
Paper Review - Unity: Accelerating
DNN Training Through Joint
Optimization of Algebraic

Transformations and Parallelization1

Theodore Long
16th November 2022

1 Authors: Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos Efrain Quintero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati, Pat McCormick, Jamaludin Mohd-
Yusof, Xi Luo, Dheevatsa Mudigere, Jongsoo Park, Misha Smelyanskiy, Alex Aiken.

Unity: A System for Optimizing DNN Training

• Problem – DNN training is slow and computationally expensive
• Solution – Optimizing computation for faster training and scalability

Algebraic Transformation Parallelization

DNN Training Optimizations – A Quick
Refresher
• Algebraic Transformation – Changing

operator in computation graph to
equivalent ones

• Operator Fusion
• Depthwise Convolution Reduction
• … and many more

• Algebraic transformations operate on
logical computation graph – unaware of
device mappings

DNN Training Optimizations – A Quick
Refresher
• Parallelization – doing computation

in parallel across devices
• Data Parallelism
• Model Parallelism
• Spatial Parallelism
• …

• Parallelization involves tradeoffs –
less per-device computation, more
communication and synchronization
overhead

Unity Jointly Optimizes Algebraic
Transformations and Parallelization
• Most existing systems focus on either algebraic or parallelization

optimizations
• For maximum speed up, want to leverage both
• Current approaches only allow sequential optimization

+

+

Unity Jointly Optimizes Algebraic
Transformations and Parallelization
• Unity performs algebraic and parallelization optimization together
• This allows for better optimizations and performance

Joint Optimization Has Unique Challenges

1. How to represent algebraic and parallel optimization on one
computation graph?

2. How to generate hybrid algebraic-parallel optimizations?

3. How to scale optimization to large models and many devices?

Parallel Computation Graphs allow Joint
Representation
• PCG is a computation graph with 2 additional ingredients:

1. Machine Mapping
2. Parallelization Operators

• Previous approaches to parallelization annotate the computation
graph – this is hard to incorporate into joint optimization

• By directly embedding parallelism into the PCG, algebraic and parallel
transformations are both represented as graph substitutions

Parallel Computation Graphs allow Joint
Representation
• Every operator has a machine mapping of tasks to devices
• n-dimensional arrays representing d1 × … × dn parallel tasks mapped

to N devices

Parallel Computation Graphs allow Joint
Representation
• 3 Pairs of parallelization

operators
• Partition and Combine
• Replicate and Reduce
• Pipeline and Batch

• Backward pass of one = forward
pass of other

Unity Automatically Generates Valid
Substitutions
• Follows TASO superoptimization approach2 – generate candidates,

then formally verify
• Key Idea: We can generate more complex transformation from a small

set of ‘basis’ transformations
• Step 1: Generate all possible PCGs up to certain size, and calculate

hash of output on standard input Tensors
• Step 2: Formally verify equivalence of all pairs of tensors with same

output hash

2Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken. 2019. TASO: optimizing deep learning computation with automatic generation of graph
substitutions. In Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP '19). Association for Computing Machinery, New York, NY, USA, 47–62.

Unity’s Search Algorithm in 3 Steps

• Goal - Given a PCG with machine mappings, find a sequence of
substitutions and a final machine mapping which minimizes per-
iteration train time

1. Break initial PCG into subgraphs
2. Choose optimal substitutions for each subgraph

a) Find optimal machine mapping for each substitution
b) Find optimal substitutions given best machine mappings

3. Recombine optimized subgraphs into final PCG

Substitutions are Selected with a Backtracking
Algorithm
• Unity maintains a queue of PCGs sorted by computation time
• While queue is not empty and search budget not exceeded:

1. Remove best candidate from queue
2. For each possible substitution:

• Find optimal machine mapping, evaluate computation time, and add to
queue

3. Remove candidates with time ≥ threshold * best time so far
(threshold usually set to ~1.05)

• Note – this requires a good computation time estimate!

Unity finds Optimized Machine Mappings
through Graph Splits
• Most DNN architectures are composed of

parallel chains of sequential computation
• Allows you to decompose PCG with sequence

and parallel graph splits
• For a sequence split G1 – n – G2 , can optimize

G1, n, and G2 separately
• For each parallel graph split G1 | G2, Unity

chooses whether to run G1 and G2 sequentially
or in parallel

• Unity maintains a cache of optimal mappings

Partitioning the PCG allows for Scalability

• Considering every possible substitution for the whole PCG scales as

O(2# of Nodes ✕ # of Substitutions)

• Instead partition the full PCG into subgraphs of size k (=10 in paper)
• Problem: cannot apply substitutions (e.g. data parallelism) across split

points
• Solution: For each split G1 – G2, consider all possible partitions p of split

tensor T and optimize under the condition

Output partition of G1 = p = Input partition of G2

Partitioning the PCG allows for Scalability

• This makes # of possible PCG substitutions to evaluate

O(𝑔𝑔 × # of partitions
𝑘𝑘

× 2k ✕ # of Substitutions)

Unity Matches or Beats SOTA Framework
Throughputs

Limitations

• Machine mapping generation relies on standard NN structure – some
DL architectures do not follow this pattern

• Limited support for pipeline parallelism
• Does not consider non-algebraic or parallelization strategies e.g.

rematerialization
• Performance is dependent on good computation time estimates
• Unclear what hardware Unity itself was run on – claim ~20min

runtime but not specified what is running this

Conclusion

• Unity combines algebraic and parallel optimizations, enabling hybrid
optimizations not achievable in other general-purpose frameworks

• This is enabled by the PCG representation, a powerful abstraction
allowing for explicit joint representation and optimization

• System optimizations allow Unity to scale to large models run on 100s
of devices

• Unity achieves near-SOTA or SOTA performance on many large models
• Even better performance might be achieved by combining Unity with

other approaches e.g. operator optimization with TVM

Questions?

	Paper Review - Unity: Accelerating DNN Training Through Joint Optimization of Algebraic Transformations and Parallelization1
	Unity: A System for Optimizing DNN Training
	DNN Training Optimizations – A Quick Refresher
	DNN Training Optimizations – A Quick Refresher
	Unity Jointly Optimizes Algebraic Transformations and Parallelization
	Unity Jointly Optimizes Algebraic Transformations and Parallelization
	Joint Optimization Has Unique Challenges
	Parallel Computation Graphs allow Joint Representation
	Parallel Computation Graphs allow Joint Representation
	Parallel Computation Graphs allow Joint Representation
	Unity Automatically Generates Valid Substitutions
	Unity’s Search Algorithm in 3 Steps
	Substitutions are Selected with a Backtracking Algorithm
	Unity finds Optimized Machine Mappings through Graph Splits
	Partitioning the PCG allows for Scalability
	Partitioning the PCG allows for Scalability
	Unity Matches or Beats SOTA Framework Throughputs
	Limitations
	Conclusion
	Questions?

