B UNIVERSITY OF

l‘H

&» CAMBRIDGE

X-Stream: Edge Centric Graph
Processing using Streaming
Partitions

Amitabha Roy, Ivo Mihailovic, Willy Zwaenepoel

Division name appears here

Background

« System for processing large graphs on a single machine vertex-scatter(vertex ¥

send updates owver outgoing edges of v

vertex_gather (vertex v)

« Aimed at scaling the “scatter-gather” programming model appiy updates from inbound edges of v
for graph algorithms while not done

for all vertices v that need to scatter updates
vertex_scatter (v)

« Current approaches to “scatter-gather” iterate over for all vertices v that have updates

vertex_gather (v)
vertices, and consist of:) ,
Figure 1: Vertex-centric Scatter-Gather

« Scatter: a user-provided scatter function propagates

vertex state to all its neighbours
Messaging: Value Update:

. send distances choose min distance
« Gather: accumulates updates from all neighbors to (0]
update the current vertex state

Hél
|
G|

TR

« Current approaches sort edges by originating vertex, and3 % a N
then use random access across an index of vertices to .
locate relevant edges connected to a vertex @_. .,...[: pa—
8| e

From [2]: Iterative Graph Processing

= UNIVERSITY OF

CAMBRIDGE

Main Contributions

« Adapts “scatter-gather” model of state propagation across edge_scatter (edge e)

. send update over e
graphs to be edge-centric
update_gather (update u)

. apply update u to u.destination
« Takes advantages of large speedups from sequential vs.

random memory access while not done

for all edges e
edge_scatter (e)

» ~500x for disk, 30x for SSD, 1.6-5x for main memory on f°§p§te“§::;z:(3)
tested system -

Figure 2: Edge-centric Scatter-Gather
» Much larger speedup for “slow storage”, which is where

large edge lists typically need to reside S
ocoo |
« Rather than random access across vertices, X-Stream ASS
processes all edges sequentially, only propagating state where @t cabpaallfasie
needed AR
ooo0 I
Updates (sequential write)
« Streaming partitions are used to reduce random access
overhead across vertices R s
Updates (sequential read)
. - ocoo |
» For typical graphs, number of edges >> number of vertices, and farA
processing these dominates scatter-gather runtime, so @
Vertices (random read/write)

sequential processing is useful optimization
Figure 3: Streaming Memory Access

UNIVERSITY OF

CAMBRIDGE

System Architecture

X-Stream runs by processing a set of “streaming
partitions”, which consist of: (vertex set, edges with
source vertices in set, relevant updates)

Each streaming partition is sized so that all vertices fit in
“fast memory”, and to ensure enough I/O capacity
available for full utilization of streaming bandwidth

« Trade off: many partitions destroys sequential access

Large graphs are handled by an “out-of-core” streaming
engine (Figure 6) — architecture allows this to be
“stacked” with in-memory engine

X-Stream parallelizes work across streaming partitions —
constrained by I/O resources available by CPU

« Load balancing achieved by “work-stealing”

= UNIVERSITY OF

> CAMBRIDGE

scatter phase:
for each streaming partition p
read in vertex set of p
for each edge e in edge list of p
edge_scatter (e) : append update to Uout

shuffle phase:
for each update u in Uout
let p = partition containing target of u
append u to Uin(p)
destroy Ucut

gather phase:
for each streaming partition p
read in vertex set of p
for each update u in Uin(p)
edge_gather (u)
destroy Uin(p)

Figure 4: Edge-Centric Scatter-Gather with Stream-
ing Partitions

for each streaming partition s
while edges left in s
] 3 haan £ ad : : huff
for each edge e in memory
edge_scatter(e) appending to output buffer
1f outpu utfer 1s fu or no more edges
in-memory shuffle output buffer
for each streaming partition p
append chunk p to update file for p

gather phase:
for each streaming partition p
read in vertex set of p
while updates left in p
] 3 han : i . : huff
for each update u in input buffer
edge_gather (u)
~write vertex set of p

Figure 6: Disk Streaming Loop

Benchmarks

« The “scatter-gather” framework is flexible enough to express a wide range of different
graph algorithms, e.g. connected components, shortest paths, spanning trees, etc.

« X-Stream outperforms where sorting-based pre-processing is required (figure 18)

« Some graphs (eg. Dimacs, figure 12) perform poorly as only very few edges need
updates. Yahoo graph also failed to compute in reasonable time for many algorithms.

