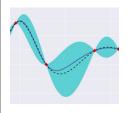


Large-scale Data Processing and Optimisation Overview



Eiko Yoneki

University of Cambridge Computer Laboratory

Massive Data: Scale-Up vs Scale-Out

- Popular solution for massive data processing
 - → scale and build distribution, combine theoretically unlimited number of machines in single distributed storage
 - ightarrow Parallelisable data distribution and processing is key
- Scale-up: add resources to single node (many cores) in system (e.g. HPC)
- Scale-out: add more nodes to system (e.g. Amazon EC2)

Technologies supporting Cluster Computing

Distributed infrastructure

Cloud (e.g. Infrastructure as a service, Amazon EC2, GCP, Azure)
 cf. Many core (parallel computing)

Storage

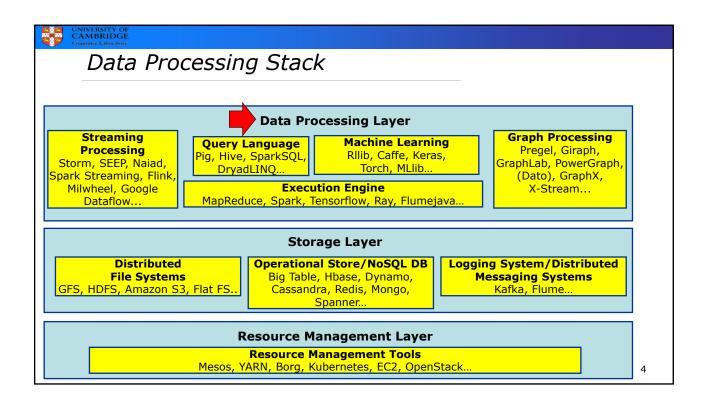
 Distributed storage (e.g. Amazon S3, Hadoop Distributed File System (HDFS), Google File System (GFS))

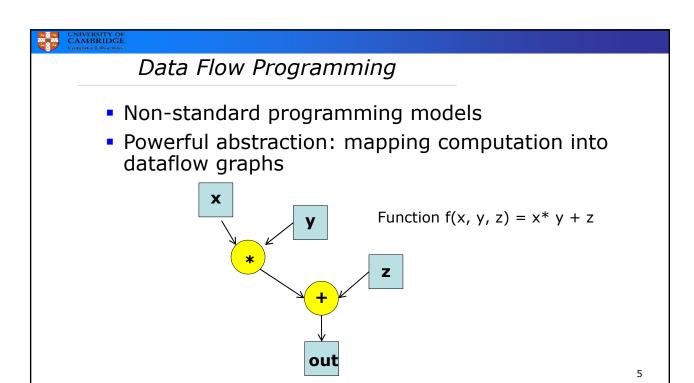
Data model/indexing

 High-performance schema-free database (e.g. NoSQL DB - Redis, BigTable, Hbase, Neo4J)

Programming model

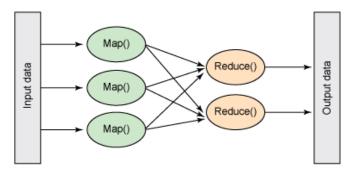
Distributed processing (e.g. MapReduce)

