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Abstract Query optimizers rely on statistical models that
succinctly describe the underlying data. Models are used to
derive cardinality estimates for intermediate relations, which
in turn guide the optimizer to choose the best query execu-
tion plan. The quality of the resulting plan is highly depen-
dent on the accuracy of the statistical model that represents
the data. It is well known that small errors in the model
estimates propagate exponentially through joins, and may
result in the choice of a highly sub-optimal query execution
plan. Most commercial query optimizers make the attribute
value independence assumption: all attributes are assumed
to be statistically independent. This reduces the statistical
model of the data to a collection of one-dimensional synopses
(typically in the form of histograms), and it permits the opti-
mizer to estimate the selectivity of a predicate conjunction as
the product of the selectivities of the constituent predicates.
However, this independence assumption is more often than
not wrong, and is considered to be the most common cause of
sub-optimal query execution plans chosen by modern query
optimizers. We take a step towards a principled and practical
approach to performing cardinality estimation without mak-
ing the independence assumption. By carefully using con-
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cepts from the field of graphical models, we are able to factor
the joint probability distribution over all the attributes in the
database into small, usually two-dimensional distributions,
without a significant loss in estimation accuracy. We show
how to efficiently construct such a graphical model from
the database using only two-way join queries, and we show
how to perform selectivity estimation in a highly efficient
manner. We integrate our algorithms into the PostgreSQL
DBMS. Experimental results indicate that estimation errors
can be greatly reduced, leading to orders of magnitude more
efficient query execution plans in many cases. Optimization
time is kept in the range of tens of milliseconds, making this
a practical approach for industrial-strength query optimizers.

Keywords Graphical models · Selectivity estimation ·
Query optimization

1 Introduction

Query optimizers use estimates of intermediate relation
sizes to determine the best query execution plan. The task
of cardinality estimation consists of efficiently and accu-
rately estimating intermediate result sizes at compile time.
Typically, statistical summaries of the data are constructed
off-line, and are used during query compilation to estimate
selectivities of join and selection predicates.

Query optimizers typically make simplifying assumptions
about the statistical properties of the data. Specifically, aim-
ing at simplicity and low overhead in cost estimation, the
original System R optimizer [35] made three simplifying
assumptions:

1. Uniform distribution assumption (Uniform): The
values of an attribute X of a relation R, R.X , are uni-

123

http://dx.doi.org/10.1007/s00778-012-0293-7


4 K. Tzoumas et al.

formly distributed across the attribute’s active domain
Dom(R.X). This allows the approximation

Pr(R.X = x) ≈ 1/|Dom(R.X)|.

2. Attribute value independence assumption (AttrInd):
All attributes in a relation are independent of each other.
For attributes R.X and R.Y of relation R, this allows the
approximation

Pr(R.X= x, R.Y = y) ≈ Pr(R.X= x)Pr(R.Y = y).

3. Join predicate independence assumption (JoinInd):
Join predicates are independent of each other, and of
selection predicates. For join predicates R.A = S.A and
S.B = T .B, this assumption allows the approximation

Pr(R.A = S.A, S.B = T .B) ≈ Pr(R.A = S.A)

Pr(S.B = T .B).

Further, for a join predicate R.A = S.A and an attribute
R.X , the assumption allows the approximation

Pr(R.A = S.A, R.X = x) ≈ Pr(R.A = S.A)

Pr(R.X = x).

Note that JoinInd is implied by AttrInd. We discuss it
separately due to its importance.

It is well known that these simplifying assumptions can
lead to substantial estimation errors in base selectivity esti-
mates [18,20]. Such errors typically propagate exponen-
tially through joins [21], and can result in multiple orders
of magnitude errors for queries with many joins, causing
the query optimizer to choose a sub-optimal plan [30].
Thus, a great body of research has been devoted to avoiding
these assumptions, while keeping the overhead of selectivity
estimation reasonable. Since errors propagate exponentially
through joins, it is especially important to capture correla-
tions between join selectivities and selection predicates.

Uniform was assumed by early relational DBMSs [35].
Due to a wealth of research on histograms (see, e.g.,
[19,20,22–24,29] and more recently [26]), modern systems
do not typically make this assumption for selection predicates
over base relations. Instead, they use one-dimensional statis-
tical summaries to model the skew in attribute distributions.
These summaries, termed attribute-level synopses [36], aim
to estimate the real distribution of an attribute P(X) in limited
space using another distribution P̂(X). Modern DBMSs are
thus able to accurately estimate the selectivity of a selection
predicate over a single attribute. However, modern DBMSs
typically do not reason about skew in determining the selec-
tivity of a join, but use instead the principle of inclusion
[37]. The bulk of the estimation errors in modern DBMSs
stem from assumptions AttrInd and JoinInd [18].

AttrInd allows the optimizer to ignore statistical cor-
relations between attributes and to estimate the selec-
tivity of a conjunction of predicates as the product of
their constituent selectivities. Therefore, this assumption
restricts the statistical model of the data to a collection of
one-dimensional histograms. AttrInd persists in most
commercial optimizers. Several table-level synopses such
as multi-dimensional histograms have been proposed [5,15,
31,33]. However, the curse of dimensionality quickly renders
most techniques ineffective for wide tables. For large num-
bers of attributes, one can either resort to sampling or decom-
pose the joint probability distribution by identifying the most
important correlations in the database [11]. The latter is typi-
cally done by using concepts from the field of graphical mod-
els, which also forms the theoretical foundation of our work.

The JoinInd assumption is not adequately addressed by
table-level synopses. Assume a join predicate R.A = S.B
between relations R and S and a selection predicate on an
attribute R.X = x . In principle, one could construct a three-
dimensional synopsis that approximates the joint distribution
P(R.X, R.A, S.B) and estimate the joint selectivity of the
join and the selection R.X = x correctly (in case they are
correlated). This approach suffers from the problem that join
attributes are typically keys with large domains, which yield
distributions that are hard to approximate. One solution is to
use binary random variables, called join indicators, and to
construct a (decomposed) probability distribution on all the
attributes and join indicators in the database [14]. This is the
approach we follow in this paper.

Our work falls in the category of schema-level synopses.
A statistical summary is constructed that approximates the
joint probability distribution of all attributes and join predi-
cates in the database. So far, few research efforts have pro-
posed such synopses [2,14,18,36,38], and only two efforts
[36,38] can provide selectivity estimates for general data-
base schemas and workloads without making the uniformity
assumption.

To summarize, the commercial state-of-the-art is able to
discover and exploit the distribution skew of attributes dur-
ing query optimization. The same does not hold for statisti-
cal correlations between attributes. The research state of the
art is especially lacking methods that can efficiently capture
correlations between attributes of different relations and are
general enough to support practical (e.g., cyclic) database
schemas.

1.1 A detailed example

Before describing our approach and key contributions, we
delve into the details of an example query and explicate the
effects of the above assumptions on its execution. Consider
the following query on the TPC-H schema:
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select c_name,c_address
from orders,lineitem,customer
where o_okey = l_okey and o_totalprice in [x]

and l_extendedprice in [y] and
o_ckey = c_ckey and c_acctbal in [z]

The query finds the names and addresses of customers that
have placed orders within a given price range and with
items within a given price range, with a further selection
on the customer balance. Since an order’s price is calcu-
lated using the prices of the items it comprises, the attributes
o_totalprice and l_extendedprice are correlated
for all tuples fromlineitem andorders that match using
the join predicate o_okey=l_okey. This positive correla-
tion causes the selectivity

Pr(o_okey = l_okey,o_totalpricein [x],
l_extendedpricein [y])

to be much higher than the product of the constituent selec-
tivities

Pr(o_okey = l_okey)× Pr(o_totalpricein [x])×
Pr(l_extendedpricein [y]).

By making the JoinInd assumption, the PostgreSQL opti-
mizer severely underestimates the cardinality of the join
lineitem �� orders after the two selection predicates,
and places it first in the join plan. The query plan picked by
PostgreSQL is1

(orders ��HJ lineitem) ��NLJ customer,

which has several orders of magnitude slower execution time
than the alternative plan

(customer ��HJ orders) ��HJ lineitem,

which is picked if we equip PostgreSQL with the selectivity
estimation machinery described in this paper.

1.2 Approach and contributions

Performing selectivity estimation without making AttrInd
or JoinInd is a crucial and timely problem. The challenge
lies in carefully choosing the kind of dependencies that the
statistical model can encode so that the curse of dimension-
ality does not exponentially increase the query optimization
overhead quickly. Graphical models [10] provide a theoret-
ical foundation for exploiting conditional independence to
factor a joint probability distribution. They can thus serve as
a basis for a principled solution to the problem. As in previous

1
��HJ and ��NLJ denote hash and nested loop joins. The right operand

of �� in the plans is the inner relation.

work [14], we use graphical models to factor the complete
joint distribution of all attributes and join selectivities in the
database. Our foci are on efficiency during query optimiza-
tion and on integration into a DBMS query optimizer. The
contributions are the following:

1. We carefully restrict the space of possible graphical
models that can be used to model the database. The
resulting models can be stored using two-dimensional
histograms only in most cases. Although this design deci-
sion also restricts the kinds of statistical correlations that
can be modeled, it is instrumental in keeping the over-
head during selectivity estimation low. Further, as has
been noted before [18], the reduction in estimation errors
diminishes significantly when moving from two-variable
to three-variable synopses (and the reduction is orders
of magnitude when moving from one-variable to two-
variable synopses).

2. The fixed model structure we choose allows for a scalable
and efficient model construction algorithm, that issues
join queries over only two tables at a time.

3. We propose two algorithms for selectivity estimation.
The first is a variation of the junction tree propagation
algorithm [10]. The second is a custom algorithm that
minimizes the number of histogram multiplications by
exploiting the order of requests made by a bottom-up
dynamic programming query optimizer.

4. We include a treatment of cyclic schemas. Contrary to
previous work that can be used only in tree schemas with
key-foreign key joins [2,14], our work is applicable to
cyclic schemas and arbitrary θ -joins.

5. We propose query-specific modeling where, in essence,
a new graphical model is chosen for each query. This
new approach results in better estimates and improved
optimization times.

