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Massive Data: Scale-Up vs Scale-Out

» Popular solution for massive data processing

- scale and build distribution, combine theoretically unlimited
number of machines in single distributed storage

- Parallelisable data distribution and processing is key

= Scale-up: add resources to single node (many cores) in system
(e.g. HPC)

» Scale-out: add more nodes to system (e.g. Amazon EC2)




Technologies supporting Cluster Computing

Distributed infrastructure
= Cloud (e.g. Infrastructure as a service, Amazon EC2, GCP, Azure)

cf. Many core (parallel computing)

Storage

= Distributed storage (e.g. Amazon S3, Hadoop Distributed File System
(HDFS), Google File System (GFS))

Data model/indexing

= High-performance schema-free database (e.g. NoSQL DB - Redis,
BigTable, Hbase, Neo4])

Programming model
= Distributed processing (e.g. MapReduce)

Data Processing Stack

» Data Processing Layer

Streaming T T Graph Processing
Mach L
Processing FrQuery Language achine *earning Pregel, Giraph,
. ig, Hive, SparksSQL, Rllib, Caffe, Keras,
Storm, SEEP, Naiad, DryadLINQ Torch. MLIib GraphLab, PowerGraph,
Spark Streaming, Flink, Ty . (Dato), GraphX,
Milwheel, Google Execution Engine X-Stream...
Dataflow... MapReduce, Spark, Tensorflow, Ray, Flumejava...

Storage Layer

Distributed Operational Store/NoSQL DB Logging System/Distributed
File Systems Big Table, Hbase, Dynamo, Messaging Systems
GFS, HDFS, Amazon S3, Flat FS.. Cassandra, Redis, Mongo, Kafka, Flume...
Spanner...

Resource Management Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack...




Data Flow Programming

= Non-standard programming models
= Powerful abstraction: mapping computation into

dataflow graphs

X

e

Function f(x, y, z) = x*y + z

out

MapReduce Programming

Target problem needs to be parallelisable
Split into a set of smaller code (map)
Next small piece of code executed in parallel

Results from map operation get synthesised into a result of
original problem (reduce)

Input data

=

Reduce(]

QOutput data




Data Flow Programming Examples

= Data (flow) parallel programming
= e.g. MapReduce, Dryad/LINQ, NAIAD, Spark, Tensorflow...

MapReduce: DAG (Directed Acyclic Graph) TensorFlow
I-Fi)adoop based: Dryad/Spark... \ [ ]
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Graph Computation Challenges

Graph algorithms (BFS, Shortest path)
Query on connectivity (Triangle, Pattern)
Structure (Community, Centrality)

ML & Optimisation (Regression, SGD)

ol B\

= Data driven computation: dictated by graph’s structure and
parallelism based on partitioning is difficult

* Poor locality: graph can represent relationships between irregular
entries and access patterns tend to have little locality

»= High data access to computation ratio: graph algorithms are often
based on exploring graph structure leading to a large access rate to

computation ratio .

Data-Parallel vs. Graph-Parallel

» Data-Parallel for all? Graph-Parallel is hard!
= Data-Parallel (sort/search - randomly split data to feed MapReduce)

= Not every graph algorithm is parallelisable (interdependent
computation)

= Not much data access locality
= High data access to computation ratio

Data-Parallel Graph-Parallel

Table /

L B Result

Dependency Graph
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Graph-Parallel

= Graph-Parallel (Graph Specific Data Parallel)

= Vertex-based iterative computation model
= Use of iterative Bulk Synchronous Parallel Model
> Pregel (Google), Giraph (Apache), Graphlab,
GraphChi (CMU - Dato)

= Optimisation over data parallel
=» GraphX/Spark (U.C. Berkeley)

= Data-flow programming — more general framework
= NAIAD (MSR), TensorFlow..
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Bulk synchronous parallel: Example

» Finding the largest value in a connected graph

Local Computation |
-

r Message
Communication 9

‘

Local Computation

‘

Communication

‘
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Are Large Clusters and Many cores Efficient?

Graph Edges Hardware

1 trillion Tsubame

» Brute force approach really efficiently works?
= Increase of number of cores (including use of GPU)

= Increase of nodes in clusters
Big Iron

Large Cluster

Avery Ching,
A billion edges isn’t cool. F k
You know what’s cool?

AJRILLION edges.

1 trillion

1 trillion

1 trillion

Blue Gene

Yes, using 3940 machines

Do we really need large clusters?