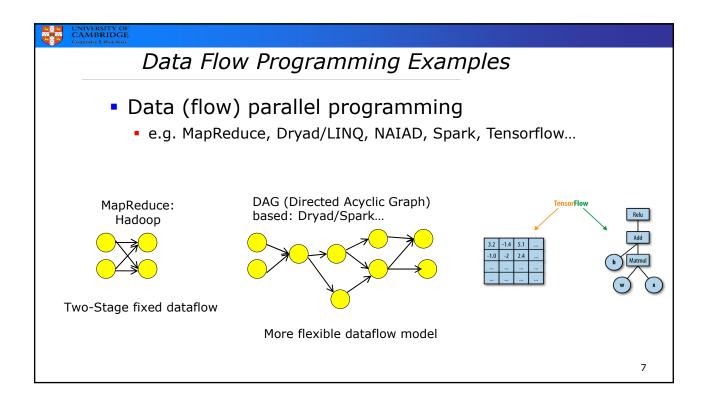


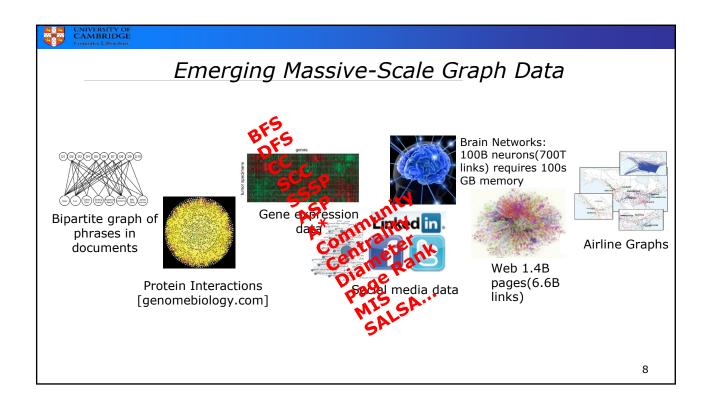


WapReduce Programming

- Target problem needs to be parallelisable
- Split into a set of smaller code (map)
- Next small piece of code executed in parallel
- Results from map operation get synthesised into a result of original problem (reduce)





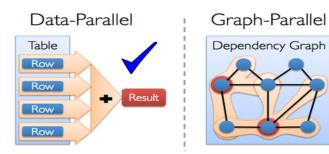


Graph Computation Challenges

- 1. Graph algorithms (BFS, Shortest path)
- 2. Query on connectivity (Triangle, Pattern)
- 3. Structure (Community, Centrality)
- 4. ML & Optimisation (Regression, SGD)
- Data driven computation: dictated by graph's structure and parallelism based on partitioning is difficult
- Poor locality: graph can represent relationships between irregular entries and access patterns tend to have little locality
- High data access to computation ratio: graph algorithms are often based on exploring graph structure leading to a large access rate to computation ratio

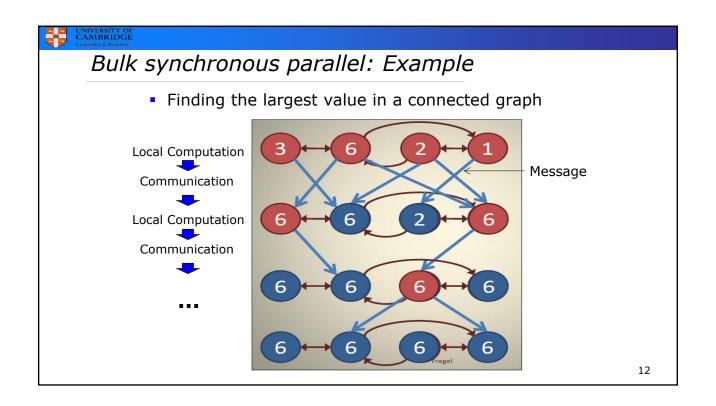
Data-Parallel vs. Graph-Parallel

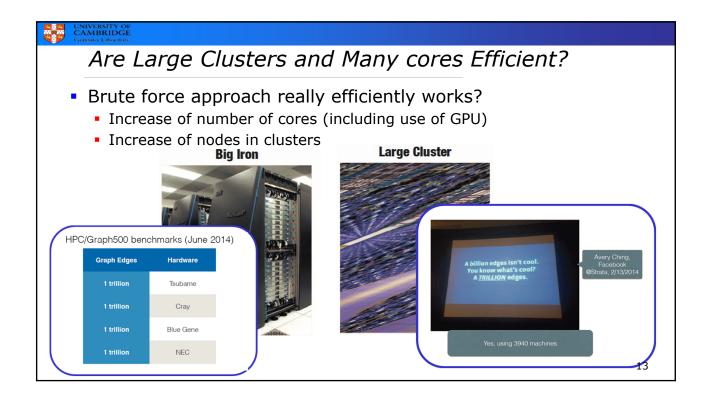
- Data-Parallel for all? Graph-Parallel is hard!
 - Data-Parallel (sort/search randomly split data to feed MapReduce)
 - Not every graph algorithm is parallelisable (interdependent computation)
 - Not much data access locality
 - High data access to computation ratio