6. We implement the above scheme and algorithms inside
the PostgreSQL query optimizer. This is, to the best of our
knowledge, the first implementation of graphical models
inside a DBMS kernel.

The rest of this paper is organized as follows. Section 2
presents background material on graphical models. Section 3
discusses the design decisions that lead to our fixed model
structure. Section 4 presents the model construction algo-
rithm. Section 5 presents the algorithms for selectivity esti-
mation. Section 6 discusses alternative extensions to the
model needed to support cyclic schemas. Section 7 presents
our approach to query-specific modeling. Section 8 discusses
our implementation, and Sect. 9 reports on an experimental
study. Finally, Sect. 10 discusses previous work, and Sect. 11
concludes and offers research directions.

123



6 K. Tzoumas et al.

2 Background: graphical models

Our work builds on the theory of graphical models from the
statistics and machine learning communities [10]. The fol-
lowing brief overview of graphical models focuses on the
concepts used in the paper.

Preliminaries: Assume a probability distribution PD over the
set of random variables X = {X1, . . . , Xn}. Our goal is to
approximate this distribution by another distribution PM that
can be expressed as a product of factorsΦ = {φ1, . . . , φm}
PM = 1

Z

∏

φ∈Φ
φ,

where a factor is a function φi : Xi ⊂ X → R
+ and Z is

a normalization constant. The benefits of the approximation
PD � PM are substantial. Denote by Dom(Xi ) the domain of
the variable Xi , and assume ∀Xi that |Dom(Xi )| = d. Then,
assuming a tabular representation, the space needed to store
the full joint distribution PD grows exponentially as dn . How-
ever, the space needed to store PM is just

∑
i d |Xi |. So, as long

as each factor φi contains only a few variables, the exponen-
tial blow-up of storage space no longer applies. In addition,
extracting marginal probability distributions over subsets of
random variables becomes computationally tractable.

To factor the distribution, the notion of conditional inde-
pendence is used. Two variables X,Y are conditionally inde-
pendent given the variable Z (denoted X ⊥ Y |Z ) iff

∀x, y, z : Pr(X = x,Y = y|Z = z)

= Pr(X = x |Z = z)Pr(Y = y|Z = z).

Intuitively, once we know the value of Z , the knowledge of
the value of Y does not convey additional information about
X . An implication of X ⊥ Y |Z is that their joint distribution
can be factored as:

P(X,Y, Z) = P(X, Z)P(Y, Z)

P(Z)
.

Bayesian networks: Bayesian networks (BNs), a class of
graphical models, correspond to a class of such factoriza-
tions, and they offer a graphical representation of the condi-
tional independencies implied by them. A Bayesian network
BN(S, θ) consists of a graphical, qualitative component S
and a quantitative component θ . S is a directed acyclic graph
G(V,E) that contains one vertex per random variable in X.
Figure 1a shows an example Bayesian network graph for
five binary random variables A, B,C, D, E . An edge Xi →
X j ∈ E in a Bayesian network graph denotes that the value
of X j is (stochastically) influenced by the value of Xi . In the
example in the figure, A directly influences C . The absence of
an edge from one variable to another does not imply indepen-
dence. Consider the chain of two edges B → D→ E in the
example. Here, B influences E indirectly through D. Once D

(a) (b)

(c)

(d)

Fig. 1 A small graphical model of five binary random variables
A, B,C, D, E a Bayesian network. b Moral graph. c Junction tree.
d Clique potentials

is known, B and E become independent. On the other hand,
if D is not known, an interaction between B and E exists.
In fact, the chain of interactions represents the conditional
independence B ⊥ E |D.

Denote by Pa(X) the parents of X in G, and denote by
NonDesc(X) the non-descendants of X , i.e., the nodes that
are not reachable by X following the directed edges in E.
Then, the Bayesian network encodes the set of conditional
independences:

X ⊥ NonDesc(X)|Pa(X) ∀X.

Therefore, the Bayesian network of Fig. 1a implies the
following independences:

A ⊥ {B, D, E}|∅; B ⊥ A|∅; C ⊥ {D, E}|A, B;
D ⊥ {A,C}|B; E ⊥ {A, B,C}|D.
A Bayesian network BN induces a probability distribu-

tion PBN over X = {X1, . . . , Xn} that, due to the encoded
conditional independences, can be factorized as:

PBN(X) =
∏

i=1,...,n

PD(Xi |Pa(Xi )).
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(a) (b) (c)

(d)

Fig. 2 A model constructed on a subset of the TPC-H schema graph
along with seven descriptive attributes. The Bayesian network, the moral
graph, and the junction tree representations of the model are shown. The

dotted edges in (c) are added during triangulation. a Schema graph and
descriptive attributes. b Bayesian network. c Moral graph (excluding
the dotted edges). d Junction tree

For the example of Fig. 1a, we obtain the factorization

PBN(A, B,C, D, E) = P(E |D)P(D|B)P(C |A, B)

P(A)P(B).

The quantitative part θ of the Bayesian network is the set
of distributions {P(Xi |Pa(Xi ))|i = 1, . . . , n}. Each of these
distributions is defined over |Pa(Xi )| + 1 variables. As long
as these numbers are low, the desired decomposition of PD
is achieved, by approximating it with PBN.

Inference: Having achieved a factorization of PD, the infer-
ence problem is to efficiently compute marginal probability
distributions (e.g., of the form P(Xi ) or P(Xi , X j )) or condi-
tional probability distributions (e.g., P(Xi |X j = x j )). Later
we discuss in detail how selectivity estimation queries are
equivalent to such queries. We use the junction tree approach
[25] for inference, which, compared to the other approaches
like variable elimination [10], offers much lower online infer-
ence times, and thus selectivity estimation times. The cor-
nerstone of this approach is the junction tree data structure,
which pre-computes a collection of appropriate marginals to
limit the amount of work that needs to be done at inference
time.

Junction trees: A junction tree is constructed in three steps.
First, the directed graph G of the Bayesian network is con-
verted to an undirected graph, called the moral graphGm .

Gm has the same vertices as G and has an undirected edge
between X and Y if G contains either the edge X → Y or the
edge Y → X . In addition, Gm contains an edge between any
two nodes that share a child in G (hence the name “moral”).
Figure 1b shows the moral graph obtained from the Bayesian
network of Fig. 1a. It contains the same (undirected) edges
as the Bayesian network, and the extra edge A − B because
A and B share the child vertex C .

Second, the moral graph Gm is triangulated if it is not
already. A graph is triangulated (also called chordal) if it
does not contain a cycle of length more than 3 without a
chord, i.e., an edge between at least two non-consecutive ver-
tices on the cycle. For example, the more complex Bayesian
network of Fig. 2b represents a model of a subset of the
TPC-H schema using the techniques presented in this paper.
Figure 2c shows the obtained moral graph, if the dotted edges
are excluded. That moral graph contains a 5-cycle among the
vertices l_sdate, l_cdate, o_odate, c_acctbal,
ands_acctbal. The new (dotted) edge betweenl_sdate
and c_acctbal becomes a chord for that cycle. How-
ever, we need to add a second chord to address the
4-cycle among vertices l_sdate, l_cdate, o_odate,
and c_acctbal, which was formed by after adding the
first chord. After adding the second chord (dotted edge), the
graph becomes triangulated. Triangulating a graph by adding
minimum number of edges is NP-hard in general [3]. Let Gmt

denote the triangulated graph.
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8 K. Tzoumas et al.

Third, the junction tree T is constructed. The junction tree
contains a node for every maximal clique in Gmt . Two cliques
Ci and C j are connected via an undirected edge only if they
contain a common variable (but not all cliques with com-
mon variables are directly connected). The edge Ci − C j

is annotated with a separator node Si j that contains all the
common variables of Ci and C j . Figure 1c shows a valid
junction tree for the moral graph of Fig. 1b (and Fig. 2d
shows a junction tree for the moral graph of Fig. 2c). To be
valid, a junction tree must satisfy two properties.

Family preservation: For every Pi (Xi |Pa(Xi )) ∈ θ , there
exists a clique C j that contains all the variables {Xi }∪Pa(Xi ).
Running intersection: For every pair of cliques C1,C2, the
variables belonging to their intersection C1 ∩ C2 are con-
tained in every node on the path from C1 to C2 in the junction
tree T.

Junction tree construction is not deterministic: a given tri-
angulated graph Gmt may correspond to multiple equivalent
valid junction trees.

The final step in junction tree construction is calibration,
which is typically realized using a message passing algo-
rithm. The purpose of calibration is to create the clique and
separator marginal distributions, to be stored with the cliques
and separators and to be used during the subsequent infer-
ence process to compute required marginal or conditional
distributions. Specifically with every clique Xi , we store a
clique probability distribution

φi (Xi ) =
∑

X−Xi

PD(X);

and with every separator Xi j , we store a separator distribution

μi j (Xi j ) =
∑

X−Xi j

PD(X).

In our work, we are able to bypass the message passing algo-
rithm typically used to calibrate junction trees. Instead we
construct the clique and separator potentials directly by scan-
ning the data. However, the selectivity estimation algorithm
presented in Sect. 5 proceeds very similarly to the message
passing algorithm, and we discuss it in further detail there.

The resulting junction tree also reflects a factorization of
PD. The only distributions that need to be kept are the mar-
ginals of the cliques and separators, called the clique and
separator potentials. Consider the junction tree of Fig. 1c.
The probability distributions that need to be stored are the
marginals of the cliques

φ1 = P(A, B,C); φ2 = P(B, D); φ3 = P(D, E)

and the marginals of the separators

μ12 = P(B); μ23 = P(D).

The marginals of the cliques for the junction tree of Fig. 1c are
shown in Fig. 1d. The distribution PM induced by the junction
tree (that approximates PD) can be expressed as the product of
marginals divided by the product of the separator marginals:

PM =
∏

C P(C)∏
S P(S)

.

For the example junction tree, the factorization is

PM(A, B,C, D) = P(A, B,C)P(B, D)P(D, E)

P(B)P(D)
.