» Laptops are sufficient?

[ Twenty pagerank iterations ]

System cores twitter_rv uk_2007_05
Spark 128 857s 1759s
Giraph 128 596s 1235s
GraphLab 128 49s ) 833s
GraphX 128 419s Ca62s
B [Single thread | 1] Czo0s Cesi1s

[Label propagation to fixed-point (graph connectivity) ]

Fixed-point iteration:
All vertices active in
each iteration

(50% computation, 50%
communication)

| System | cores | twitter_rv | uk_2007_05
[Spark | 128| 1784s | 8000s+
[Giraph | 128| 200s | 8000s+
|GraphLab | 128| 242s| 714s
|Graphx | 128| 251s]| 800s
B [Single thread | 1] Cas53sh Ca17s

Traversal: Search
proceeds in a frontier
(90% computation, 10%)
communication)

from Frank McSherry HotOS 2015
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Data Processing Paradigm Change

= Emergence of modern Neural Networks Applications
* Practicalities of training Neural Networks
* Leveraging heterogeneous hardware

* Traditional dataflow programming does not deal with mathematical
objects (no deep learning back then), now control flow requires to
be numerically differentiable (i.e. TensorFlow)

Image Classification Reinforcement Learning
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Challenging: Computer Systems Optimisation

» How do we improve performance:
= Manual tuning
= Auto-tuning

= What is performance? - objective function of optimisation
= Resource usage (e.g. time, power)
= Computational properties (e.g. accuracy, fairness, latency)
= Large number of parameters
= Evaluation is slow and expensive

= What is Optimisation Model?
= Short-term dynamic control (e.g. stream processing: distinct workload or
dynamic workload)
= Combinatorial optimisation (e.g. indexing DB, device assignment)

[ Many systems problems are combinatorial in nature ] 6




Use of ML based Optimisation Methods

» Increasing data volumes and high-dimension parameter space
= Expensive Objective Functions

» Hand-crafted solutions impractical, often left static or configured

through extensive offline analysis ,
Deep Learning
Hyper-Parameters:

/ \ - Learning-rate

- Number of Di L
Cluster Workload S TN s NG
Management

O - Activation Function
oleo?
Y h 4

( Scheduler )
I csnecone. - COmMpiler Optimisation

I:l ‘ o) s Clang Front End |_l
D o oS DV meﬂ\t LLVM Optimizer IR—> IR—> IR—>
|:| Code Generator

Feature extraction + Classification

Machine Learning and Optimisation

= Function Optimisation

= Find the set of inputs to a target objective function that result in the
minimum or maximum of the function

= Function Approximation:

= Generalise from specific examples to a reusable mapping function for
making predictions on new examples

= ML can be described as function approximation as approximating the
unknown underlying function that maps examples of inputs to outputs in
order to make predictions on new data

= Function approximation often uses function optimisation

» At the core of many ML algorithms is an optimisation algorithm!
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Optimisation: Iterative Operation

= Common to use an iterative global search algorithm for
optimisation problem

* e.g. Bayesian optimisation algorithm that is capable of
simultaneously approximating the target function that is
being optimised while optimising it.

= Automated machine learning (AutoML) algorithms being used
to choose an algorithm, an algorithm and hyperparameters,
or data preparation, algorithm and hyperparameters, with
very little user intervention

19

Auto-tuning Complex Systems

= Many dimensions
= Expensive objective function » Blackbox Optimisation
= Hand-crafted solutions impractical

i i ; v/ can surpass human
(e.g. extensive offline analysis) an surpa uma

expert-level tuning

Grid search 6 € [1, 2, 3, ...]
Random search

1000s of evaluations
of objective function

Evolutionary approaches (e.gf-‘  PetaBricks )

S C tatl
= Hill-climbing (e.g. @pen“uner‘) e)(()FT;[:]L;i\?elon more
" Bayesian optimisation (e.g. SPEARMINT) Fewer samples

20
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Search Parameter Space

Random search: No risk of ‘getting stuck’
potentially many samples required

Evolution strategies: Evaluate
permutations against fitness function

Bayes Opt: Sample efficient, requires
continuous function, some configuration

Genetic
algorithm /
Simulated
annealing

Random Search

No overhead Slight overhead

High #evaluation Medium-high

#evaluation

Low #evaluation

Bayesian
Optimisation

High overhead
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Bayesian Optimisation