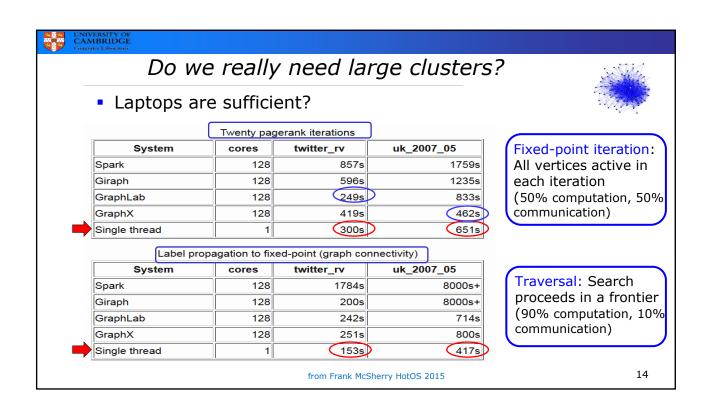


Graph-Parallel

- Graph-Parallel (Graph Specific Data Parallel)
 - Vertex-based iterative computation model
 - Use of iterative Bulk Synchronous Parallel Model
 - Pregel (Google), Giraph (Apache), Graphlab, GraphChi (CMU - Dato)
 - Optimisation over data parallel
 - → GraphX/Spark (U.C. Berkeley)
 - Data-flow programming more general framework
 - > NAIAD (MSR), TensorFlow...







Data Processing Paradigm Change

- Emergence of modern Neural Networks Applications
- Practicalities of training Neural Networks
- Leveraging heterogeneous hardware
- Traditional dataflow programming does not deal with mathematical objects (no deep learning back then), now control flow requires to be numerically differentiable (i.e. TensorFlow)

Image Classification

Reinforcement Learning

15

Challenging: Computer Systems Optimisation

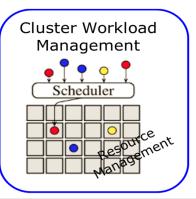
- How do we improve performance:
 - Manual tuning
 - Auto-tuning
- What is performance? objective function of optimisation
 - Resource usage (e.g. time, power)
 - Computational properties (e.g. accuracy, fairness, latency)
 - Large number of parameters
 - Evaluation is slow and expensive
- What is Optimisation Model?
 - Short-term dynamic control (e.g. stream processing: distinct workload or dynamic workload)
 - Combinatorial optimisation (e.g. indexing DB, device assignment)

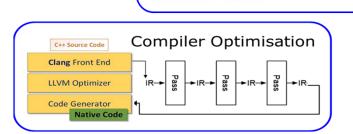
Many systems problems are combinatorial in nature

Use of ML based Optimisation Methods

- Increasing data volumes and high-dimension parameter space
- Expensive Objective Functions

 Hand-crafted solutions impractical, often left static or configured through extensive offline analysis
 Deep Learning





17

Hyper-Parameters:
- Learning-rate
- Number of Dense Layers

Number of Dense Nodes Activation Function

UNIVERSITY OF CAMBRIDGE

Machine Learning and Optimisation

- Function Optimisation
 - Find the set of inputs to a target objective function that result in the minimum or maximum of the function
- Function Approximation:
 - Generalise from specific examples to a reusable mapping function for making predictions on new examples
 - ML can be described as function approximation as approximating the unknown underlying function that maps examples of inputs to outputs in order to make predictions on new data
 - Function approximation often uses function optimisation
- At the core of many ML algorithms is an optimisation algorithm!

Optimisation: Iterative Operation

- Common to use an iterative global search algorithm for optimisation problem
- e.g. Bayesian optimisation algorithm that is capable of simultaneously approximating the target function that is being optimised while optimising it.
- Automated machine learning (AutoML) algorithms being used to choose an algorithm, an algorithm and hyperparameters, or data preparation, algorithm and hyperparameters, with very little user intervention

19

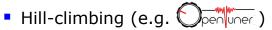
Auto-tuning Complex Systems

- Many dimensions
- Expensive objective function
- Hand-crafted solutions impractical (e.g. extensive offline analysis)

Blackbox Optimisation

✓ can surpass human expert-level tuning

- Grid search $\theta \in [1, 2, 3, ...]$
- Random search
- Evolutionary approaches (e.g. PetaBricks)