Inference in junction trees: Next we discuss how to answer
inference queries using a junction tree. It is easy to extract
a marginal distribution from a junction tree if all variables
belong to the same clique. To extract the marginal P(A,C)
from the junction tree of Fig. 1c, we just need to sum out B
from the clique potential φ1:

P(A,C) =
∑

B

P(A, B,C)

= P(A, b1,C)+ P(A, b2,C)+ · · · .
If the variables do not belong to the same clique, we need
to multiply clique distributions. For example, to extract the
marginal P(A, D), we need to multiply the clique poten-
tials φ1 and φ2 and sum out the unnecessary variables. When
multiplying two clique potentials, it is necessary to divide by
the separator potential:

P(A, D) =
∑

B,C

P(A, B,C)P(B, D)

P(B)
.

In our work, we need to extract probabilities as well as
marginal distributions. We define three operations on poten-
tials: marginalization, substitution, and multiplication. We
will use these operations to extract probabilities from a junc-
tion tree in Sect. 5.

Marginalization: Consider a factor f : X → R
+, where

X = {X1, . . . , Xn}, and Y = {X1, . . . , Xk} ⊂ X. Then, the
result of the marginalization

∑
Y f is a factor f ′ : X−Y→

R
+ where

f ′(xk+1, . . . , xn) =
∑

X1,...,Xk

f (x1, . . . , xn).

Substitution: Assume a factor f : X → R
+,X =

{X1, . . . , Xn}, and a variable Xi ∈ X, and a predicate ψ on
the variable Xi (e.g.,ψ ≡ Xi < x, x ∈ Dom(Xi )). Then, the
result of the substitution f [ψ] is a factor f ′ : X−{Xi } → R

+
where f ′(X− {Xi }) =∑

Xi
f ′′(X) and

f ′′(x1, . . . , xn) =
{

f (x1, . . . , xn) if ψ(xi ) = T

0 otherwise.
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Efficiently adapting graphical models 9

Substitution is generalized in an obvious way to several
variables.
Multiplication: Assume two factors f1 : X ∪ Z→ R

+, f2 :
Y∪Z→ R

+, where X = {X1, . . . , Xn},Y = {Y1, . . . ,Ym},
and where Z = {Z1, . . . , Zk} denotes the intersection of the
domains of the two factors. The result of the multiplication
f1 f2 is a factor f ′ : X ∪ Y ∪ Z→ R

+ where

f ′(x1, . . . , xn, y1, . . . , ym, z1, . . . , zk)

= f1(x1, . . . , xn, z1, . . . , zk) f2(y1, . . . , ym, z1, . . . , zk).

3 Modeling a database

3.1 Preliminaries

We first provide a series of definitions needed for a formal
definition of the problem. Given a database and possibly a
query workload, the goal is to formally define a probability
distribution. Then, our task reduces to approximating this dis-
tribution using graphical models. First, we define the schema
graph of a database. Then, we define two kinds of random
variables that will be included in the probability distribution,
and we define the probability space.

First we define the schema graphG(R, J) of a database.
The vertex set R of the schema graphG(R, J) of a data-
base consists of the relations in the database. Each ver-
tex is annotated with a subset of the attributes of its rela-
tion. An edge exists between two vertices if the relations
that the vertices encode may be joined in a query—the
join predicate itself can be arbitrary. Figure 2a shows an
example schema graph for a subset of the TPC-H schema.
Consider the node L that represents the lineitem rela-
tion. It is annotated with three attributes (l_shipdate,
l_commitdate, and l_receiptdate), and it is con-
nected to three nodes (O, P, S representingorders,part,
and supplier respectively). The three edges are annotated
with the corresponding join predicates. Note that the directed
edges are used for key-foreign key joins, while undirected
edges are used for many-to-many joins (e.g., the join between
supplier and customer on nationkey). This is only
for visual convenience; our approach works with any type
of join predicate, including non-equality and user-defined
predicates. The endpoints of an edge could be the same ver-
tex, indicating a self-join, and there can be multiple edges
between two vertices, indicating multiple predicates that can
be used to join two relations.

The schema graph can be derived from a database schema
that includes foreign key constraints. It can be also enriched
using a query workload. A workload can help to limit the
number of attributes per relation to include in the schema
graph by indicating which attributes appear in selection pred-

icates, and it can identify further ways in which relations
can be joined that do not follow from the database schema.
In addition, using a workload to construct a schema graph is
essential for cases where the DBA has not declared foreign
key constraints, e.g., for performance reasons.

Next, we define the database probability distribution that
can be used to compute selectivity estimates, and that we
aim to approximate using a graphical model. Two kinds
of random variables form the database probability distribu-
tion: descriptive attributes and join indicators. A descriptive
attribute is defined for every attribute that exists in a vertex
annotation in the schema graph. The marginal distribution of
a descriptive attribute is derived from the contents of the data-
base. For example, for attribute A of relation R, we define
the descriptive attribute A as a random variable with domain

Dom(A) ≡ selectdistinct(A) from R

and probability distribution

Pr(A = a) ≡ 1

|R|
∣∣∣∣
selectcount(∗) from R
where A = a

∣∣∣∣ .

Note that we define our variables, and thus our model, using
the frequentist definition of probability, which is appropriate
for selectivity estimation [13]. The contents of the database
represent the “ground truth,” and there is no need for the
model to hold for any other database instance (in fact, this
would make the model less accurate).

A join indicator is a binary random variable that cap-
tures the event that two tuples from two relations join. A join
indicator is defined for every possible join predicate, i.e.,
every edge in the schema graph. Consider the equality join
R.A = S.A between relations R and S. We define the join
indicator JRS as a random variable with domain {T,F} and
distribution

Pr(JRS = T) ≡ 1

|R||S|
∣∣∣∣
selectcount(∗)from R, S
where R.A = S.A

∣∣∣∣ ,

Pr(JRS = F) ≡ 1− Pr(JRS = T).

This definition can easily be generalized to non-equi joins.
The idea of using join indicators is attributed to Getoor et al.
[13,14]. It is a very interesting alternative to using histograms
to compute join selectivities. Instead of constructing (and
joining) histograms on attributes that are used in join predi-
cates only, the selectivity of the join is precomputed. Then,
instead of keeping the distribution of the key value, which is
typically hard to approximate using a histogram, one only
needs to store two values for the F and T values of the
join indicator. This is one of the observations that enables
our approach to guarantee 2-dimensional histograms only.
In addition, using join indicators our method can support
arbitrary θ -join predicates.

Consider a database with a schema graph G(R, J), where
R = {R1, . . . , Rn}, and J = {J1, . . . , Jm} and denote by A
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10 K. Tzoumas et al.

the set of attributes that annotate the vertices of the schema
graph. We construct the universal relationU in two steps.
First, we take the Cartesian product C = R1 × · · · × Rn

of all relations in the database. We add all join indicators
to relation C2, and we set their values appropriately. Denote
this relation by CJ. Finally, we project CJ on A ∪ J using
bag semantics thus obtaining the relation U.

For example, consider a small database of two relations
R(X,Y, A) and S(Z ,W, B). Assume that in the schema
graph, vertex R is annotated with the attributes X,Y and
vertex S is annotated with the attributes Z ,W . The only
edge in the schema graph between R and S is annotated
with the predicate R.A = S.B. The descriptive attributes
are then A = {X,Y, Z ,W }, and the join indicators are
J = {JRS ≡ (R.A = S.B)}. Assuming the following con-
tents of the relations, the constructed universal relation is
shown (note the bag semantics used in the construction of U):

R =

X Y A
a c 1
a c 2
b c 2
a d 3
b d 5

S =

B Z W
1 e g
2 f g
6 e h
3 f g

⇒ U =

X Y JRS Z W

a c T e g
a c F f g
a c F e h
a c F f g
a c F e g
a c T f g
a c F e h
a c F f g
b c F e g
b c T f g
b c F e h
b c F f g
a d F e g
a d F f g
a d F e h
a d T f g
b d F e g
b d F f g
b d F e h
b d F f g

.

The universal relation defines the probability distribution
induced by the database; it defines with perfect accuracy the
joint probability distribution of all descriptive attributes and
join indicators. We denote this distribution by PU. To be
more specific, each tuple in the universal relation U is asso-
ciated with a probability 1/|U |. Thus, we get that PU(X =
a,Y = c, JRS = T, Z = e,W = g) = 1/|U |, whereas
PU(X = a,Y = c, JRS = F, Z = f,W = g) = 2/|U |
(since there are two tuples corresponding to the latter values).
To obtain, e.g., a joint probability PU(X = a, JRS = T, we
can (conceptually) issue the query

select count(∗) from U where X = a and JRS

and divide the result by |U |. It is easy to see that, the marginal
distributions obtained in this manner are identical to the ones

2 In the rest of this paper, and when the meaning is clear from the
context, we will denote a descriptive attribute X and the attribute X that
it represents with the same symbol X . Similarly, we will denote by JRS
both the random variable and the predicate that defines it.

computed earlier in the section. The problem we are solving
in this paper can be stated as:

Given a schema graph, approximate distribution PU using
another distribution PM which takes less space and allows for
faster selectivity estimation.

3.2 Relational independences

From the construction of the universal relation, the following
independences hold regardless of the database instance:

Theorem 1 Consider the relations R �= S �= T �= U ∈ R.
The following independences hold in PU:

1. Descriptive attributes belonging to different relations are
independent: PU(R.X, S.Y ) = PU(R.X)PU(S.Y )

2. Join indicators are independent if they do not share a
relation: PU(JRS, JT U ) = PU(JRS)PU(JT U )

3. A descriptive attribute and a join indicator are indepen-
dent if they do not share a relation: PU(JRS, T .X) =
PU(JRS)PU(T .X)

Proof The proof uses simply the frequentist definition of
probability:

Pr(R.X = x) ≡ |σR.X=x (R)|
|R| ,Pr(JRS = T) ≡ |R �� S|

|R × S| ,

Pr(JRS = F) ≡ |R × S − R �� S|
|R × S| ≡ |R ��� S|

|R × S| ;

and it uses the fact that selection commutes over the Cartesian
product: σR.X=x (R × S) = σR.X=x (R)× S.

