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Unity: A System for Optimizing DNN Training

* Problem — DNN training is slow and computationally expensive
 Solution — Optimizing computation for faster training and scalability

Shared model

Algebraic Transformation Parallelization



Refresher

 Algebraic Transformation — Changing
operator in computation graph to
equivalent ones
* Operator Fusion
* Depthwise Convolution Reduction
e ...and many more

* Algebraic transformations operate on
logical computation graph — unaware of
device mappings

DNN Training Optimizations — A Quick

a = np.random.normal(size=[10, 5])
b = np.random.normal(size=[5, 20])
c = np.zeros([10, 20])

# MatMul

for i in range(10):
for j in range(20):
for k in range(5):
c[il[j] += alil[k] * b[k][j]

# RelLU
for i in range(10):
for j in range(20):
clil[j] = max(0, cl[il[j])

# MatMul + RelU
for i in range(10):
for j in range(20):
for k in range(5):
c[il [j] += alil [k] * b[k][j]
cl[il[j1 = max(@, cl[il[j])



DNN Training Optimizations — A Quick
Refresher

* Parallelization — doing computation
in parallel across devices
* Data Parallelism
* Model Parallelism
 Spatial Parallelism

Data parallelism Model parallelism

* Parallelization involves tradeoffs —
less per-device computation, more
communication and synchronization
overhead

Shared model Partitioned model



Unity Jointly Optimizes Algebraic
Transformations and Parallelization

* Most existing systems focus on either algebraic or parallelization
optimizations

* For maximum speed up, want to leverage both

* Current approaches only allow sequential optimization
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Unity Jointly Optimizes Algebraic
Transformations and Parallelization

* Unity performs algebraic and parallelization optimization together
* This allows for better optimizations and performance




Joint Optimization Has Unigue Challenges

1. How to represent algebraic and parallel optimization on one
computation graph?

2. How to generate hybrid algebraic-parallel optimizations?

3. How to scale optimization to large models and many devices?



Parallel Computation Graphs allow Joint
Representation

* PCG is a computation graph with 2 additional ingredients:
1. Machine Mapping
2. Parallelization Operators

* Previous approaches to parallelization annotate the computation
graph — this is hard to incorporate into joint optimization

* By directly embedding parallelism into the PCG, algebraic and parallel
transformations are both represented as graph substitutions



Representation

Parallel Computation Graphs allow Joint

e Every operator has a machine mapping of tasks to devices

* n-dimensional arrays representing d, x ...

to N devices
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Parallel Computation Graphs allow Joint
Representation

* 3 Pairs of parallelization
operators
 Partition and Combine
* Replicate and Reduce Model
* Pipeline and Batch

MatMul
Replicate

Data MatMul

e Backward pass of one = forward eralelEm
pass of other l‘ él

Partition Partition
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a) Computation graph. (b) Perdlel computaion graph.



Unity Automatically Generates Valid
Substitutions

* Follows TASO superoptimization approach? — generate candidates,
then formally verify

* Key Idea: We can generate more complex transformation from a small
set of ‘basis’ transformations

* Step 1: Generate all possible PCGs up to certain size, and calculate
hash of output on standard input Tensors

 Step 2: Formally verify equivalence of all pairs of tensors with same
output hash



Unity’s Search Algorithm in 3 Steps

* Goal - Given a PCG with machine mappings, find a sequence of
substitutions and a final machine mapping which minimizes per-
iteration train time

1. Break initial PCG into subgraphs

2. Choose optimal substitutions for each subgraph
a) Find optimal machine mapping for each substitution
b) Find optimal substitutions given best machine mappings

3. Recombine optimized subgraphs into final PCG



Substitutions are Selected with a Backtracking
Algorithm

e Unity maintains a queue of PCGs sorted by computation time

* While queue is not empty and search budget not exceeded:
1. Remove best candidate from queue

2. For each possible substitution:

* Find optimal machine mapping, evaluate computation time, and add to
queue

3. Remove candidates with time = threshold * best time so far
(threshold usually set to ~1.05)

* Note — this requires a good computation time estimate!



Unity finds Optimized Machine Mappings

through Graph Splits

* Most DNN architectures are composed of
parallel chains of sequential computation

* Allows you to decompose PCG with sequence
and parallel graph splits

* For a sequence split G,—n — G,, can optimize
G,, n, and G, separately

* For each parallel graph split G, | G,, Unity
chooses whether to run G, and G, sequentially
or in parallel

e Unity maintains a cache of optimal mappings




Partitioning the PCG allows for Scalability

* Considering every possible substitution for the whole PCG scales as

0(2# of Nodes X # of Substitutions )

* |Instead partition the full PCG into subgraphs of size k (=10 in paper)

* Problem: cannot apply substitutions (e.g. data parallelism) across split
points

* Solution: For each split G, — G,, consider all possible partitions p of split
tensor T and optimize under the condition

Output partition of G; = p = Input partition of G,



Partitioning the PCG allows for Scalability

* This makes # of possible PCG substitutions to evaluate

g X # of partitions
k

Of

X 2k X # of Substitutions )

All w/o Split w/0 Cache+Split

Time Scaled Time Scaled Time Scaled

6 GPUs (1 nodes) 57s Ix 4mO0ls 4.3x 37mO0ls 38.5x
12 GPUs (2nodes) 1m47s 19x 11lm15s 16.8x > 1h n/a
24 GPUs (4 nodes) 3mO00s 3.1x > 1h n/a > 1h n/a
48 GPUs (8 nodes) 5m55s 6.1x > 1h n/a > 1h n/a
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Limitations

* Machine mapping generation relies on standard NN structure —some
DL architectures do not follow this pattern

* Limited support for pipeline parallelism

* Does not consider non-algebraic or parallelization strategies e.g.
rematerialization

* Performance is dependent on good computation time estimates

* Unclear what hardware Unity itself was run on — claim ~20min
runtime but not specified what is running this



Conclusion

* Unity combines algebraic and parallel optimizations, enabling hybrid
optimizations not achievable in other general-purpose frameworks

* This is enabled by the PCG representation, a powerful abstraction
allowing for explicit joint representation and optimization

* System optimizations allow Unity to scale to large models run on 100s
of devices

* Unity achieves near-SOTA or SOTA performance on many large models

* Even better performance might be achieved by combining Unity with
other approaches e.g. operator optimization with TVM



Questions?
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