional
Distribution. Neural Comput. 13, 7 (2001), 1443–1471.

[85] Erich Schubert, Arthur Zimek, andHans-Peter Kriegel. 2014. Generalized Outlier
Detection with Flexible Kernel Density Estimates. In SDM. SIAM, 542–550.

[86] Mei-Ling Shyu, Shu-Ching Chen, Kanoksri Sarinnapakorn, and LiWu Chang.
2003. A novel anomaly detection scheme based on principal component classifier.
Technical Report.

[87] Petru Sincraian. 2021. PyOD Download Statistics. https://pepy.tech/project/
pyod. Accessed: 2021-09-09.

[88] Martin Svedin, Steven Wei Der Chien, Gibson Chikafa, Niclas Jansson, and
Artur Podobas. 2021. Benchmarking the Nvidia GPU Lineage: From Early K80
to Modern A100 with Asynchronous Memory Transfers. In HEART ’21. ACM,
9:1–9:6.

[89] Nguyen Thanh Tam, Matthias Weidlich, Bolong Zheng, Hongzhi Yin, Nguyen
Quoc Viet Hung, and Bela Stantic. 2019. From anomaly detection to rumour
detection using data streams of social platforms. VLDB 12, 9 (2019), 1016–1029.

[90] Jian Tang, Zhixiang Chen, Ada Wai-Chee Fu, and David Wai-Lok Cheung. 2002.
Enhancing Effectiveness of Outlier Detections for Low Density Patterns. In
PAKDD (Lecture Notes in Computer Science), Vol. 2336. Springer, 535–548.

[91] Theodoros Toliopoulos, Christos Bellas, Anastasios Gounaris, and Apostolos Pa-
padopoulos. 2020. PROUD: PaRallel OUtlier Detection for Streams. In Proceedings
of the 2020 International Conference on Management of Data, SIGMOD Conference
2020, online conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel
Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q.
Ngo (Eds.). ACM, 2717–2720. https://doi.org/10.1145/3318464.3384688

[92] Luan Tran, Min Y Mun, and Cyrus Shahabi. 2020. Real-time distance-based
outlier detection in data streams. VLDB 14, 2 (2020), 141–153.

[93] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, Liyan Zheng,
Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, and Zhihao Jia. 2021. PET: Optimiz-
ing Tensor Programs with Partially Equivalent Transformations and Automated
Corrections. In OSDI. OSDI, 37–54.

[94] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A Com-
prehensive Survey and Experimental Comparison of Graph-Based Approxi-
mate Nearest Neighbor Search. Proc. VLDB Endow. 14, 11 (2021), 1964–1978.
https://doi.org/10.14778/3476249.3476255

[95] Runhui Wang and Dong Deng. 2020. DeltaPQ: lossless product quantization
code compression for high dimensional similarity search. VLDB 13, 13 (2020),
3603–3616.

14

https://doi.org/10.1145/3158135
https://doi.org/10.1109/TKDE.2022.3159580
https://doi.org/10.1145/3397271.3401253
https://doi.org/10.1145/3397271.3401253
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1007/s10618-005-0014-6
https://doi.org/10.1016/j.websem.2015.06.004
https://doi.org/10.1016/j.websem.2015.06.004
https://openreview.net/forum?id=HkgH0TEYwH
https://openreview.net/forum?id=HkgH0TEYwH
https://pepy.tech/project/pyod
https://pepy.tech/project/pyod
https://doi.org/10.1145/3318464.3384688
https://doi.org/10.14778/3476249.3476255

[96] Shuang Wang and Hakan Ferhatosmanoglu. 2020. PPQ-trajectory: spatio-
temporal quantization for querying in large trajectory repositories. VLDB
14, 2 (2020), 215–227.

[97] Yizhou Yan, Lei Cao, Caitlin Kulhman, and Elke Rundensteiner. 2017. Distributed
local outlier detection in big data. In KDD. ACM, 1225–1234.

[98] Ling Yang, Zhilong Zhang, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao,
Wentao Zhang, Ming-Hsuan Yang, and Bin Cui. 2022. Diffusion Models: A Com-
prehensive Survey of Methods and Applications. arXiv preprint arXiv:2209.00796
(2022).

[99] Susik Yoon, Jae-Gil Lee, and Byung Suk Lee. 2019. NETS: extremely fast outlier
detection from a data stream via set-based processing. VLDB 12, 11 (2019),
1303–1315.