1. Assume arbitrary values x ∈ Dom(R.X) and y ∈
Dom(S.Y ). Then,

Pr(R.X= x, S.Y = y) ≡ |σR.X=x∧S.Y=y(R × S)|
|R × S|

= |σR.X=x (R)||σS.Y=y(S)|
|R||S|

≡ Pr(R.X = x)Pr(S.Y = y).

2. Assume JRS ≡ (R.A = S.A) and JT U ≡ (T .C = U.C).
We need to prove four cases ({T,T}, {T,F}, {F,T},
{F,F}) for the possible values of the two join indicators.
For example, for JRS = T and JT U = F we have:

Pr(JRS = T, JT U = F)

≡ |σR.A=S.A∧T .C �=U.C (R × S × T ×U )|
|R × S × T ×U |

≡ Pr(JRS = T)Pr(JT U = F).

The remaining cases are proven similarly.
3. Proven similarly. ��
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Efficiently adapting graphical models 11

These independences may seem counter-intuitive at first.
For example, consider the example database with two rela-
tions R, S of Sect. 3.1. The first independence implies
X ⊥ Z . This does not mean that our model cannot capture
cross-relation dependencies (e.g., the dependence between
o_orderprice and l_extendedprice from TPC-H).
Dependencies between attributes of different relations exist
only if we have some information about whether the tuples
of the relations join, i.e., an instantiation of JRS . Once JRS is
instantiated, X and Z become dependent (conditioned on the
event that e.g., JRS = T). For the TPC-H schema example,

o_orderprice ⊥ l_extendedprice,

but

o_orderprice �⊥ l_extendedprice|JL O = T.

Note that the relational independences are a result of using
the frequentist definition of probability, and they do not hold
in domains where generalization is important, e.g., prob-
abilistic databases. The important implication of the rela-
tional independences is that any model that does not imply
them is overly complicated for the task of selectivity esti-
mation. Recall that a Bayesian network is an encoding of a
set of (conditional) independences. If the relational indepen-
dences are not a subset of these encoded independences, then
the particular Bayesian network contains more edges than
needed (and thus requires more space to be stored, and the
complexity to perform selectivity estimation is higher than
needed).

3.3 Fixed model structure

Contrary to previous approaches [14] we restrict the space
of possible graphical models that we consider. In particular,
we restrict ourselves to the space of Bayesian networks with
the following properties:

1. The subset of the Bayesian network that corresponds to
the descriptive attributes of one relation is a directed tree.

2. A join indicator has at most two parents, which are
descriptive attributes from the relations it joins.

This class of models has four interesting properties:

1. It directly models the correlation between a join selec-
tivity and the attributes that are most strongly correlated
with it.

2. Through chains of dependencies, it indirectly models the
correlation between a join selectivity and all attributes of
the two corresponding relations.

3. If the schema graph is acyclic, the model can be stored
using two-dimensional histograms only. If the schema
graph is cyclic, this is not a hard guarantee, but the chance

of needing a three-dimensional distribution is slim and
can be further avoided. See Sect. 6 for details. Further,
if the schema graph contains cycles but the query graph
is acyclic, only two-dimensional histograms are needed
(see Sect. 7).

4. The model can be constructed efficiently, by issuing two-
table join queries to the database (and never a three-table
join or higher).

On the other hand, the fixed model structure limits the
kinds of correlations that can be modeled. In particular, it
cannot model complex three-way correlations, and it cannot
model direct dependence of one join selectivity on another.
The first limitation does not lead to serious performance
degradation for most data sets [18], and the second limita-
tion is intuitive. Intuitively, join selectivities are the “result”
and not the “cause” of a dependency. Further, if we were to
allow an edge between two join indicators, we would need
arbitrarily complex join queries to construct the model, or
alternatively we would need to restrict to acyclic key-foreign
key schema graphs [2,14]. Other kinds of edges, e.g., edges
between descriptive attributes of different relations would
make the model more complex than needed, since it would
not imply the relational independences. Allowing more than
two parents per join indicator would create three-dimensional
histograms, and would only be helpful if two attributes jointly
influence the join selectivity (and the query contains the one
with less influence). To summarize, the fixed model struc-
ture is a heuristic design decision which captures, however,
the most important correlations, and greatly restricts the
size of the model, the time to construct the model, and the
complexity needed to perform selectivity estimation.

We briefly explain how the model can guarantee two-
dimensional histograms. Figure 2b shows a possible Bayesian
network for the TPC-H schema graph that conforms to the
fixed structure, and Fig. 2c shows the corresponding moral
graph (ignore the dotted edges for now). Within a relation,
there is no “common effect” structure where a variable has
two parents in the Bayesian network. Therefore, no edges
are added during moralization. The only added edges are
between two descriptive attributes that are common parents
to a join indicator. Assume for now that the schema graph is
acyclic. Then, the moral graph contains cliques of two vari-
ables for the descriptive attributes of every relation, and a
clique of three variables for every join indicator. Therefore,
any junction tree that corresponds to an acyclic schema graph
contains two kinds of nodes:

1. Nodes with two descriptive attributes, which can be
stored using a 2-dimensional histogram.

2. Nodes with two descriptive attributes and one join indica-
tor, which can be stored as two 2-dimensional histograms,
one for the T and one for the F value of the join indicator.
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12 K. Tzoumas et al.

Note that the junction tree shown in Fig. 2d originated from a
cyclic schema, and contains also nodes with three descriptive
attributes; we cover cyclic schemas in Sect. 6.

We now prove that our fixed model structure indeed
implies the relational independences.

Theorem 2 The fixed model structure respects the relational
independences and produces a valid Bayesian network.

Proof The proof follows from d-separation and the structure
of the model. It is easy to prove that any Bayesian network
that conforms to our fixed model structure is valid (acyclic).
First, since the “local” Bayesian network in each relation is
a directed tree, it cannot contain a cycle. Second, since a join
indicator has no children, it cannot be a part of a directed
cycle.

For the first part of the theorem, we need to prove that any
BN that conforms to our fixed model structure encodes the
relational independences. Recall that the conditional inde-
pendences encoded by a Bayesian network are

X ⊥ NonDesc(X)|Pa(X)∀X.

We need to prove three cases:

1. Two descriptive attributes from different relations are
independent. Consider the attribute X from relation R,
and the attribute Y from relation S. The local Bayesian
network of the relation R is a directed tree. Consider the
path from the root of that tree, X1, to X : X1 → X2 →
· · · → Xn → X . Due to the fixed model structure, Y is
a non-descendant of all attributes X1, . . . , Xn, X . Since
X1 has no parent, we obtain from the Bayesian network
that

X1 ⊥ Y |∅ ⇒ P(Y |X1) = P(Y ).

Using the above result, and that X2 is independent of Y
given X1 we obtain that

X2 ⊥ Y |X1 ⇒ P(X2,Y |X1) = P(X2|X1)P(Y |X1)⇒
P(X2,Y |X1) = P(X2|X1)P(Y ).

For the joint distribution of X2 and Y we have:

P(X2,Y ) =
∑

X1

P(X1, X2,Y )

=
∑

X1

P(X2,Y |X1)P(X1))

=
∑

X1

P(X2|X1)P(Y )P(X1))

=
∑

X1

P(X2, X1)P(Y )

= P(X2)P(Y ).

Therefore, X2 ⊥ Y . In the same way, by following the
chain from X2, we can deduce X ⊥ Y .

2. A descriptive attribute is independent from a join indica-
tor that does not involve the attribute’s relation. Consider
the attribute X of relation R and the join indicator JST .
JST has at most two parents, one descriptive attribute
from relation S, and one descriptive attribute from rela-
tion T . Therefore, JST is a non-descendant of X . We
prove that X ⊥ JST in the same way as in case 1 by
substituting Y with JRS .

3. Two join indicators that do not involve a common relation
are independent. Consider the join indicators JRS and
JT U . JT U is a non-descendant of JRS . If JRS does not
have any parents, JRS ⊥ JT U |∅ ⇒ JRS ⊥ JT U . If JRS

has one parent X from relation R: JRS ⊥ JT U |X. From
case, 2 we have X ⊥ JT U , from which we easily obtain
that JRS ⊥ JT U . If JRS has two parents,R.X and S.Y ,
it holds that JRS ⊥ JT U |X,Y. From case 2 we have
X ⊥ JT U and Y ⊥ JT U . From these we easily obtain
that JRS ⊥ JT U . ��

4 Efficient model construction

The fixed model structure described in the previous sec-
tion enables an efficient and scalable model construction
algorithm. The construction algorithm is given the schema
graph as input, and constructs a junction tree that will be
stored in the DBMS catalog. Note that for our fixed model
structure, moralization is invertible. That is, given the moral
graph, there is only one Bayesian network that can pro-
duce it which conforms to our fixed structure. Therefore,
our construction algorithm operates on the moral graph
directly.

Due to the fixed model structure, the model construction
algorithm has two tasks: first, for each relation it needs to find
the best moral graph that is a tree, and for each join indicator
the two descriptive attributes from the relations it joins that
have the highest degree of correlation using some measure
of dependence.

The construction algorithm proceeds as follows (Algo-
rithm 1 provides pseudo-code). Given the schema graph
G = (R, J) it finds the best “local” moral graph MGR for
each relation R ∈ R, and the best two predictors for each
join indicator J ∈ J. The concatenation of the “local” moral
graphs and the edges between the join indicators and the
descriptive attributes form the final moral graph. The mea-
sure of dependence we use is mutual information. We chose
mutual information because of its close connection to the
Kullback–Leibler distance [9], but we could also use other
dependence measures like mean-square contingency coef-
ficient [18] instead. The mutual information between two
random variables X,Y is
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Algorithm 1 Construction of the moral graph
1: function Construct- Mg(A,J,R)
2: MG = (A ∪ J, {})
3: for R in R do
4: MGR = (AR, {})
5: for Ai in A(R) do
6: for A j in A(R) do
7: Add (Ai − A j ) to MGR with weight I (Ai : A j )

8: MGR =Maximum- Spanning- Tree(MGR)
9: Add edges of MGR to MG
10: for Ji j in J do
11: Abest

i = arg maxAi∈A(Ri )∧I (Ai :Ji j )>0 I (Ai : Ji j )

12: Abest
j = arg maxA j∈A(R j )∧I (A j :Ji j )>0 I (A j : Ji j )

13: if Abest
i �= null then

14: Add (Abest
i − Ji j ) to MG

15: if Abest
j �= null then

16: Add (Abest
j − Ji j ) to MG

17: if Abest
i �= null ∧Abest

j �= null then

18: Add (Abest
i − Abest

j ) to MG

19: return MG

I (X; Y ) =
∑

x

∑

y

P(x, y) log

(
P(x, y)

P(x)P(y)

)
.