« X-Stream performs poorly for graphs with large diameter, which need a larger number of
edge-centric scatter-gather iterations without much work

wce scc SSSP MCST MIS Cond. SpMV Pagerank BP #iters ratio wasted % o RMAT graphs, one thread
memory memory 500 - -
amazon0601 0.61s 1.12s 0.83s| 0.37s 331s| 0.07s| 0.00s 0.25s 1.38s amazon0601 | 19 |2.58] 63 % 450 mugﬁ‘:ﬁgﬁ e
cit-Patents 2.98s 0.69s 0.29s 2.35s 3.72s] 0.19s] 0.19s 0.74s 6.32s cit-Patents 21 [2.20 50 - 400 WCC ¥
soc-livejournal 7.225 11.12s 9.60s 7.66s 15.54s] 0.78s] 0.74s 2.90s Im21s soc-livejournall_13 12.13 57 % 350 Pagerank — O —
6m 12s 9m 54s| 38m 32s I 4.68s 9.60s] 0.26s] 0.65s 2.58s 12.01s I dimacs-usa | 6263 [1.94 98 I e BFS
s 2
Friendster 38m 38s| 1h 8m 12s|1h 57m 52s{19m 13s|1h 16m 29s| 2m 3s| 3m4ls I5Sm3ls| 52m24s Friendster 24 |1.06 63)
sk-2005 44m 3s[1h 56m 58s| 2h 13m 5s|19m 30s|{3h 21m 18s] 2m 14s] 1m 59s 8m9s[56m 29s sk-2005 25 |1.04 67 a
Twitter 19m 19s] 35m 23s| 32m 25s[10m 17s] 47m43s] Im 40s| 1m 29s 6m 125 42m 52s Twitter 16 |[1.04 55 g
disk disk =
Friendster [1h 17m 18s|2h 29m 39s|3h 53m 445({43m 195[2h 39m 16s] 4m 25s| 7Tm42s] 32m 16s[1h 57m 36s Friendster 24 |1.04 63 =
sk-2005 1h 30m 3s|4h 40m 49s|4h 41m 26s(39m 12s| 7h lm 21s| 4m 45s| 4m 12s| 17m 22s|2h 24m 28s sk-2005 25 |L.04 67 o
Twitter 39m 47s| 1h 39m 9s|1h 10m 12s| 29m 8s|1h 42m 14s] 3m 38s] 3m 13s 13m 21s| 2h 8m 13s Twitter 16 |1.04 55 RMAT scale
yahoo-web — — — — — 16m 32s]14m 40s|1h 21m 14s| 8h 2m 58s yahoo-web — | — —
@ (b) Figure 18: Sorting vs. Streaming

Figure 12: Different Algorithms on Real World Graphs: (a) Runtimes; (b) Number of scatter-gather iterations,
ratio of runtime to streaming time, and percentage of wasted edges for WCC.

= UNIVERSITY OF

> CAMBRIDGE

Pros/Cons

* Pros:

« Sequential processing of edges takes advantage of tremendous speed-ups available,
and these increase for “slow memory”, and so scale with graph size

« Streaming partitions allow parallelism and scaling with out-of-core streams gives X-
Stream significant scalability and power

« X-Stream avoids slowdowns from heavy pre-processing and other manipulations used
by related work, e.g. the sharding process from Graphchi [3]

e Cons:

« Overall processing is bounded by I/O capability of single-shared-memory-machine, e.g.
paper could only scale to 16/32 cores due to bandwidth limitations

« Optimality is dependent on architecture of the graph — high diameter graphs = bad

« Optimality is also dependent on hardware — difficult to predict for cloud-based
compute, and speedups might not be possible if too many partitions are needed

sl
YRR
B R

Citations

- 1

[1] Roy, A., Mihailovic, I., Zwaenepoel, W., 2013. X-Stream: Edge-Centric Graph Processing Using Streaming Partitions, in:
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13. Association for Computing
Machinery, New York, NY, USA, pp. 472—-488. https://doi.org/10.1145/2517349.2522740

[2] “Iterative Graph Processing.” Flink. [Online]. Available: https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/try-
flink/datastream/

[3] Kyrola, A., Blelloch, G., Guestrin, C., 2012. GraphChi: Large-Scale Graph Computation on Just a PC, in: 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 12). USENIX Association, Hollywood, CA, pp. 31-46.

= UNIVERSITY OF

> CAMBRIDGE

https://doi.org/10.1145/2517349.2522740
https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/try-flink/datastream/