[100] Rose Yu, Huida Qiu, Zhen Wen, ChingYung Lin, and Yan Liu. 2016. A survey on
social media anomaly detection. SIGKDD Explorations 18 (2016), 1–14.

[101] Aoqian Zhang, Shaoxu Song, Jianmin Wang, and Philip S Yu. 2017. Time series
data cleaning: From anomaly detection to anomaly repairing. VLDB 10, 10
(2017), 1046–1057.

[102] Sean Zhang, Varun Ursekar, and Leman Akoglu. 2022. Sparx: Distributed Outlier
Detection at Scale. arXiv preprint arXiv:2206.01281 (2022).

[103] Yue Zhao. 2021. PyOD Citation Statistics. https://scholar.google.ca/scholar?
cites=3726241381117726876&as_sdt=5,39&sciodt=0,39&hl=en. Accessed: 2021-
09-09.

[104] Yue Zhao, Xiyang Hu, Cheng Cheng, Cong Wang, Changlin Wan, Wen Wang,
Jianing Yang, Haoping Bai, Zheng Li, Cao Xiao, YunlongWang, Zhi Qiao, Jimeng
Sun, and Leman Akoglu. 2021. SUOD: Accelerating Large-Scale Unsupervised
Heterogeneous Outlier Detection. In Proceedings of Machine Learning and Sys-
tems 2021, MLSys 2021, virtual, April 5-9, 2021, Alex Smola, Alex Dimakis, and
Ion Stoica (Eds.). mlsys.org. https://proceedings.mlsys.org/paper/2021/hash/
98dce83da57b0395e163467c9dae521b-Abstract.html

[105] Yue Zhao, Zain Nasrullah, Maciej K. Hryniewicki, and Zheng Li. 2019. LSCP:
Locally Selective Combination in Parallel Outlier Ensembles. In Proceedings
of the 2019 SIAM International Conference on Data Mining, SDM 2019, Calgary,
Alberta, Canada, May 2-4, 2019, Tanya Y. Berger-Wolf and Nitesh V. Chawla
(Eds.). SIAM, 585–593. https://doi.org/10.1137/1.9781611975673.66

[106] Yue Zhao, Zain Nasrullah, and Zheng Li. 2019. PyOD: A Python Toolbox for
Scalable Outlier Detection. JMLR 20 (2019), 96:1–96:7.

[107] Qiwei Zhong, Yang Liu, Xiang Ao, Binbin Hu, Jinghua Feng, Jiayu Tang, and
Qing He. 2020. Financial defaulter detection on online credit payment via
multi-view attributed heterogeneous information network. In WWW. ACM,
785–795.

15

https://scholar.google.ca/scholar?cites=3726241381117726876&as_sdt=5,39&sciodt=0,39&hl=en
https://scholar.google.ca/scholar?cites=3726241381117726876&as_sdt=5,39&sciodt=0,39&hl=en
https://proceedings.mlsys.org/paper/2021/hash/98dce83da57b0395e163467c9dae521b-Abstract.html
https://proceedings.mlsys.org/paper/2021/hash/98dce83da57b0395e163467c9dae521b-Abstract.html
https://doi.org/10.1137/1.9781611975673.66

SUPPLEMENTARY MATERIAL FOR TOD
Details on system design and experiments.

A DEMO ON USING TOD TO IMPLEMENT
NEW OD ALGORITHMS FROM SCRATCH

Overview of implementing new OD algorithms with TOD . As
shown in §4, TOD takes a modular approach to implement an OD
algorithm. Thus, using TOD to implement a new OD algorithm re-
quires conceptualizing the algorithm as a combination of operators
(BTOs and FOs) in TOD (see Fig. 2). Thanks to the nature of OD
applications that do not involve complex optimization, most OD
algorithms can be decomposed as a combination of 2 to 3 operators.
Overview of ECOD . We provide an example of using TOD to
implement the latest OD algorithm with empirical cumulative dis-
tribution functions (ECOD) [54], which is just published in early
2022. In a nutshell, ECOD estimates the empirical distribution of
each feature (i.e., density estimation), where it considers that out-
liers locate in low-density regions. After that, ECOD aggregates all
density estimation results per feature into final outlier scores.
Turning ECOD into abstraction. ECOD mainly involves two op-
erators: (i) it estimates the density (“f. Density est.”) of each
features by “8. Basic OPs (ECDF)” and (ii) then aggregates den-
sity results across all features via “7. Agg.”. By having the process
in mind, we could sketch the abstraction of ECOD in Fig. A1.