To construct MGR , we need to test every pair (Ai , A j )

of attributes of R for dependence, and determine their
dependence measure. We can extract the joint distribution
P(Ai , A j ) by normalizing the result of the SQL query

select Ai , A j ,count(∗) from R group by Ai , A j .

Having done this for every (Ai , A j ) pair, we have a complete
graph with the attributes of R as vertices, where the edge
Ai−A j is annotated with I (Ai ; A j ). The maximum spanning
tree of this complete graph (also called the Chow–Liu tree
[9]) is the desired MGR .

For each join indicator JRS that connects relations R and
S, the construction algorithm must test dependence for every
triple (Ai , JRS, B j ) where Ai is a descriptive attribute of
relation R and B j is a descriptive attribute of relation S. We
can retrieve the distribution P(Ai , B j , JRS) in two steps.
First, by dividing the result of the query

select Ai , B j , count(∗) from R, S

where JRS group by Ai , B j

by the size of the Cartesian product |R × S|, we obtain the
part of the distribution for the T value of the join indicator,
P(Ai , B j , JRS = T). For the rest of the distribution, it holds

P(Ai , B j , JRS = F) = P(Ai , B j )− P(Ai , B j , JRS = T).

Note that by Theorem 1 attributes Ai and B j are independent
since they belong to different relations:

P(Ai , B j , JRS=F)= P(Ai )P(B j )− P(Ai , B j , JRS=T).

We can estimate P(Ai ) and P(B j ) by normalizing the result
of the queries

select Ai , count(∗) from R group by Ai ,

select B j , count(∗) from S group by B j .

Therefore, we are able to estimate P(Ai , B j , JRS) without
forming the Cartesian product R × S.

The work done to form the joint probability distributions
P(Ai , A j ), and P(Ai , B j , JRS) in order to measure mutual
information is not lost. Many of these sets of random vari-
ables will likely form cliques in the junction tree. Therefore,
we cache the distributions of the pairs and triples of random
variables, and no database access is needed to form the final
junction tree.

If the moral graph is not chordal, a triangulation procedure
adds edges to make it chordal. We defer the discussion on
triangulation until Sect. 6. We note that if the input schema
graph is a tree, the moral graph is always chordal, and trian-
gulation is not needed (c.f. Sect. 6). Triangulation may need
further database access for the new cliques it creates. Finally,
the junction tree is constructed in the standard way [10], and
stored in the DBMS catalog.

How exactly the junction tree is stored is DBMS-specific,
and multiple implementations are possible. We briefly
describe our choices based on PostgreSQL. The PostgreSQL
catalog is itself stored as relational tables. For example, the
pg_statistics relation stores all PostgreSQL statistics
on attributes. We add four new relations to the PostgreSQL
catalog:

1. pg_descattr contains all the descriptive attributes,
and pointers to the attribute entries of the PostgreSQL
catalog.

2. pg_joinind contains information about the join
indicators.

3. pg_clique contains the cliques of the junction tree and
their inter-connections. The junction tree root is chosen
at random.

4. pg_probdistr contains the joint probability distribu-
tions kept. The distributions are kept in different rela-
tions, because a clique that is created by triangula-
tion may contain several distributions (see Sect. 6 for
details), and different separators may have the same
distribution.

Due to our fixed model structure, the model construction
algorithm needs to check only pairs of attributes for depen-
dence, and needs only to issue two-table joins. Due to these
features, our algorithm issues the same queries to the data-
base as CORDS [18], a highly efficient previous approach to
discovering correlations. CORDS captures pairwise correla-
tions using a very similar algorithm to the one described
above. It uses a different dependence measure, namely
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mean-square contingency coefficient instead of mutual infor-
mation. In CORDS the joint distributions are not used to
provide selectivity estimates. Instead, lightweight “Column-
Group statistics” are used to indicate presence of a correla-
tion. During the correlation discovery phase, the same queries
are issued to the database since both methods discover pair-
wise correlations using two-table joins. By using samples of
tables, the overhead of the CORDS construction algorithm
was shown to be independent of the size of the database, while
still resulting in high quality estimates. That result applies to
our model construction algorithm as well, and a small sample
is usually enough to capture most distributions (we discuss
this further in Sect. 9).

5 Selectivity estimation

Once the junction tree of the database has been constructed
and stored in the DBMS catalog, it can be used for selec-
tivity estimation. Consider a query that contains selection
predicates and join predicates

select ∗ from R1, R2, . . . , Rn

where A1 = a1 and . . . Am = am and

B1 = C1 and . . . Bk = Ck .

We detect the descriptive attribute that corresponds to every
selection predicate Ai = ai , and the join indicator that corre-
sponds to every join forming the sets of random variables Aq

and Jq . Denote by φA the predicate that corresponds to the
descriptive attribute A. The selectivity of the query is equal to

Pr

⎛

⎝
∧

A∈Aq

φA,
∧

J∈Jq

J = T

⎞

⎠ .

During query optimization, the plan enumerator asks for car-
dinalities of intermediate result sizes. Equivalently, it will
ask for probabilities of the form

Pr

(
∧

A∈A

φA,
∧

J∈J

J = T

)
.

where A ⊂ Aq , and J ⊂ Jq (depending on heuristics used
during plan enumeration, only a subset of all possible com-
binations will be queried). Note that this includes the possi-
bility of performing selection after a join (for example, for
expensive predicates [8,17]). Our task is to compute such
probability queries.

We solve this problem using a junction tree representa-
tion of our statistical model in two steps. First, the so-called
Steiner tree, the minimal sub-tree that contains Aq and Jq , is
extracted from the junction tree. Second, a selectivity estima-
tion algorithm substitutes the values of the query variables,
and eliminates the remaining variables in the tree. The final

Algorithm 2 Steiner tree computation
1: procedure Construct- Steiner- Tree(T,V)
2: Croot = root of T
3: Clique- Include(Croot,V)
4: return cliques with C.include = T
5: procedure Clique- Include(C ,V)
6: if C is leaf then
7: C.varsInSubtree = V ∩ C.vars
8: if C.varsInSubtree �= ∅ then
9: C.include = T
10: else
11: localVarsInSubtree = V ∩ C.vars
12: C.varsInSubtree = localVarsInSubtree
13: for c in C.children do
14: Clique- Include(c,V)
15: if localVarsInSubtree ⊃ c.varsInSubtree then
16: c.include = F
17: C.varsInSubtree = C.varsInSubtree ∪ c.varsInSubtree
18: if C.varsInSubtree �= ∅ then
19: C.include = T
20: if C.varsInSubtree = V then
21: Stop the algorithm

unnormalized number is returned as the result of the query.
Steiner tree computation is in our setting different from the
classical problem, because we need to select the minimal sub-
tree that contains a set of variables, and not a set of nodes. We
discuss it first in Sect. 5.1. Then, in Sect. 5.2 we describe the
algorithm for selectivity estimation we use, and in Sect. 5.3
we describe an alternative algorithm that has better perfor-
mance for Steiner trees of low degree (e.g., for chain queries).

5.1 Steiner tree computation

Given a rooted junction tree T and a set of variables Vq =
Aq ∪ Jq , our goal is to extract the minimal connected junc-
tion tree that contains these variables. For each clique of
the tree C , we maintain a Boolean variable “C.include” that
indicates whether the clique is included in the resulting tree,
and we maintain a set “C.varsInSubtree” that contains the
subset of V that is included in the subtree rooted at C . The
algorithm, shown in Algorithm 2, sets the “include” value
for each clique. If a clique is a leaf, it is included if it con-
tains variables in the query. A non-leaf clique is included if
the variables contained in the sub-tree originating from the
clique contain query variables. The fine point of the algo-
rithm is that we do not want to include a clique whose parent
already covers the variables of interest. Lines 15 and 16 of
the algorithm set the include bit of a clique’s child to false if
the parent clique already covers the needed variables.

5.2 Selectivity estimation via junction tree propagation

Assume a rooted Steiner tree T, a set of random variables
V, and associated predicates whose joint selectivity we want
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Fig. 3 Selectivity estimation algorithm

to evaluate. Selectivity estimation proceeds as junction tree
propagation [10]. Messages are sent from the root to the
leaves, and then returned from the leaves to the root. When
the root has received messages from all its children, the algo-
rithm terminates.

Assume the clique Cr shown in Fig. 3 with children
Cq , . . . ,Cn , parent Ck , and upwards separator Skr . The entry
point of the recursive call in Cr is Ck asking Cr for a mes-
sage πkr . Denote by Vr = V ∩ Cr (Vkr = V ∩ Skr ) the
subset of query variables that Cr (Skr ) contains, and by
Ψr = {ψi (Vi )|Vi ∈ Vr } (Ψkr = {ψi (Vi )|Vi ∈ Vkr }) the
set of query predicates on variables Vr (Vkr ).

If n = 0 (i.e., Cr is a leaf in the Steiner tree), Cr will
substitute the predicates ψi in its potential φr , and then sum
out all variables that do not belong to the upwards separator
Skr . The resulting factor (or real number) is the message sent
to the parent clique Ck :

πkr =
∑

Cr−Skr

φr [Ψr ](Cr ).

By substituting the predicatesΨr into the clique potential φr ,
we get an unnormalized factor, whose sum is the joint proba-
bility of all predicates Ψr . Variables that do not belong to the
separator Skr are not needed in the upwards sub-tree, so they
can be safely eliminated without implying an independence
assumption that is not already encoded in the model.

