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Optimising Computation Graphs

• Device placement


• Scheduling


• NP-hard
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Motivation & Related Work

• AutoTVM


• No transfer across models


• Learning to super optimise programs


• Handcrafted instance & small graphs


• Parallel task scheduling


• Traditionally not learning-based


• Little attempt to learn to transfer to new graphs on a large scale
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REGAL: Transfer Learning For Fast 
Optimization of Computation Graphs 
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Pipeline
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Objective
Peak memory minimisation
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BRKGA
Biased random key genetic algorithm
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BRKGA
Evolution
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BRKGA
Evolution
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Copy Elites



BRKGA
Evolution
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Copy Elites

Generate Mutants



BRKGA
Evolution
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BRKGA
Encoding & Decoding
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• Chromosome 


• n-d vector 


• Ops-device affinity


• Scheduling priorities


• Tensor transfer priorities


• Fitness function 


•

[0,1]n

f : [0,1]n → ℝ

Cρi 1 − ρi



GNN policy
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GNN policy
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• Aim to generate


• Parameters of chromosome generation distribution 


• Elite biases ( )


• As a vector  for each node 

𝒟

ρi

yv v
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GNN policy
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• Aim to generate


• Parameters of chromosome generation distribution 


• Elite biases ( )


• As a vector  for each node 


• GNN


• Representation vectors  for each node 


• Structural information of the graph

𝒟

ρi

yv v

hv v
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GNN policy
How do we go from  to ?hv yv
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• Conditionally independent predictions


• Autoregressive predictions


• Actions & Rewards (Aka RL) EvaluationOutputInput BRKGAGraph Neural Net Policy
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GNN policy
REINFORCE
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• Sample action vector  from 


• Reward 


• Maximise


•

y p(y |G)

r = −
oa(G)
os(G)

L = 𝔼G ∑
y

p(y |G)r(y, G)
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Results
Vs Baselines
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• Constraint programming


• Graph partition


• Local search (greedy)


• Graph-As-Sequence



Discussion
Ablation analysis 
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Comments
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• Extensive evaluation and impressive results


• Transfer learning through policy network


• Objectives other than peak memory minimisation


• Too many optimisation layers, very complex system


• Justification of BRKGA



Conclusions

• Optimisation all the way down 

• Input -> GNN -> REINFORCE -> BRKGA -> Decision


• Transfers well 
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