Bayesian optimisation (e.g. spearmint)

1000s of evaluations of objective function

Computation more expensive

Fewer samples

Search Parameter Space

Random search: No risk of 'getting stuck' potentially many samples required

Evolution strategies: Evaluate permutations against fitness function

Bayes Opt: Sample efficient, requires continuous function, some configuration

Random Search	Genetic algorithm / Simulated annealing	Bayesian Optimisation
No overhead	Slight overhead	High overhead
High #evaluation	Medium-high #evaluation	Low #evaluation

21

Bayesian Optimisation

- Iteratively builds probabilistic model of objective function
- Typically Gaussian process as probabilistic model
- Data efficient: converges quickly

Input: Objective function f()

Input: Surrogate function initial distribution G

Input: Acquisition function a()

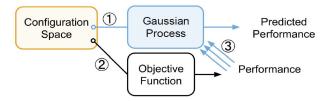
- 1: **for** $i = 1, 2, \dots$ **do**
- 2: Sample point: $\mathbf{x}_t \leftarrow \arg\max_{\mathbf{x}} a(G, \mathbf{x})$
- 3: Evaluate new point: $y_t \leftarrow f(\mathbf{x}_t)$
- 4: Update surrogate distribution: $G \leftarrow G \mid (\mathbf{x}_t, y_t)$
- 5: end for

Pros:

Data efficient: converges in few iterationsAble to deal with noisy observations

Cons:

X In many dimensions, model does not converge to the objective function



- ① Find promising point (high performance value in the model)
- ② Evaluate the objective function at that point
- (3) Update the model to reflect this new measurement

Further Bayesian Optimisation...

BO overview/Tutorial

- https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2021_2022/aid/BO _overview_Archambeau.pdf
- https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2021_2022/aid/BO _overview_adams.pdf
- https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2021_2022/aid/BO _overview_gonzalez.pdf

Papers

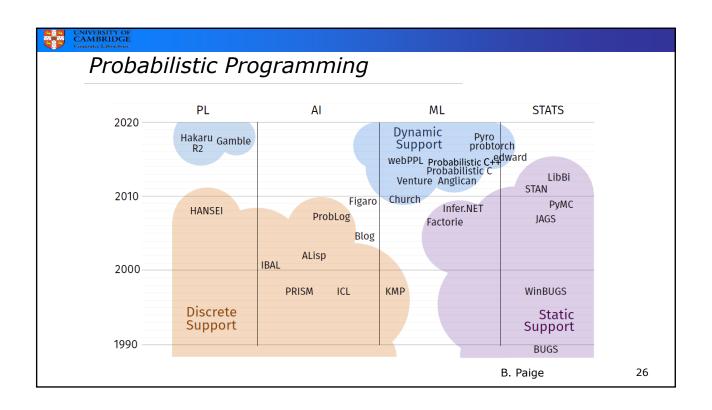
- Review paper by Shahriari, et al. (2016): Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proceedings of the IEEE 104(1):148-175, 2016.
- Slides by Ryan Adams (2014): A Tutorial on Bayesian Optimization for Machine Learning. CIFAR NCAP Summer School.
- Slides by Peter Frazier (2010): Tutorial: Bayesian Methods for Global and Simulation Optimization. INFORMS Annual Meeting.

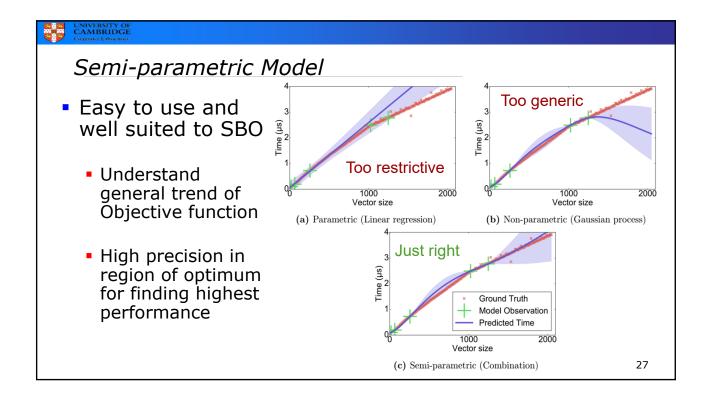
university of CAMBRIDGE Structured Bayesian Optimisation (SBO) Probabilistic Model written in Probabilistic C++ Gaussi Process del(int ygs, int sr, int mtt)(
lculate the size of the heap regions
e es = ygs * sr / (sr + 2.0);/ Eden space's si
e ss = ygs / (sr + 2.0); // Survivor space' (1)Configuration Probabilistic Predicted Program* Space Performance 2 Developer-specified. Objective Performance & **Function** Runtime properties model of performance from observed performance + arbitrary Better convergence runtime characteristics Use all measurements **BOAT:** a framework to build **B**esp**O**ke **A**uto-**T**uners 24