If Cr is an intermediate clique, it will first call the selectiv-
ity estimation algorithm on its children C1, . . . ,Cn , obtain-
ing the messages πri |i = 1, . . . , n. Then, it will substitute
the predicatesΨr in its potential, and also substitute the pred-
icates Ψri in the potential of every separator Sri :

φ∗r = φr [Ψr ]
μ∗ri = μri [Ψri ], i = 1, . . . , n

Algorithm 3 Basic propagation algorithm.
1: function Compute- Selectivity(T,Aq , Jq )
2: return Compute- Prob- Rec(T.root,Aq , Jq )

3: function Compute- Prob- Rec(Cr ,Aq , Jq )
4: Π = ∅
5: for i = 0 to n do
6: πri =Compute- Prob- Rec(Cr .children[i],Aq , Jq )
7: Π = Π ∪ πri

8: φ∗r = φr [JR = T,
∧

A∈Aqr
A = a]

9: μ∗kr = μkr [∧A∈Aqkr
A = a]

10: for i = 1 to n do

11: φ∗r =
φ∗r πri

μ∗ri
12: φ∗r =

∑
Cr∪Ci∪§ri−Aq−S∗kr

φ∗r
13: return φ∗r

Then, it will iteratively multiply φ∗r with πri dividing by
the modified separator potential μ∗ri , while eliminating all
unnecessary variables. The unnecessary variables at step i
of the iteration are those that do not appear in the upwards
separator Skr , or the separators Sr j , j > i . Let V̂r = Cr ∪
C1 ∪ · · · ∪ Cn . Then, the iteration can be written as

φ∗r ←
∑

V̂r−Skr−∪ j>i Sr j

φ∗r πri

μ∗ri
.

By eliminating variables while multiplying the cliques, we
ensure that we never carry around a factor with higher car-
dinality than needed, while not making any independence
assumptions (other than the ones implied by the model) along
the way. Algorithm 3 provides pseudo-code for the selectivity
estimation algorithm based on propagation.

We conclude this section with an example. Assume that
we are asked to estimate the selectivity of the query

select * from lineitem, supplier, customer
where l_suppkey = s_suppkey
and s_nationkey = c_nationkey
and c_acctbal = a
and l_shipdate = b

The equivalent probability query is

Pr(JL S=T, JSC=T,c_acctbal=a,l_shipdate=b).

Assume the junction tree of Fig. 2d. The Steiner tree for the
query is shown in Fig. 4 where the cliques have been num-
bered. Assume that C1 is the root. C1 will first call the algo-
rithm recursively on its children C2,C3. C2 is a leaf clique,
so it will substitute the related predicates in its potential, and
sum out unneeded variables:

φ∗2 (s_acctbal) = φ2[JSC = T,c_acctbal = a].
Clique C2 will then return back to C1 the message π12 =
φ∗2 (s_acctbal). Note that no marginalization was per-
formed by C2. Variable s_acctbal cannot be eliminated
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Fig. 4 Selectivity estimation via propagation

because it appears in the separator S12 and does not appear in
the query. Were C2 to eliminates_acctbal, we would lose
the indirect dependency between JSC and l_shipdate
through s_acctbal, i.e., we would be making an ad-hoc
independence assumption that is not implied by the model.

Similarly, C3 will compute its message π13 as

φ∗3 (s_acctbal) = φ3[JL S = T,l_shipdate = b].
The control flow returns to C1 once the clique has collected

the messages π12, π13 from its children. C1 will first substi-
tute the relevant predicates to its potential and the potential
of the downwards separators, while eliminating unneeded
variables:

φ∗1 (s_acctbal) = φ1[c_acctbal = a,l_shipdate = b],
μ∗12(s_acctbal) = μ12[c_acctbal = a],
μ∗13(s_acctbal) = μ13[l_shipdate = b].
The clique will then multiply φ∗1 with the messages received
from its children. Assume that the multiplication with π12

happens first resulting to the intermediate factor φ′1:

φ′1(s_acctbal) = φ∗1 (s_acctbal)π12(s_acctbal)

μ∗12(s_acctbal
.

Then, the intermediate factor will be combined with π13, and
the variable s_acctbal can be finally eliminated:

φ′′1 () =
∑

s_acctbal

φ′1(s_acctbal)π13(s_acctbal)

μ∗13(s_acctbal)
.

The factor φ′′1 () is a real number, and it is returned as the
selectivity of the query.

5.3 Selectivity estimation via dynamic programming

Algorithm 3 described in the previous section adapts junc-
tion tree propagation to perform selectivity estimation. The
algorithm performs a full propagation of the Steiner tree for
every selectivity estimate asked by the query optimizer dur-
ing plan enumeration. This is unnecessary; we can reduce
the number of multiplications (but, as will be evident later,
not the running time in all cases) by exploiting the series of

Fig. 5 Selectivity estimation via dynamic programming

requests made by the query optimizer. Assume a dynamic-
programming, bottom-up plan enumerator and the 3-join
query

select * from lineitem,orders,customer,supplier
where l_suppkey = s_suppkey
and s_nationkey = c_nationkey
and o_custkey = c_custkey
and l_shipdate = a

The Steiner tree for the query is shown in Fig. 5. Clique C1

is the root. The equivalent probability query is

s1 = Pr(JL S = T, JSC = T, JOC = T,l_shipdate=a).

The basic idea that we exploit is that before the optimizer
asks for a joint selectivity on a set of predicates, it has already
asked (and received estimates for) the selectivities of some
subsets of these predicates using the junction tree of Fig. 5.
For example, when the optimizer considers the expressions
σl_shipdate=a(L) �� S �� C , and O �� C , it receives esti-
mates for

s2 = Pr(JL S = T, JSC = T,l_shipdate = a),

s3 = Pr(JOC = T).

To estimate s2, we need to marginalize from clique C2:

s2 =
∑

l_orderdate,c_acctbal

φ2[JOC = T]].

To estimate s3, we need to multiply cliques C3,C4,C5:

s3 =
∑

s_acctbal,
c_acctbal

φ3[l_shipdate = a]φ4[JSC = T]
φ5[l_shipdate = a, JL S = T]
μ34μ35[l_shipdate = a] .

Even after having estimates for s2 and s3, in order to estimate
s1 (which computes the selectivity of the whole query), we
would need to perform propagation in the whole junction
tree, thereby multiplying five cliques. Define the factors
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β[JL S, JSC ](c_acctbal) ≡

∑

s_acctbal

φ3[l_shipdate = a]φ4[JSC = T]
φ5[l_shipdate = a, JL S = T]
μ34μ35[l_shipdate = a] ,

β[JOC ](c_acctbal) ≡
∑

l_orderdate

φ3[JOC = T].

We are forming β[Pr(JL S, JSC )] (β[JL P ]) while computing
s2 (s3), just before eliminating c_acctbal. Had we stored
these factors, we could compute s1 using only two multipli-
cations as

s1=
∑

c_acctbal,
o_orderdate

φ1[l_shipdate=a]β[JL S, JSC ]β[JOC ]
μ12μ13[l_shipdate=a] .

We generalize this process as follows. We assume that
predicates are pushed under joins. If this does not hold (e.g.,
for expensive predicates), our method can be easily general-
ized. For each join expression R1 �� · · · �� Rn considered by
the plan enumerator, we extract the set of join indicators in
the expression, J, and define theβ-factorβ[J] as the multipli-
cation of all the cliques C that contain J, marginalized to all
the variables that belong to separators that connect C to the
rest of the Steiner tree. The factor is computed as the result of
the selectivity estimate for the join expression before elimi-
nating some variables. The β-factor is stored in a hash table
indexed by the join indicator identifiers. Then, the β-factor
for J1 ∪ J2 can be computed using the stored β-factor for J1

and J2 as

β[J1 ∪ J2] =
∑

V

β[J1]β[J2]C1 . . .Cn∏
μi j

,

where C1, . . . ,Ck are the cliques that belong to the path
between β[J1] and β[J2].

This algorithm minimizes the number of multiplications,
but this does not always result in better optimization time.
The reason is that the cardinalities of the stored β-entries
can become large, and one multiplication can dominate the
time needed to perform selectivity estimation. Therefore, the
dynamic programming algorithm is suitable for Steiner trees
of low fanout, and in particular for chain-shaped Steiner trees.

6 Coping with cyclic schemas

A junction tree can be constructed only if the moral graph
Gm is chordal. A graph is chordal if it does not contain a
cycle with more than three nodes without a “chord,” an edge
that connects two non-adjacent nodes in the cycle.

For the case that the moral graph is not chordal, an extra
step before creating the junction tree is needed. Triangulation
is a process that adds edges to the moral graph until a chordal
graph has been constructed. It is usually realized as a process

of node elimination [3]. A node is eliminated by connecting
all its neighbors, and removing the node and its edges from
the graph. A node is called simplicial if it can be eliminated
without introducing extra edges (i.e., all its neighbors are
connected).

Algorithm 1 may create a moral graph that is not chordal.
This can happen if the schema graph of the database contains
cycles, but it cannot happen in a tree-shaped schema graph. In
our fixed model structure, join indicators are simplicial nodes
because they have at most two parents that are connected dur-
ing moralization (e.g., in the moral graph shown in Fig. 2,
we can see that the join indicator nodes JL P , JL S, . . . are
all simplicial nodes). Thus, triangulation will not add edges
involving join indicators. It will only add edges that contain
descriptive attributes (e.g., the edge between l_sdate and
o_odate in Fig. 2). This can only happen in the case of a
cyclic schema graph, where different descriptive attributes
are parents to join indicators of the same relation. Disallow-
ing the latter is an easy solution to guarantee that all his-
tograms are 2-dimensional. Alternatively, one can choose to
allow the possibility of higher-dimensionality histograms.

