Flexible, Parallelized, Bayesian Optimization for Large Datasets

Theodore Long
November 31st 2022
FABOLAS – Bayesian Hyperparameter Tuning

• **Fast Bayesian Optimization for Large DataSets**
• How do we optimize hyperparameters to achieve optimal training accuracy?
• Training a model for each hyperparameter setting is **expensive**
• Solution: test performance on **subsets of full dataset**
• FABOLAS combines this idea with Bayesian Optimization
Bayesian Optimization with Small Subsets

• Classic Bayesian Optimization seeks to maximize objective function f
 $$\text{argmax } f(x)$$
 where $x \in \mathbb{R}^n$ is the hyperparameter setting (learning rate, batch size, etc.)

• FABOLAS adds an additional parameter
 $$s = \frac{|D_{small}|}{|D|}$$
 where s is the size of the random data subset D_{small} as a fraction of the full dataset D.

Our new objective function now looks like

\[f(x, s) \]

\[x \in \mathbb{R}^n, s \in (0, 1] \]

Our goal is to find

\[\text{argmax}_{x \in \mathbb{R}^n} f(x, s = 1) \]

FABOLAS can use small values of \(s \) to do ‘cheap’ experiments that are correlated with performance at \(s = 1 \)
Limitations of FABOLAS

• Limited number of datasets/models tested in original paper
• Current Implementation is not parallelized
 • Ray Tune provides an easy interface for parallelization
• FABOLAS uses a GP for modeling objective function and cost function
 • This becomes expensive with many datapoints/dimensions
 • Can other models provide faster/more precise estimates?
• FABOLAS is not fully Bayesian
 • Only chooses from configuration points previously evaluated in training
Goals for this Project

• Test FABOLAS with a wider range of models and datasets using open-source BO benchmarks (e.g. HPOBench)
• Parallelize using Ray Tune
• Implement other model backends
• (Time permitting) Attempt more fully Bayesian approach
Questions?