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Optimising Computation Graphs

. Input
* Device placement

* Scheduling
e NP-hard



Motivation & Related Work

* AutoTVM
* No transfer across models
* | earning to super optimise programs
 Handcrafted instance & small graphs
» Parallel task scheduling

* [raditionally not learning-based



REGAL.: Transfer Learning For Fast
Optimization of Computation Graphs
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Objective

Peak memory minimisation
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BRKGA

Biased random key genetic algorithm
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BRKGA

Encoding & Decoding

e Chromosome o

» n-d vector [0,1]"

* Ops-device affinity
* Scheduling priorities
e [ensor transfer priorities

 Fithess function

e £:]0,1]" = |
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GNN policy

Graph Neural Net Policy
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GNN policy

 Aim to generate
» Parameters of chromosome generation distribution &

e Flite biases (pl) Graph Neural Net Policy
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GNN policy

 Aim to generate
» Parameters of chromosome generation distribution &

« Elite biases (:01) Graph Neural Net Policy

« As avectory, for each node v

- A A
. GNN LA
» Representation vectors h , for each node v Ke
o Structural information of the graph
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GNN policy

How do we go from h toy *?

 Conditionally independent predictions
* Autoregressive predictions
* Actions & Rewards (Aka RL) Graph Neural Net Policy
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GNN policy

REINFORCE

« Sample action vector y from p(y | G)

0,(G)
, Reward r = —
OS(G) Graph Neural Net Policy
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Results

Vs Baselines

* Constraint programming
 Graph partition
* Local search (greedy)

 Graph-As-Sequence

Table 1: Performance for all methods, averaged over the

graphs in the test set of the TensorFlow and XLA datasets.

TensorFlow XLA dataset
dataset (test)

Algorithm % Improv. % Gap % Improv. % Gap
over from over from

BRKGA5S5K  best BRKGA5K  best
CP SAT -1.77% 13.89% -47.14% 71.35%
GP + DFS -6.51% 16.63% -21.43% 39.86%
Local Search 0.63% 8.65% -6.69% 21.98%
BRKGA 5K 0% 9.65% 0% 14.04%
Tuned BRKGA 0.8% 8.54% 0.452% 13.52%
GAS 0.16% 9.33% -1.1% 15.36%
REGAL 3.56% 4.44% 3.74% 9.40%
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Discussion

Ablation analysis

Table 3: Performance of REGAL with various subsets of ac-
tions.

Placement Scheduling Elite Bias Valid Test XLA

Yes No No -04% -0.2% -0.4%
No Yes No 4.4%  3.65% 1%

Yes Yes No 4.67% 3.56% 3.74%
Yes No Yes -1.53% -1.1% -2.2%
No Yes Yes 2.47% 1.4% -0.4%

Yes Yes Yes 2.58% 1.88% -0.7%
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Comments

e EXxtensive evaluation and impressive results
* [ransfer learning through policy network
* Objectives other than peak memory minimisation

* [oo many optimisation layers, very complex system

e Justification of BRKGA
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Conclusions

* Input -> GNN -> REINFORCE -> BRKGA -> Decision

e Transfers well
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