The latter is acceptable in most cases because, even with
cliques containing 3 or more descriptive attributes, we often
only need to store at most 2-dimensional histograms. For
example, consider the clique (s_acctbal, c_acctbal,
l_sdate) created during triangulation in Fig. 2. The three
variables in this clique are independent of each other since
they belong to different relations. Hence, this 3-dimensional
probability distribution can be stored compactly as a col-
lection of three 1-dimensional distributions. Although this
seems counter-intuitive, it is actually expected; the junc-
tion tree encodes fewer conditional independences than
the original Bayesian network (because it contains more
edges). On the other hand, the clique (l_sdate, l_cdate,
o_odate) requires us to store a 2-dimensional histogram
on (l_sdate, l_cdate). In future work, we would like to
investigate if it is possible to construct a custom elimination
sequence that always produces a chordal graph that needs
only 2-dimensional distributions.

7 Query-specific modeling

In this section we present an alternative way to construct
a junction tree for a query, which we term query-specific
junction tree. Constructing a query-specific junction tree
improves both estimate accuracy and optimization time com-
pared to the method presented so far. Further, it eliminates the
need for triangulation as long as the queries are acyclic, even
if the schema graph contains cycles. Therefore, the method
in this section provides a formal guarantee that only two-
dimensional histograms are needed for acyclic queries on
possibly cyclic schemas. Finally, query-specific modeling
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provides a formal mapping from the size of the query to the
size of the resulting junction tree. For example, for a query
that joins n relations and contains one selection predicate
per relation, the resulting junction tree contains exactly n−1
cliques.

Query-specific modeling solves an important problem of
junction trees, namely that inference complexity is guided
by the distance between random variables in the precom-
puted junction tree. Two queries of equal complexity (same
number of join and selection predicates) may yield drasti-
cally different optimization times depending on the position
of the random variables in the junction tree. By comput-
ing query-specific junction trees, we are able to overcome
this problem and provide a mapping from query complexity
to optimization time. The price we need to pay for query-
specific modeling is increased model space. For n relations
with m attributes per relation and k join predicates we need
to keep O((n + 2k)m2) 2-dimensional histograms.

Example: We explain the basic idea of query-specific
modeling with an example. Consider a relation R(X1, X2,

X3, X4). According to traditional modeling, which we have
followed so far, the best junction tree is constructed off-
line. In order to construct the junction tree, we test every
pair of attributes for dependence by forming all the distri-
butions P(Xi , X j ) and determining the mutual information
I (Xi ; X j ),∀Xi , X j . Assume that the best junction tree con-
tains cliques C1 = (X1, X2),C2 = (X2, X3), and C3 =
(X3, X4) connected in a chain C1−C2−C3. During model
construction we store in the DBMS catalog the distributions
P(X1, X2), P(X2, X3), and P(X3, X4), discarding all other
distributions P(Xi , X j ) that were formed to test dependence.
Then, the probability query q = Pr(X1 = x1, X4 = x4)

needs two clique multiplications to be computed:

q =
∑

X3,X4

P(X1 = x1, X2)P(X2, X3)P(X3, X4 = x4)

P(X2)P(X3)
.

Consider now the alternative of not forming a junction tree
up-front, but storing all the probability distributions that we
use for testing dependence. In this scenario, all distributions
P(Xi , X j ) are stored in the DBMS catalog, but the junction
tree is formed on demand, when a query is received. Then,
we can compute query q directly by using the stored clique
P(X1, X4). This method results in both better accuracy and
faster selectivity estimation, at the price of storing six instead
of three 2-dimensional distributions.

In query-specific modeling, the off-line model construc-
tion algorithm returns a list of cliques C that are created
while testing random variables for dependence. For each
relation R with attributes X1, . . . , Xn we store the cliques
C R

i j = (R.Xi , R.X j ),∀ j �= i . For each join indica-
tor JRS that contains a join predicate between relations
R(X1, . . . , Xn) and S(Y1, . . . ,Ym) we store the cliques

C RS
i j = (Xi ,Y j , JRS)∀i, j . Note that this does not incur

overhead during model construction; we need to form all
these distributions to test for dependence anyway. The added
overhead of writing the distributions to the DBMS catalog
is very small, and is compensated by the lack of the junc-
tion tree construction phase, leading to overall faster model
construction (see Sect. 9.5 for an experimental justification).

Constructing a valid junction tree is deferred until runtime,
when the query optimizer receives a query. The problem is
then, given a set of stored cliques and a query that contains
several descriptive attributes and join indicators, to create the
best junction tree for the query. The optimization metric now
consists of (i) the number of cliques in the junction tree that
we need to minimize and (ii) as a secondary goal, the mutual
information which we need to maximize. The construction
of the best moral graph, the construction of the junction tree,
and the Steiner tree are now merged into one step.

Algorithm sketch: Assume a query q on relations Rq

that contains predicates on descriptive attributes Aq and join
indicators Jq . We decompose the task of creating the best
query-specific junction tree into three tasks:

1. Selecting a “local” junction tree for each relation R ∈ Rq

2. Selecting the best clique for each join indicator JRS ∈ Jq

3. Connecting the above local junction trees and join indi-
cator cliques so that they form a valid junction tree.

We consider the three tasks in turn. For each relation
R(X1, . . . , Xn) ∈ Rq , we need to find the local junction
tree JTR that “covers” the descriptive attributes of the rela-
tion that are in the query ARq = Aq ∩ {X1, . . . , Xn} using
the minimal number of nodes. An important observation is
that cliques that contain at least one descriptive attribute not
in the query need not be considered during junction tree con-
struction, since they would needlessly increase the number
of cliques in the junction tree. There are three cases we need
to consider, depending on the number of query attributes that
belong to relation R:

1. |ARq | = 1: The query contains only one descriptive
attribute from R. Assuming that there will is a join indi-
cator JRS involving R (i.e., the query does not contain
a Cartesian product), we can cover this attribute in the
same clique that contains JRS . JTR in this case is empty.

2. |ARq | = 2: The query contains two descriptive attributes
from R, X and Y . JTR in this case consists of the single
clique (X,Y )

3. |ARq | = n > 2: The query contains several descriptive
attributes from R. First, we collect the available cliques
CRq that contain only descriptive attributes from ARq .
Note that this step can be implemented efficiently by
indexing the catalog table that contains all cliques on the
clique attributes. Also note that at this step the actual
clique distributions do not need to be retrieved. Each
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Fig. 6 Query-specific modeling. The bold lines indicate the cliques
and edges that form the selected junction tree

clique C ∈ CRq with attributes X,Y is associated with a
weight wC = I (X; Y ). We then find the Chow–Liu tree
over these attributes, i.e., the maximum-weight spanning
tree of a complete graph on ARq , with weight on an edge
X,Y being I (X; Y ).

Assume, for example the relations R(X1, X2, X3, X4) and
S(Y1,Y2) connected by the join indicator JRS . Figure 6 shows
the complete graph for all the possible cliques of R and S.
For example, the three attributes of S can form three possi-
ble cliques (Y1,Y2), (Y2,Y3), and (Y1,Y3) all connected with
each another. Cliques can be connected if they share a vari-
able. Assume now the query Pr(X1 = x1, X2 = x2, X3 =
x3, JRS = T,Y1 = y1). For relation R, we have ARq =
{X1, X2, X3} (case 3 above). We collect all cliques that
contain only attributes from ARq : (X1, X2), (X2, X3),

(X1, X3). We then select cliques (X1, X2) and (X1, X3)

using the Chow–Liu technique (hard-coded and optimized
for small numbers of descriptive attributes). For relation
S,ASq = {Y1} (case 1 above). Therefore, the junction tree
for S is empty.

In the general case, for each join indicator JRS , we need
to select one clique of the form (X, JRS,Y ), where X and Y
are descriptive attributes from R and S respectively. We have
again three cases depending on the uncovered attributes of R
and S:

1. There exist descriptive attributes X and Y from R, S that
have not been covered. This is the result of case 1 above,
when |ARq | = 1 and |ASq | = 1. Then, we select the
clique (X, JRS,Y ).

2. There exists an attribute X of R that is uncovered. Then,
we select the clique (X, JRS,Yi ) that has the maxi-
mal weight, where Yi ∈ ASq . The weight of a clique

C = (Xi , JRS,Y j ) is measured as wC = I (Xi , JRS) +
I (Y j , JRS).

3. There are no uncovered attributes. Then we select the
clique (Xi , JRS,Y j ) with the maximal weight, where
Xi ∈ ARq ,Y j ∈ ASq .

Once we have JTR for each relation R in the query, and
a clique for each join indicator JRS , it is trivial to connect
these in a valid junction tree. For each clique (X, JRS, Y ),
we identify a clique of JTR, (X, X ′) that contains X , and a
clique of S, (Y,Y ′) that contains Y , and we add the edges
(X, X ′)− (X, JRS,Y )− (Y,Y ′).

In the example of Fig. 6, we are in case 1 above, since
attribute Y1 is not covered. We can choose any join indi-
cator clique of the form (Xi , JRS,Y1), i = 1, . . . , 4. In this
case, we choose the clique (X1, JRS,Y1), and connect it with
(X1, X2) as shown in the figure.

Theorem 3 The produced junction tree is valid.

Proof We prove that the produced junction tree is a tree, and
has the running intersection property. The family preserva-
tion property is not relevant in this case, since the junction
tree is not produced by a Bayesian network. The running
intersection property states (see Sect. 2) that for every pair of
cliques C1,C2, the variables belonging to their intersection
C1 ∩ C2 are contained in every node in the path from C1 to
C2 in the junction tree JT.

Assume that the tree-shaped join query q is over the
relations Rq = {R1, . . . , Rn} and it contains join indica-
tors Jq = {JRi R j }, |Jq | = n − 1. The resulting junction
tree consists of the local junction trees JTRi , and a clique
CRi R j for each join indicator JRi R j . Assume the join tree
of the query Tq = ({R1, . . . , Rn}, Eq). The vertices of
Tq are the relations, and the edges are the join predicates:
Eq = {(Ri , R j )|∃JRi R j ∈ Jq}. Assume now the tree T with
vertices VT = JTRi and an edge between JTRi and JTR j if
there exists a clique CRi R j . It is obvious that Tq and T are
isomorphic, therefore T is a tree. Recall that every local junc-
tion tree JTRi is a tree since it is constructed using standard
techniques. Therefore, the produced junction tree is a tree.

