Historical Context

• It has been proven that success of a neural network depends upon the joint tuning of the model structure, its data and the details of how the model is optimized.

• Each of these components of a learning framework is controlled by a number of parameters i.e. hyperparameters (HP) which influence the learning process and must be properly tuned to fully unlock the network performance.

• There are two approaches for doing this:
 • Parallel Search
 • Sequential Search
1. **Sequential Search:**
- Run few optimizations in parallel but many times sequentially with outputs of previous epochs guiding later epochs in order to find the best case.
- E.g. hand tuning or Bayesian optimization.
- Works best but time consuming due long optimization processes.

Start a simple rate and decrease by a fixed factor in each epoch e.g. start 0.005 decrease by factor of 10 for each 100 epochs

0.005 → 0.0005 → 0.00005 → 0.000005

Source: Jaderberg, et al, 2017
2. Parallel Search:

- Run multiple optimizations in parallel in bid to find one best output.
- E.g. grid or random search.
- Time and computationally expensive.

Source: Jaderberg, et al, 2017
Population Based Training Paradigm

3. Population Based Training:
 • parallel + sequential optimization methods.
 • Start like parallel search, randomly sampling HP and weight initializations.
 • Underperforming population model replaces self with a better performing model and explore new HPs by modifying the better model’s HPs before training is continued.
 • Allow it to focus on weight space that has best potential to produce good results.
 • Proven to be effective in Generative Adversarial Networks (GANs) and Machine Learning Translation.

Source: Jaderberg, et al, 2017
Motivation

• Fragility of reinforcement learning to key hyperparameters and choice of network architecture.
• Expensive RL parameters tuning.
• Possibility of obtaining algorithmic optimality at different training points due to changing data distribution.
• Evolving training and data and increased agent complexity.
• Existing Population Based Training styles are not scalable to higher dimensional data.

• Solution -> Bayesian Generational Population Based Training
Key Ideas

- Capable of tweaking a large proportion of agents configurations.
- On-the-fly and automatic finetuning of HPs and architectures during training epochs.
- Achieve these using two techniques:
 - Model based HPs architecture exploration steps built on local Bayesian optimization
 - Generational learning which combines PBT and network distillation.
- Experimented for Proximal Policy Optimization (PPO) on *Brax*, a less computing intensive differentiable physics engine simulation environments.
Key Ideas – Algorithmic representation

- **Consists of three parts.**
- Use a Bayesian optimization approach to select new HP configurations z for agents.
- Extend the search space to accommodate architecture search to allowing agents to choose their own networks.
- Use on-policy distillation to transfer between different architectures.

Algorithm 1 BC-PBT; distillation and NAS steps marked in magenta (§3.2)

1. Input: pop size B, t_{rady}, max steps T, q (% agents replaced per iteration)
2. Initialize B agents with weights $\{\theta_0^{(i)}\}_{i=1}^B$, random hyper-parameters $\{z_0^{(i)}\}_{i=1}^B$, and architectures $\{y_0^{(i)}\}_{i=1}^B$.
3. for $t = 1, \ldots, T$ (in parallel for all B agents) do
4. 1. Train models & record data for all agents
5. 2. if $t \mod t_{rady} = 0$ then
6. 2.1. Replace the weights & architectures of the bottom $q\%$ agents with those of the top $q\%$ agents.
7. 2.2. Update the surrogate with new observations & returns and adjust/restart the trust regions.
8. 3. Check whether to start a new generation (see §3.2):
9. 3.1. if start a new generation then
10. 3.1.1. Clear the training data.
11. 3.1.2. Create B agents with archs. from BO/random.
12. 3.1.3. Distill from a top-$q\%$ performing agent of the existing generation to new agents.
13. 3.1.4. else
14. 3.1.4.1. Select new hyperparameters z for the agents whose weights have been just replaced with randomly sampled configs (if $D = \emptyset$) OR using the suggestions from the no agent described conditioned on y (otherwise).

Source: Wan, et al (2021)
Key Ideas
Within a generation

- Consist of three stages.
- **Initialization**: Random HP and weights of different architectures are used for training.
- **Exploitation**: Underperforming agents copies weight and architectures of the best-performing agent.
- **Exploration**: HPs suggestions by time-varying, high-dimensional BO agent.

Key Ideas
Across generations

- Consist of two stages.
- **Initialization**: Generate 1 random architecture.
- Subsequent generations: BO agent performance of the previously generated is used to suggest new architectures.
- **Transfer Knowledge**: (On-policy distillation): Best agents from previous generation guides subsequent ones.

Performance – Comparative Evaluation

- Experiments conducted on 7 Brax environments.
- Outperforms Random Search, Population Based Training (Jaderberg et al, 2017), PB2 (Parker-Holder et al, 2020) in all the 7 environments.
Performance on Discovered Hyperparameter and Architecture Schedules

- Increasing HP size over time during training to model complex behaviors.
- Start with few hyperparameter sizes and increase accordingly to model complex behaviors.
- BG-PBT achieved declining learning rate and batch size increment over time without any pre-defined schedule.
- Result consistent with common practices in deep and reinforcement learning.
Pros

- On-the-fly hyperparameters finetuning to achieve optimal results with less computing resources.
- Results consistent with trends in deep and reinforcement learning domain (declining learning rate and increasing batch size).
- Outperforms existing architectures of PBT based solutions in the simulation environments.
Limitations

• Although the researchers was able to automate Reinforcement Learning hyperparameters using BG-PBT, they recognized need to automate PBT parameters themselves e.g. no. of iterations/epochs needed to achieve optimal result.

• Environmental complexity, network architecture sensitivity and poor selection of architectures can affect the system performance.
Suggestion for Future Research

- Applicability of BG-PBT to other domains outside of reinforcement learning such as GANs, Machine Learning Translation/NLP.