ECOD

(7+f)

f. Density

est. (8)

8. Basic Ops (ECDF)7. Agg.

Figure A1: Examples of building latest OD algorithm ECOD
with FOs and BTOs conveniently.

Turning abstraction into code . We provide the code breakdown
to show how to use TOD to implement ECOD, and the full imple-
mentation is available for further reference1. The code snippet (i)
shows that we use the basic operator ECDF for density estimation
and (ii) shows the aggregation step of density estimation as outlier
scores. Putting these core parts together with some skeleton code,
we could conveniently include ECOD in TOD. It is noted that we
still need to glue the operators together, while the use of predefined
TOD operators helps us to achieve acceleration.

from .basic_operators import ecdf_multiple

density estimation via ECDF
self.U_l = ecdf_multiple(X, device=self.device)
self.U_r = ecdf_multiple(-X, device=self.device)

(i) code of density estimation in ECOD

1ECOD: https://github.com/yzhao062/pytod/blob/main/pytod/models/ecod.py

take the negative log
self.U_l = -1 * torch.log(self.U_l)
self.U_r = -1 * torch.log(self.U_r)

aggregate and generate outlier scores
self.O = torch.maximum(self.U_l, self.U_r)
self.decision_scores_ = torch.sum(self.O,

dim=1).cpu().numpy() * -1

(ii) code of density aggregation in ECOD

B EXAMPLE OF USING TOD TO BUILD
CLASSIFICATION ALGORITHMS

As discussed in §8, TOD may be used to construct algorithms be-
yond OD, e.g., classification and regression. In this section, we
demonstrate the use of TOD to build a popular classifier called 𝑘
nearest neighbor classifiers (𝑘NN_CLF)[26].

In short, 𝑘NN_CLF is a lazy classifier and does not involve a
training stage. For a test sample Xtest, it calculates the pairwise
distance between the test sample with each “training” data. It then
uses the aggregation (e.g., majority vote or avg.) to decide the
predicted classes of each test sample. Thus, it can be decomposed
as the combination of (i) calculating pairwise distance by cdist
(ii) identifying the top 𝑘 neighbors by topk and (iii) predicting the
class labels by aggregating the labels from the neighbors (i.e., Basic
OPs).

kNN Classifier

(1+2)

7. Agg.1. cdist 2. topk

Figure B2: Examples of building 𝑘NN classifier with TOD

Table B1 provides a detailed comparison between CPU-based im-
plementation of 𝑘NN_CLF in scikit-learn (sklearn) [78] and TOD’s
implementation. On average, TOD’s 𝑘NN_CLF is 10.1 times faster
than that of sklearn due to the GPU acceleration.

Table B1: Runtime (in seconds) comparison of 𝑘NN classifier
usingCPU-based scikit-learn (sklearn) [78] vs. GPU-enabled
TOD. On average, TOD’s implementation is 10.1 times faster
than that of sklearn.

Train Size Test Size Number of Features 𝑘NN-sklearn 𝑘NN-TOD

50,000 50,000 100 41.35 4.76
50,000 50,000 200 52.26 4.83
100,000 50,000 100 84.84 8.09
100,000 50,000 200 88.13 8.36

C ADDITIONAL EXPERIMENT RESULTS
C.1 End-to-end Results on Synthetic Datasets
Consistent with the results presented in §7.3, TOD is significantly
faster than the leading CPU-based system on large synthetic
datasets. Fig. C3 shows the results on three synthetic datasets

16

https://github.com/yzhao062/pytod/blob/main/pytod/models/ecod.py

(where Synthetic 1 contains 100,000 samples, Synthetic 2 contains
200,000 samples, and Synthetic 3 contains 400,000 samples (all are
with 200 features). The results show that TOD is on average 10.9×
faster than PyOD on the five benchmark algorithms (13.0×, 15.9×,
9.3×, 7.2×, and 8.9× speed-up on LOF, 𝑘NN, ABOD, HBOS, and
PCA, respectively).