= Iteratively builds probabilistic model of objective function
» Typically Gaussian process as probabilistic model

» Data efficient: converges quickly

Input: Objective function f()

Input: Surrogate function initial distribution G 1 ) . ® ( . A .
Input: Acquisition function a() Configuration _| | Gaussian Predicted
L fori—1.2..  do Space Process Performance
2 Sample point: x; < argmax,a(G,x)
3 Evaluate new point: y, < f(x,) ® " Performance

4 Update surrogate distribution: G < G | (x;,y;)
5: end for

Pros:
v/ Data efficient: converges in few iterations

/  Able to deal with noisy observations model)

Cons: (2 Evaluate the objective function at that point
(3 Update the model to reflect this new measurement

X In many dimensions, model does not
converge to the objective function

(D Find promising point (high performance value in the

Objective >
Function

22
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Further Bayesian Optimisation...

= BO overview/Tutorial

= https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2021_2022/aid/BO
_overview_Archambeau.pdf

= https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2021_2022/aid/BO
_overview_adams.pdf

= https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2021_2022/aid/BO
_overview_gonzalez.pdf

= Papers

= Review paper by Shahriari, et al. (2016): Taking the Human Out of the
Loop: A Review of Bayesian Optimization. Proceedings of the IEEE
104(1):148-175, 2016.

= Slides by Ryan Adams (2014): A Tutorial on Bayesian Optimization for
Machine Learning. CIFAR NCAP Summer School.

= Slides by Peter Frazier (2010): Tutorial: Bayesian Methods for Global and
Simulation Optimization. INFORMS Annual Meeting. 23

Structured Bayesian Optimisation (SBO)

Probabilistic Model written in

l Probabilistic C++
Gauss
) | Proc ‘
Configuration ‘ @D | Probabilistic Predicted
Space | Program* 3 Performance
& Objective \ Performance & Developer-specified,

Function Runtime properties model of performance

from observed
performance + arbitrary

v Better convergence runtime characteristics
v/ Use all measurements

BOAT: a framework to build BespOke Auto-Tuners
24
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Probabilistic Model

= Probabilistic models incorporate random variables and
probability distributions into the model

= Deterministic model gives a single possible outcome

= Probabilistic model gives a probability distribution

= Used for various probabilistic logic inference (e.g. MCMC-
based inference, Bayesian inference...)

Tutorial: Session 5 - Guest Lecture by Brooks Paige

25

Probabilistic Programming

2020
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Hakaru gample
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Discrete
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Al
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Blog
ALisp
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STATS

rch
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Infer.NET
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KMP

LibBi
STAN
PyMC
JAGS
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B. Paige
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Semi-parametric Model

= Easy to use and
well suited to SBO

* Understand
general trend of
Objective function

Time (us)

S

2

! Too restrictive

Too generic
|

Time (us)
N

-

1000 2001
Vector size

(a) Parametric (Linear regression)
4

1000 200

Vector size

(b) Non-parametric (Gaussian process)

= High precision in g Justright
i i 0 _ I
region of optimum g, ‘
for finding highest £ Ground Trath
perfo rmance 1 ~}~ Model Observation
/ ——— Predicted Time
% 1000 2000
Vector size
(c¢) Semi-parametric (Combination) 27

Example: JVM Garbage Collection

= Cassandra's garbage collection

Cassandra

JVM

Garbage collection flags:

e Young generation size
e Survivor ratio

e Max tenuring threshold

£ 5
'-.n‘..

= Minimise 99th percentile latency of Cassandra

28

14



Performance Improvement from Structure

User-given probabilistic model structured in semi-parametric
model using Directed Acyclic Graph

V[ oomn
GC Average Gévderagf
Duration Model uration
Tune three JVM parameters of database

(Cassandra) to minimise latency

99th Percentile
Latency

Latency
Model

29
B
'-.n‘..
DAG model in BOAT
CassandraModel : public DAGModel<CassandraModel> {
void model(int ygs, int sr, int mtt){
// Calculate the size of the heap regions
es = ygs * sr / (sr + 2.0);// Eden space's size
ss = ygs / (sr + 2.9); // Survivor space's size
// Define the dataflow between semi-parametric models
rate = output('rate"”, rate_model, es);
duration = output("duration"”, duration_model,
es, ss, mtt);
latency = output("latency"”, latency_model,
rate, duration, es, ss, mtt);
}
ProbEngine<GCRateModel> rate_model;
ProbEngine<GCDurationModel> duration_model;
ProbEngine<LatencyModel> latency_model;
Y 30
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GC Rate Semi-parametric model

struct GCRateModel : public SemiParametricModel<GCRateModel> {

GCRateModel() {
allocated_mbs_per_sec =
std: :uniform_real_distribution<>(©.0, 5000.0)(generator);
// set the GP parameters here

