
X-Stream: Edge Centric Graph

Processing using Streaming

Partitions
Amitabha Roy, Ivo Mihailovic, Willy Zwaenepoel

Division name appears here

Background

• System for processing large graphs on a single machine

• Aimed at scaling the “scatter-gather” programming model

for graph algorithms

• Current approaches to “scatter-gather” iterate over

vertices, and consist of:

• Scatter: a user-provided scatter function propagates

vertex state to all its neighbours

• Gather: accumulates updates from all neighbors to

update the current vertex state

• Current approaches sort edges by originating vertex, and

then use random access across an index of vertices to

locate relevant edges connected to a vertex

From [2]: Iterative Graph Processing

Main Contributions

• Adapts “scatter-gather” model of state propagation across

graphs to be edge-centric

• Takes advantages of large speedups from sequential vs.

random memory access

➢ ~500x for disk, 30x for SSD, 1.6-5x for main memory on

tested system

➢ Much larger speedup for “slow storage”, which is where

large edge lists typically need to reside

• Rather than random access across vertices, X-Stream

processes all edges sequentially, only propagating state where

needed

• Streaming partitions are used to reduce random access

overhead across vertices

• For typical graphs, number of edges >> number of vertices, and

processing these dominates scatter-gather runtime, so

sequential processing is useful optimization

System Architecture

• X-Stream runs by processing a set of “streaming

partitions”, which consist of: (vertex set, edges with

source vertices in set, relevant updates)

• Each streaming partition is sized so that all vertices fit in

“fast memory”, and to ensure enough I/O capacity

available for full utilization of streaming bandwidth

• Trade off: many partitions destroys sequential access

• Large graphs are handled by an “out-of-core” streaming

engine (Figure 6) – architecture allows this to be

“stacked” with in-memory engine

• X-Stream parallelizes work across streaming partitions –

constrained by I/O resources available by CPU

• Load balancing achieved by “work-stealing”

Benchmarks

• The “scatter-gather” framework is flexible enough to express a wide range of different

graph algorithms, e.g. connected components, shortest paths, spanning trees, etc.

• X-Stream outperforms where sorting-based pre-processing is required (figure 18)

• Some graphs (eg. Dimacs, figure 12) perform poorly as only very few edges need

updates. Yahoo graph also failed to compute in reasonable time for many algorithms.

• X-Stream performs poorly for graphs with large diameter, which need a larger number of

edge-centric scatter-gather iterations without much work

Pros/Cons

• Pros:

• Sequential processing of edges takes advantage of tremendous speed-ups available,

and these increase for “slow memory”, and so scale with graph size

• Streaming partitions allow parallelism and scaling with out-of-core streams gives X-

Stream significant scalability and power

• X-Stream avoids slowdowns from heavy pre-processing and other manipulations used

by related work, e.g. the sharding process from Graphchi [3]

• Cons:

• Overall processing is bounded by I/O capability of single-shared-memory-machine, e.g.

paper could only scale to 16/32 cores due to bandwidth limitations

• Optimality is dependent on architecture of the graph – high diameter graphs = bad

• Optimality is also dependent on hardware – difficult to predict for cloud-based

compute, and speedups might not be possible if too many partitions are needed

Citations

• 1.

[1] Roy, A., Mihailovic, I., Zwaenepoel, W., 2013. X-Stream: Edge-Centric Graph Processing Using Streaming Partitions, in:

Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13. Association for Computing

Machinery, New York, NY, USA, pp. 472–488. https://doi.org/10.1145/2517349.2522740

[2] “Iterative Graph Processing.” Flink. [Online]. Available: https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/try-

flink/datastream/

[3] Kyrola, A., Blelloch, G., Guestrin, C., 2012. GraphChi: Large-Scale Graph Computation on Just a PC, in: 10th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 12). USENIX Association, Hollywood, CA, pp. 31–46.

https://doi.org/10.1145/2517349.2522740
https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/try-flink/datastream/