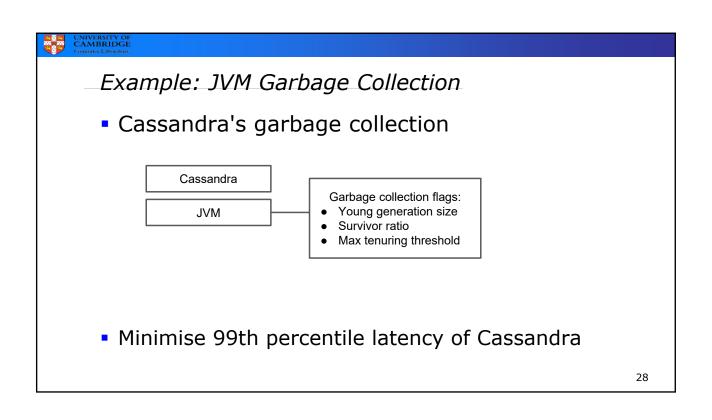
Probabilistic Model

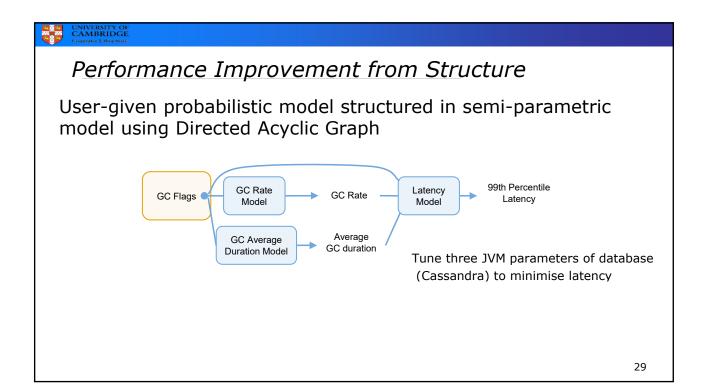
- Probabilistic models incorporate random variables and probability distributions into the model
 - Deterministic model gives a single possible outcome
 - Probabilistic model gives a probability distribution
- Used for various probabilistic logic inference (e.g. MCMCbased inference, Bayesian inference...)