}

double parametric(double eden_size) const {
// Model the rate as inversely proportional to Eden's size
return allocated_mbs_per_sec / eden_size;

}

double allocated_mbs_per_sec;

};

31

Evaluation: Garbage collection

N
o

—k— OpenTuner
—&— Spearmint |
—}— Bespoke optimiser

=
Ul

=
o

wn

o

Best 99th percentile latency (ms)

o
(%]
=
o
[
(9]
N
o
N
(%]
W
o

Iteration
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Distributed Scheduling of Neural Networks (SGD)

= Tune scheduling over 10 machines, setting ~30 parameters
(e.g. ~1033 possible valid configurations)

L‘Q%Q LQ ©

! ‘
& & - S

Parameter X X Ve o

server

Worker x v v v

# Inputs

Machiné mébels

Predicted 33

performance

Evaluation: Neural network scheduling

_?_ OpenTuner Default configuration: 9.82s

¢ Spearmint OpenTuner: 8.71s
-+ Bespoke optimizer BOAT: 4.31s

100}

500 k4

Existing systems don’t converge!

10}

Best SGD iteration time (s)
(9]

0 5 10 15 20 25 30
lteration

34
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= Manual Tuning
= User to learn expert knowledge and not transferable
= e.g. Ottertune (manually selects limited humber of parameters then use BO)

= Automated Tuning
= Divide-and-diverge sampling to explore the configuration space

= Use of Gaussian processes, but it struggles to make accurate performance

predictions because of high dimensionality

- Generic Auto-Tuning with DAG models

= Use of DAG models for surrogate model, which mitigates the curse of

dimensionality while also retaining all configurable variables
= Exploit data analysis to identify parameter dependencies
= Automatic building of DAG models: use of Bayesian Networks

Surrogate Model in Bayesian Optimisation

Table 2.1: Comparison of surrogate models for BO

Model

Advantages

Disadvantages

Parametric
models

e Quickly fit long-distance
trends

e Require known structure of

f

Gaussian pro-
cesses

e Expressive

e Flexible

e Fitting is O(n?) in train-data
size

e Continuous, non-hierarchical
configuration space only

Tree-Parzen
estimators |

e Fitting is O(n) in train-data
size

e Categorical and hierarchieal
configuration space supported

e Less sample efficient than
GP

Random
forests

¢ Computationally very cheap

e Categorical and hierarchical
configuration space supported

e [naccurately extrapolates un-
certainty

= Structural information (e.g. DAG model) improves Optimisation.

18



DAG model integration to BoTorch

Objective function
Mext

Observations configuration

Optimising the

| L ’
R e acquisition function

DAG

S

Fitting the Acquisition
surrogate model Predictions function

Torch / SciPy / Pyro BoTorch

37

«.  Compiler Optimisation

ctang Front v LLVM Compiler pass list optimisation
;‘l (BaysOpt vs Random Search)

LI.VM Opumlzer IR—| IR—>| 9.5

Code Generator o o

ptimisation

O
[}
£
=
c
3
x

10

Iteration

38




Reinforcement Learning in Computer Systems

= Agent interacts with Dynamic environment
*= Goal: Maximise expectations over rewards in agent’s lifetime
= Notion of Planning/Control, not single static configuration

What makes RL different from other ML paradigms?
= There is no supervisor, only a reward signal
= Feedback is delayed, not instantaneous
= Time really matters (sequential)
= Agent’s actions affect the subsequent data it receives

State +
% Reward

Environment
Practical Consideration:

= Action spaces do not scale

= Exploration in production system not a good idea

= Simulations can oversimplify problem (Expensive to build)

= Online steps take too long
39

Reinforcement Learning for Optimisation

Many problems in systems are sequential decision making
and/or combinatorial problems

= Compiler Optimisation

= Chip placement

= Datacentre resource allocation

= Network congestion control with multiple connections

= Wide range of signals to make decisions (e.g., VM allocation)
= Database: Query optimiser, Dynamic indexing...