LOF (7.67x) ABOD (6.54x) HBOS (11.83x) KNN (8.75x) PCA (7.68x)
0

100

200

300

400

W
al

l T
im

e
in

 S
ec

on
ds

198.02

25.81

389.98

59.62
2.69 0.23

186.14

21.28 1.38 0.18

PyOD (cpu)
Ours

(a) Synthetic dataset 1 (100,000 samples with 200 features)

LOF (9.75x) ABOD (8.24x) HBOS (17.16x) KNN (9.98x) PCA (6.33x)
0

500

1000

W
al

l T
im

e
in

 S
ec

on
ds

735.53

75.44

1194.74

144.93
4.97 0.29

706.13

70.78 2.53 0.4

PyOD (cpu)
Ours

(b) Synthetic dataset 2 (200,000 samples with 200 features)

LOF (15.99x) ABOD (12.23x) HBOS (9.06x) KNN (16.06x) PCA (3.49x)
0

1000

2000

3000

W
al

l T
im

e
in

 S
ec

on
ds

2276.16

142.38

2788.19

228.02
3.84 0.42

2273.4

141.58 3.18 0.91

PyOD (cpu)
Ours

(c) Synthetic dataset 3 (400,000 samples with 200 features)

Figure C3: Runtime comparison between PyOD and TOD in
seconds on synthetic datasets (see §7.3 Fig. 8 for results on
real-world datasets). TOD significantly outperforms PyOD
in all w/ much smaller runtime, where the speedup factor
is shown in parenthesis by each algorithm. On avg., TOD is
10.9× faster than PyOD (up to 38.9×).

C.2 Further Time Analysis
Fig. C4 shows the comparison between GPU time and the total
runtime, where GPU time consists of a large portion of the total
runtime, and verifies that the acceleration of TOD mainly comes
from the use of GPU(s). Moreover, we also notice that the GPU
efficiency increases for larger datasets with higher percentages.
This also explains why we observe more acceleration of TOD on
large datasets in Fig. 8 and Appx. Fig. C3.

C.3 Case Study on Operator Fusion
Although automatic batching applies to all BTOs and FOs, we in-
troduce an additional technique called operator fusion in §6.1 to
further optimize the execution of selected operators in sequence.
For instance, 𝑘NN batching is achieved by running cdist and topk

LOF (79%) ABOD (95%) HBOS (77%) KNN (84%) PCA (83%)
0.0

2.5

5.0

7.5

10.0

W
al

l T
im

e
in

 S
ec

on
ds

2.26 2.88

8.96 9.47

0.17 0.23

1.99 2.36

0.12 0.15

GPU time
Total runtime

(a) Synthetic dataset 1 (20,000 samples with 200 features)

LOF (97%) ABOD (97%) HBOS (80%) KNN (98%) PCA (84%)
0

20

40

60

W
al

l T
im

e
in

 S
ec

on
ds

25.07 25.81

57.69 59.62

0.18 0.23

20.84 21.28

0.15 0.18

GPU time
Total runtime

(b) Synthetic dataset 2 (100,000 samples with 200 features)

Figure C4: GPU time and total runtime of TOD in seconds
on synthetic datasets (where the percentage is shown in
parenthesis). TOD achieves significant efficiency improve-
ment with high GPU usages (e.g., mostly > 80%).

sequentially, where each uses automatic batching and the output
of the former is the input of the latter.

Differently, we could further optimize this simple concatenation
execution by fusing cdist and topk together for better efficiency.
Fig. 7 compares simple concatenation (subfigure a) and operator
fusion (subfigure b) on 𝑘NN. Specifically, the latter executes the topk
BTO on the cdist BTO’s individual batches separately rather than
running topk on the full distance matrix outputted by cdist. This
prevents moving the entire 𝑛×𝑛 distance matrix between operators,
which often causes OOM.

In Table C2, we compare the performance of simple concatena-
tion (i.e., cdist and then topk) and operator fusion regarding both
GPU memory and time consumption, where operator fusion shows
great performance improvement.

Table C2: GPU memory consumption (in Mb) and runtime
(in seconds) comparison of simple concatenation (SC) and
operator fusion (OF) for 𝑘NN. Operator fusion brings huge
savings in both GPU memory consumption and runtime.

Sample Size GPU-SC GPU-OF Runtime-SC Runtime-OF

50,000 5280 3060 8.47 2.80
100,000 9010 3060 33.48 9.12

C.4 Ablation Studies on Provable Quantization
and Automatic Batching

In addition to the end-to-end analysis in §7.3, we also provide
further ablations on provable quantization (PQ) and automatic
batching (AB) in this section. We demonstrate this experiment with
𝑘-NN OD algorithm where both techniques apply. Table C3 shows
that automatic batching addresses the issue of out-of-memory on
large datasets, while provable quantization reduces GPU memory
consumption and runtime. The ablations show that using both
techniques leads to the best performance.