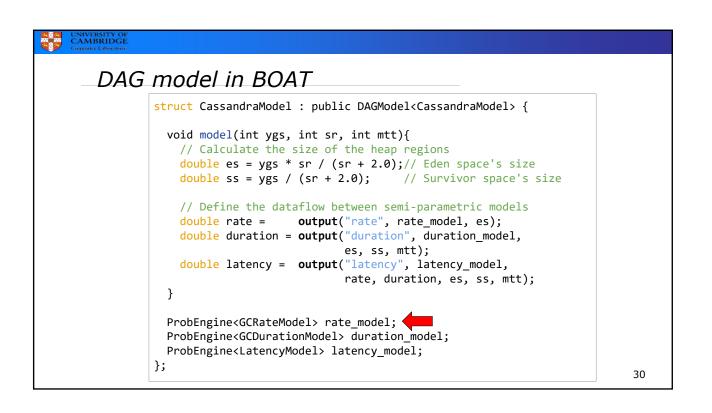
Tutorial: Session 5 - Guest Lecture by Brooks Paige











```
GC Rate Semi-parametric model

struct GCRateModel: public SemiParametricModel<GCRateModel> {

GCRateModel() {

allocated_mbs_per_sec =

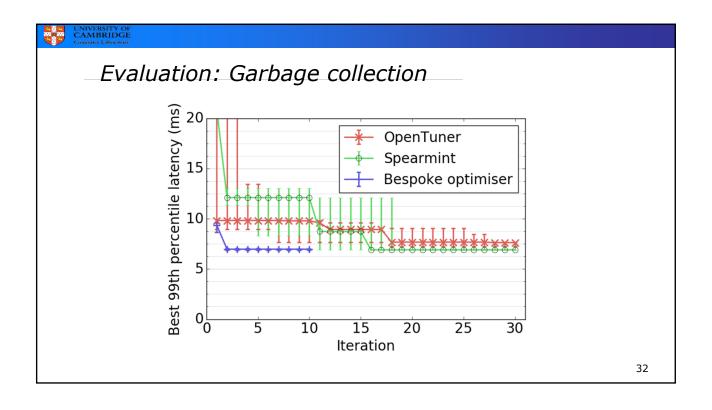
std::uniform_real_distribution<>(0.0, 5000.0)(generator);

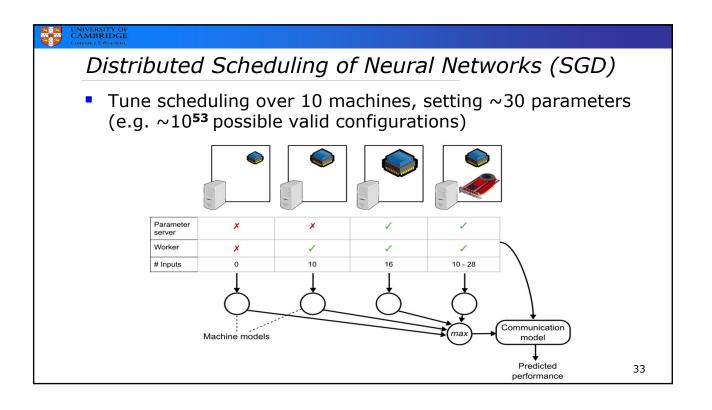
// set the GP parameters here
}

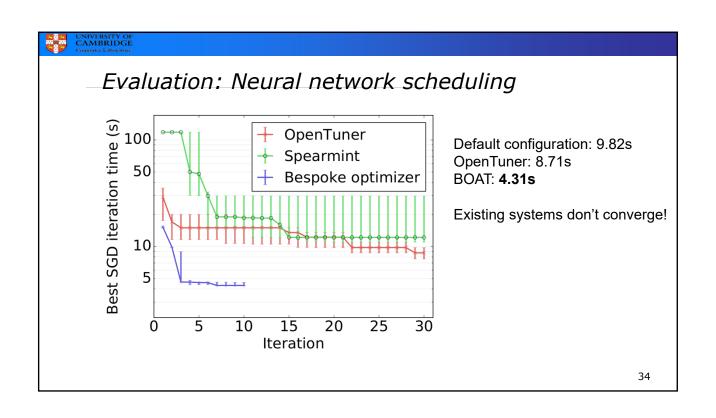
double parametric(double eden_size) const {

// Model the rate as inversely proportional to Eden's size return allocated_mbs_per_sec / eden_size;
}

double allocated_mbs_per_sec;
};
```







Auto-Tuning

- Manual Tuning
 - User to learn expert knowledge and not transferable
 - e.g. Ottertune (manually selects limited number of parameters then use BO)
- Automated Tuning
 - Divide-and-diverge sampling to explore the configuration space
 - Use of Gaussian processes, but it struggles to make accurate performance predictions because of high dimensionality

→ Generic Auto-Tuning with DAG models

- Use of DAG models for surrogate model, which mitigates the curse of dimensionality while also retaining all configurable variables
- Exploit data analysis to identify parameter dependencies
- Automatic building of DAG models: use of Bayesian Networks