40
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A brief history of Deep Reinforcement Learning Tools

Gen (2014-16): Loose research scripts (e.g. DQN), high expertise
required, only specific simulators

Gen (2016-17): OpenAl gym gives unified task interface, reference

implementations

* Good results on some environments (e.g. game), difficult to retool to new

domains and execution modes

= Abstractions/Libraries: not fully reusable, customised towards game
simulators

= High implementation risk: lack of systematic testing, performance
strongly impacted by noisy heuristics

Gen (2017-18): Generic declarative APIs, distributed abstractions
(Ray RIlib, RLGraph), some standard flavours emerge

Still Problems... Tightly coupled execution/logic, testing, reuse... at

RLIib (UC Berkeley) Architecture

User perspective: three main
layers to RLlIib:

e

OpenAl Policy | [ Offine to a variety of applications
Multi-Agent :
Gym Serving Data
Custom Algorithms RLIib Algorithms 2. Collection of best-in-class

reference algorithms

™

| 3. Primitives for implementing
D . <ooigorittms

1. APIs that make RL accessible

21



RLgraph: Modular Dataflow Composition

[Agent/Multi Agent RL apps/optimisation modules]
-

Prebuilt models, Inference

API, Component Configuration

Model Design, Dataflow Composition

RL Component Graph

Local Backends Variables/Operations

TensorFlow PyTorch

Distributed Execution Engine

Distributed TF

Horovod Ray

Hardware: CPU, GPU, TPU, FPGAs...

| Agent API ‘

Graph Graph
executor/ Builder
devices/

profiling
| Local backends

* ... is a programming model to design
and execute RL algorithms across
execution paradigms

* ... generates incrementally testable,
transparently configurable code
through a staged build process

43

ML Compiler Optimisation

[ AI Applications

< =
( ML Compiler Layer \
Computational Graphs (e.g. ONNX) ]— c
| o —————= "— ___________ ]
L
‘ 3
Tensor Layout (Graph/Tile) ]— —
=
. - =%
o
Runtime Operations/Scheduling ]_
. =
Hardware Primitives L

TensorFlow, MXNet, and PyTorch

See ML Compiler Tutorial: https://mlc.ai/summer22/schedule
Also Survey: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9222299 44

] + Hyper Parameter Tuning

X %
X
X i split

[\ e

matmul  matmul L.
f \ / concat
¥l 3
A B c A B (]
source graph target graph

GraphIR (backend-Jax, PyTorch,
TF - independent)

® ®

\
\

Op Fusion \

\

o [«lix] 0T @ (i@

® ®
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Optimising DNN Computation with Graph Substitutions

= TASO (SOSP, 2019): Performance improvement by transformation of
computation graphs

= PET (OSDI, 2021): Optimizing Tensor Programs with Partially
Equivalent Transformations and Automated Corrections
» Equality Saturation for Tensor Graph Superoptimization (MLSys 2021)

relu X
e e s ;
¢ matmul  matmul :
A B A B
(a) before substitution (b) after substitution

45
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Chip Placement with Reinforcement Learning

= A. Mirhoseini and A. Goldie: A graph placement methodology for
fast chip design, Nature, 2021.

(e.g-MinCut)

Stochastic/Hill-Climbing Methods
(e.g. Simulated Annealing)

Analytic Solvers

| Partitioning-Based Methods
‘ (e.g. RePlAce)

Learning-Based Methods

e A form of graph resource optimization

e Place the chip components to minimize the latency of computation, power
consumption, chip area and cost, while adhering to constraints, such as
congestion, cell utilization, heat profile, etc.

Port P1

Port PO

PO_MO

46
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Summary: Massive Data Processing and Optimisation
- Dataflow is key element used in optimisation

- Parameter space is complex, large and dynamic/combinatorial

= Systems are nonlinear and difficult to model manually - Exploit ML

»= Reinforcement Learning to optimise dynamic combinatorial problem
= Key concept behind is Dataflow (~=Computational Graph) structural
transformation/Decomposition

- Exploit structural information for model decomposition to accelerate
optimisation process and/or transform the structure

- Bayesian Optimisation and Reinforcement Learning are key

47

Gap between Research and Practice

o
o
Device Placement Optimization with Reinforcement Learning _ 20

\
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Azalia Mirhoseini*'? Hieu Pham”*'? Quoc V.Le' Benoit Steiner' Rasmus Larsen' Yuefeng Zhou'
Naveen Kumar® Mohammad Norouzi' Samy Bengio ! Jeff Dean!
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