17

Table C3: Ablations on provable quantization (PQ) and au-
tomatic batching (AB) for 𝑘NN. We set batch size equal to
40,000, and thus AB does not apply to the first row of the ta-
ble. The best performing combination is highlighted in bold,
where using both techniques achieves the best performance.

Samples PQ&AB AB only PQ only None

40,000 5.34 N/A 5.34 10.88
80,000 15.12 20.91 17.56 OOM
160,000 45.37 67.22 OOM OOM

(a) Runtime in seconds

Samples PQ&AB AB only PQ only None

40,000 3,040 N/A 3040 12,170
80,000 3,040 12,050 12,020 OOM
160,000 3,040 12,050 OOM OOM

(b) GPU memory consumption in Mb

D OPEN-SOURCE SYSTEM AND API
DEMONSTRATION

Accessibility . To facilitate accessibility of TOD, we release it under
the open BSD 2 license1, which can be easily installed via Python
Package Index (PyPI)2 with name pytod.
API design and demonstration . Follow by the mature API design
of scikit-learn [20] and PyOD [106], all the supportedOD algorithms
have a unified API design: (i) fit processes the input data and calcu-
lates necessary statistics for prediction, where the outlier scores are
also calculated on the input data (ii) decision_function returns
the raw outlier scores of newcoming samples based on the fitted
outlier detector in the inductive setting and (iii) predict returns
the binary labels of newcoming samples based on the fitted outlier
detector. We demonstrate these APIs in TOD with 𝑘NN detector
below, and other supported OD algorithms have the same APIs.

1Github Repo: https://github.com/yzhao062/pytod
2Python Package Index (PyPI: https://pypi.org/project/pytod/

from pytod.utils.data import generate_data
from pytod.utils.data import evaluate_print
from pytod.models.knn import KNN

Generate sample data
X_train, y_train, X_test, y_test = \

generate_data(n_train=50000, n_test=10000)

device = validate_device(0) # get the GPU 0

initialize a kNN model in TOD with k=10 and
batch=10000

clf = KNN(n_neighbors=k, batch_size=10000,
device=device)

fit the kNN model
clf.fit(X_train)

get the train labels and outlier scores
y_train_scores = clf.decision_scores_ # raw outlier

scores
y_train_pred = clf.labels_ # binary labels

evaluate and print the results
evaluate_print(clf_name, y_train, y_train_scores)

get the prediction labels and outlier scores on test
y_test_scores = clf.decision_function(X_test) # raw

scores

API demo of invoking 𝑘NN in TOD; other OD
algorithms follow the same API design

Utility functions. To facilitate system comparison and evaluation,
we also create a set of helper functions including (i) generate_data
that can creates synthetic OD datasets by modeling normal samples
by Gaussian distribution and outliers by uniform distribution and
(ii) evaluate_print to provide OD specific evaluations by the
metrics described in §7.2.

18

https://github.com/yzhao062/pytod
https://pypi.org/project/pytod/

	Abstract
	1 Introduction
	1.1 Our Approach

	2 Background and Related Work
	2.1 Existing OD Algorithms and Scalability
	2.2 DNN Infrastructure and Acceleration
	2.3 Outlier Detection Systems
	2.4 Systems for Other Data Types and Scenarios

	3 Overview
	3.1 Definition and Problem Formulation
	3.2 System Overview

	4 Programming Model
	4.1 Algorithmic Abstraction
	4.2 Building Complete Algorithms

	5 Provable Quantization
	5.1 (1+)-property for Rounding Errors
	5.2 Provable Quantization in TOD
	5.3 Case Study: Neighbors Within Range
	5.4 Applicability and Opportunities of Provable Quantization

	6 Automatic Batching and Multi-GPU Support
	6.1 Sequential Batching and Operator Fusion
	6.2 Multi-GPU Support

	7 Experimental Evaluation
	7.1 Implementation and Environment
	7.2 Datasets, Baselines, and Evaluation Metrics
	7.3 End-to-end Evaluation
	7.4 Scalability of TOD
	7.5 Provable Quantization
	7.6 Automatic Batching
	7.7 Multi-GPU Results

	8 Limitations and Future Directions
	9 Conclusion
	References
	A Demo on Using TOD to Implement New OD Algorithms from Scratch
	B Example of Using TOD to Build Classification Algorithms
	C Additional Experiment Results
	C.1 End-to-end Results on Synthetic Datasets
	C.2 Further Time Analysis
	C.3 Case Study on Operator Fusion
	C.4 Ablation Studies on Provable Quantization and Automatic Batching

	D Open-source System and API Demonstration