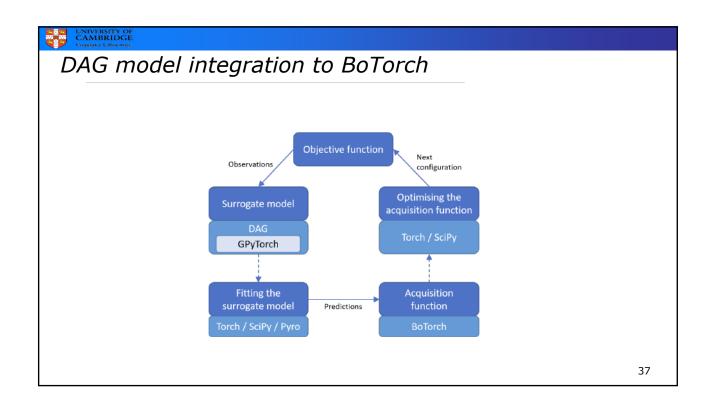
35

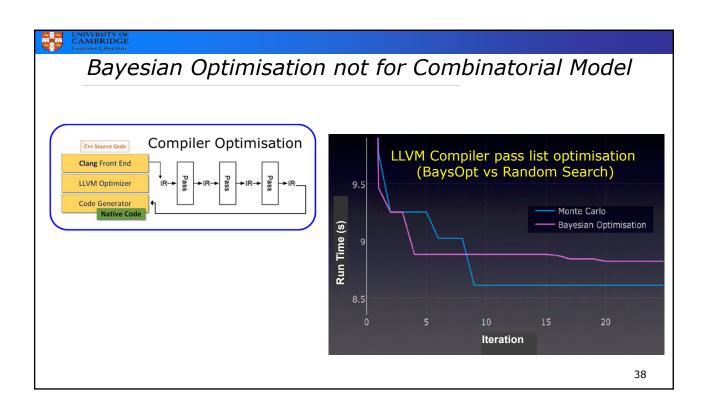
Surrogate Model in Bayesian Optimisation

Table 2.1: Comparison of surrogate models for BO

Model	Advantages	Disadvantassa
Model	Advantages	Disadvantages
Parametric models	\bullet Quickly fit long-distance trends	
Gaussian pro- cesses	Expressive	
	• Flexible	• Continuous, non-hierarchical configuration space only
Tree-Parzen estimators	$ \begin{array}{ll} \bullet & \text{Fitting is } O(n) \text{ in train-data} \\ \text{size} \\ \bullet & \text{Categorical and hierarchical} \\ \text{configuration space supported} \end{array} $	• Less sample efficient than GP
Random forests	 Computationally very cheap Categorical and hierarchical configuration space supported 	\bullet Inaccurately extrapolates uncertainty

Structural information (e.g. DAG model) improves Optimisation.





Reinforcement Learning in Computer Systems

- Agent interacts with Dynamic environment
- Goal: Maximise expectations over rewards in agent's lifetime
- Notion of Planning/Control, not single static configuration

What makes RL different from other ML paradigms?

- There is no supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters (sequential)
- Agent's actions affect the subsequent data it receives

Practical Consideration:

- Action spaces do not scale
- Exploration in production system not a good idea
- Simulations can oversimplify problem (Expensive to build)
- Online steps take too long

39

Action

Agent

Environment

State +

∑ Reward

Reinforcement Learning for Optimisation

Many problems in systems are sequential decision making and/or combinatorial problems

- Compiler Optimisation
- Chip placement
- Datacentre resource allocation
- Network congestion control with multiple connections
- Wide range of signals to make decisions (e.g., VM allocation)
- Database: Query optimiser, Dynamic indexing...

A brief history of Deep Reinforcement Learning Tools

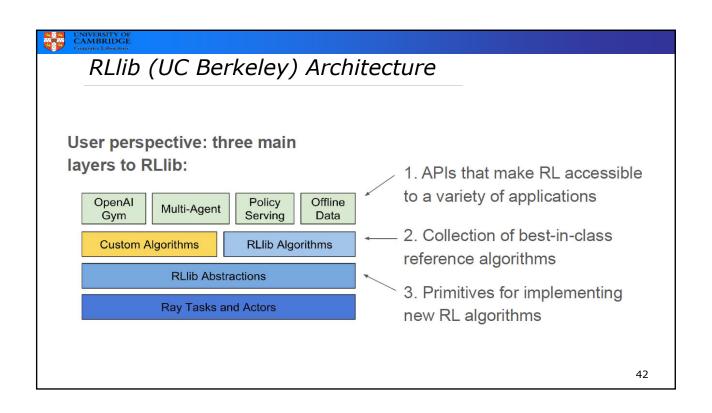
Gen (2014-16): Loose research scripts (e.g. DQN), high expertise required, only specific simulators

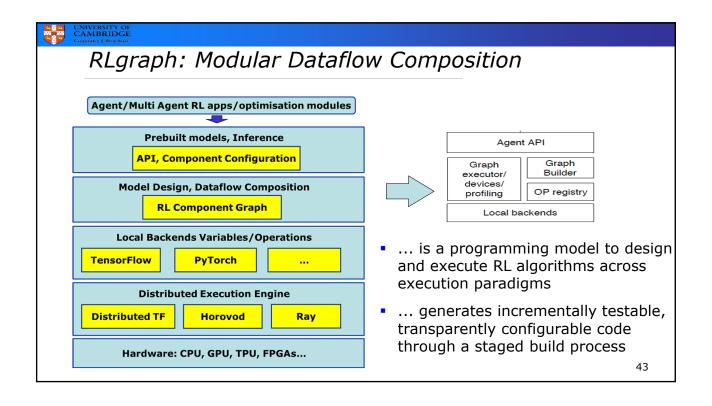
Gen (2016-17): OpenAI gym gives unified task interface, reference implementations

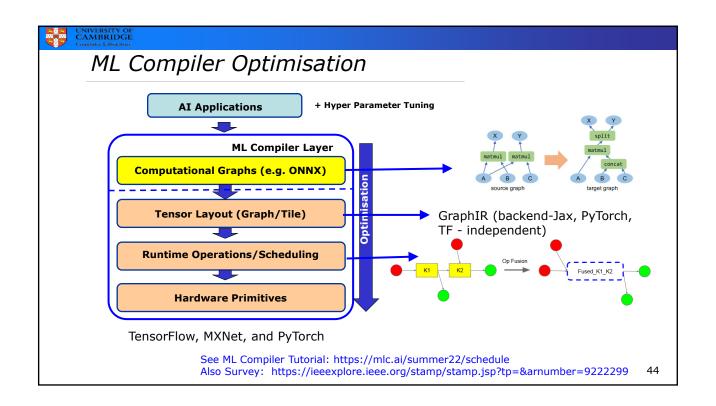
- Good results on some environments (e.g. game), difficult to retool to new domains and execution modes
- Abstractions/Libraries: not fully reusable, customised towards game simulators
- High implementation risk: lack of systematic testing, performance strongly impacted by noisy heuristics

Gen (2017-18): Generic declarative APIs, distributed abstractions (Ray Rllib, RLGraph), some standard *flavours* emerge

Still Problems... Tightly coupled execution/logic, testing, reuse...

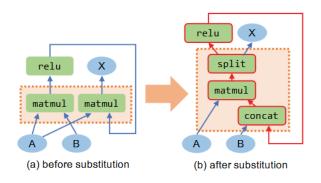






Optimising DNN Computation with Graph Substitutions

- TASO (SOSP, 2019): Performance improvement by transformation of computation graphs
- PET (OSDI, 2021): Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections
- Equality Saturation for Tensor Graph Superoptimization (MLSys 2021)

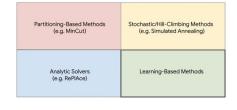


45

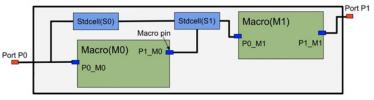
UNIVERSITY OF CAMBRIDGE

Chip Placement with Reinforcement Learning

 A. Mirhoseini and A. Goldie: A graph placement methodology for fast chip design, Nature, 2021.



- A form of graph resource optimization
- Place the chip components to minimize the latency of computation, power consumption, chip area and cost, while adhering to constraints, such as congestion, cell utilization, heat profile, etc.



Summary: Massive Data Processing and Optimisation

- → Dataflow is key element used in optimisation
- → Parameter space is complex, large and dynamic/combinatorial
- Systems are nonlinear and difficult to model manually → Exploit ML
- Reinforcement Learning to optimise dynamic combinatorial problem
- Key concept behind is Dataflow (~=Computational Graph) structural transformation/Decomposition
- → Exploit structural information for model decomposition to accelerate optimisation process and/or transform the structure
- → Bayesian Optimisation and Reinforcement Learning are key