To prove the running intersection property, we have three
cases:

1. Consider two cliques C1,C2 ∈ JTR for R ∈ Rq . Since
JTR is constructed using standard techniques, the running
intersection property for C1 and C2 holds.

2. Consider C1 ∈ JTR,C2 ∈ JTS . Since the cliques contain
descriptive attributes from different relations, C1∩C2 =
∅, and the running intersection property trivially holds.
The same holds if C2 is a join indicator clique that does
not involve R.

3. Consider C1 = (X, Z) ∈ JTR,C2 = (X, JRS, Y ).
Assume the clique C3 ∈ JTR that is connected with
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C2. From case 1 above, the running intersection property
holds for C1 and C3. From the construction algorithm,
C3 must contain X . Therefore, the running intersection
property holds for C1 and C3. ��

We are not aware of prior work in that literature that has
proposed techniques similar to this. There are however sev-
eral properties that are satisfied by the restricted class of
graphical models that we consider here, that are needed to
prove the correctness of this technique, and that may not be
satisfied by arbitrary graphical models. We plan to investigate
the generality of our approach in more depth in future work.

8 Implementation

We have implemented a graphical model foundation and the
proposed selectivity estimation algorithms in PostgreSQL.
To the best of our knowledge, this is the first implementation
of graphical models-based selectivity estimation in the kernel
of a real DBMS. Our implementation consists of two parts:
the model construction prototype and the selectivity estima-
tion prototype. Model construction (the implementation of
Algorithm 1) is done outside the DBMS. It is written in Java,
and it accesses the database using SQL queries. The resulting
junction tree structure is stored as four relational tables in the
PostgreSQL catalog as described at the end of Sect. 4.

The selectivity estimation part is implemented in the Post-
greSQL backend. When the optimizer is called, the clique
catalog table is scanned, and the junction tree structure is
created in the backend. The clique potentials are not read
from disk at this point, since that would incur significant and
unnecessary overhead. Then the Steiner tree for the query is
created with an implementation of Algorithm 2. Only then
are the probability distributions in the much smaller, query-
specific junction tree read from the catalog table. The startup
overhead of loading the junction tree is very small: it takes
between 1 and 3 milliseconds in all our experiments.

Selectivity estimation implements Algorithms 3 and the
dynamic programming algorithm of Sect. 5.3 as operations
on a junction tree structure. We implemented cliques and
probability distributions as plan nodes in the PostgreSQL
class system, including algorithms to multiply, divide, and
marginalize multi-dimensional probability distributions [10].
We used simple equi-width histograms for multi-dimensional
probability distributions. Implementing and studying clique
multiplication for more advanced types of multidimen-
sional histograms is an interesting future direction, which
would enable further benefits [11]. For the experiments in
Sects. 9.2, and 9.3 we modified PostgreSQL to use equi-width
histograms in order to focus on the impact of missed correla-
tions on result accuracy and execution time. In Sect. 9.4 we
use the vanilla PostgreSQL summaries in order to showcase

the competitiveness of our approach against a complete open-
source DBMS. In every case, we used histogram sizes so
that the space required by a typical histogram of our method
(which contains two descriptive attributes and one join indi-
cator) is the same as the space required by a PostgreSQL
histogram. The result is that vanilla PostgreSQL can cap-
ture the marginal distributions with better accuracy than our
technique (because it has more buckets allocated to them),
but does not capture correlated distributions.

9 Experimental results

In this section, we cover the results of a comprehensive exper-
imental evaluation performed using our implementation and
three datasets. We first describe the datasets and the query
workloads.

9.1 Data sets and workloads

We used three data sets in the experiments. First, we mod-
ified the TPC-H data generator to introduce pairwise corre-
lations between attributes. Second, we used the IMDB data
set. Finally the Accidents dataset is a synthetic data set whose
goal was to approximate the statistics characteristics of a real
database from a Department of Motor Vehicles [18,28].

1. IMDB: This data set is approximately 800 MB, and con-
sists of 21 tables, a total of 101 columns, and 51,400,459
rows. It contains information about movies, actors, direc-
tors, etc., and was extracted from the IMDB website
(http://www.imdb.com).

2. TPC-H: To obtain the TPC-H data set, we changed the
data generator to introduce additional pairwise correla-
tions between attributes. Unless mentioned otherwise, we
use a scale factor of s = 0.1, a zipf factor of z = 3, and
a Pearson correlation parameter of r = 0.9 in our exper-
iments.

3. Accidents: The Accidents dataset [18] contains six rela-
tions, 23 columns that were used as descriptive attributes,
and six join predicates that were used as join indicators.
It is a synthetic data set, that aims to model a real data set
of a Department of Motor Vehicles [28]. It contains sev-
eral meaningful correlations, e.g., a correlation between
attributes model and make of a table Cars. The gen-
erator includes a query generator that generates select-
project-join-aggregate queries with random values in the
selection predicates.

Queries. In Sect. 9.2 we use a suite of 8 queries over
the IMDB and TPC-H datasets that contain joins whose
selectivities are correlated with specific values of the descrip-
tive attributes. The queries, denoted TPCH-1 – TPCH-4,
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IMDB-1 – IMDB-4, can be found in the electronic supple-
mentary material that accompanies the paper.3

In Sect. 9.3 we use a random workload of selection and
join queries over the restricted TPC-H schema graph shown
in Fig. 2a. The experiments in this data set exhibit the ben-
efits of our approach in a setting of very high correlations.
We use 21 descriptive attributes and introduced two pred-
icates per attribute. Figure 2d shows the junction tree cre-
ated for a subset of those attributes. By taking all possible
combinations, we generate 80 one-join queries. By randomly
combining queries with one join, we generate 80 two-join
queries, and so on until 400 queries with one to five join
predicates are created. Finally, in Sect. 9.4, we use a large
workload of generated queries against the Accidents data-
base.

9.2 The impact of missed correlations

We proceed to offer insight into how missed correlation can
affect the plan chosen by a query optimizer, and subsequently
the time needed to execute a query. We use a skewed TPC-H
data set with zipf factor z = 3. Correlations are inherent in
the TPC-H schema. Consider the following query (denoted
TPCH-1):

select c_name,c_address
from lineitem,orders,customer
where l_orderkey = o_orderkey and

o_custkey = c_custkey and
o_totalprice = x and
l_extendedprice = y and c_acctbal = z

We seek to find customers that have placed orders with a
particular combination of total price and prices of items, and
with a further selection on the customer’s account balance.

The attributes l_extendedprice and o_total
price are correlated for tuples of lineitem and orders
that join. Specifically, the total price of an order is a func-
tion of the price of its items, and their tax and discount. This
positive correlation causes the selectivity Pr(JL O , φL , φO)

to be much higher than the product of the selectivities
Pr(JL O),Pr(φL), and Pr(φO). PostgreSQL cannot capture
such a correlation and therefore underestimates the selectiv-
ity Pr(JL O , φL , φO) by a factor of 20 in our setting. This
causes the optimizer to place the join L �� O before the join
O �� C in the query plan. Further, it causes PostgreSQL
to use a nested loop join for the final join with C , using
the join L �� O as the inner relation. The plan picked by
the optimizer using the default PostgreSQL estimates is A :
(O ��HJ L) ��NLJ C , where the right operand of the �� oper-
ator is pipelined. In contrast, using our improved estimates,

3 See supplementary material associated with the online version of this
article on the journal’s web site.

the plan picked by the optimizer is B : (C ��HJ O) ��HJ L .
Thus, both the join order and the join algorithms picked
are different. The execution time difference between these
two plans is huge. While plan B (the one picked using our
selectivity estimates) takes less than 2 s to execute in a cold
state, plan A takes more than 40 min. After instructing Post-
greSQL to not use a nested loop join, plan A is executed in
4 s. Therefore, the wrong join order can result in a 2× exe-
cution time penalty, and the nested loop join increases the
execution time by orders of magnitude. Both decisions were
made due to the missed correlation between the attributes
l_extendedprice, o_totalprice, and the join indi-
cator JL O . By capturing these correlations using a graphical
model, the optimizer can pick a better query plan.

Figure 7 shows results for eight queries on the TPC-H and
IMDB data sets. All axes are in logarithmic scale. The sup-
plementary material (see footnote 3) provides the SQL code
of the queries and offers details on the data sets. All queries
show how correlations lead to wrong join orders, and indeed
the PostgreSQL optimizer chooses different plans using the
default estimates versus using the estimates by our method.
Our plans are better in all cases. Figure 7a shows the plan cost
(measured as the number of intermediate tuples generated),
as estimated by the query optimizer, and as measured after
executing the query. Figure 7b shows the actual execution
times for these queries.

PostgreSQL underestimates the cost of query TPCH-1. As
discussed, this causes the execution time to spiral (Fig. 7b)
due to a nested loop join. This is also the case for query
TPCH-2. For both queries, our estimates are very close to
the actual values. Queries TPCH-3 and TPCH-4 are exam-
ples where our estimates resulted in overestimation. Here,
a negative correlation causes a join to produce zero tuples.
Using the default estimates, the optimizer misses the oppor-
tunity to place the join first. The plan chosen using the default
estimates was worse by a factor of 1.5 for these two queries. In
these queries, although the default estimates are more accu-
rate for their resulting plan, an overestimation by our method
can guide the optimizer to a completely different plan than
the default estimates.

In the IMDB data set, correlations are present, but they
are not as extreme as in the synthetic data set. Queries
IMDB-1–IMDB-4 are all examples of underestimation by
the PostgreSQL default selectivity estimates. The result-
ing differences in execution time can vary from very small
(IMDB-2) to more than a factor of 2 (IMDB-1, IMDB-3,
IMDB-4).

The time needed for selectivity estimation is significantly
higher than that of PostgreSQL (Fig. 7c). This is expected,
given the complexity of performing propagation in a junc-
tion tree compared to simply checking an 1-dimensional his-
togram. However, due to our optimizations, the selectivity
estimation time is on the order of tens of milliseconds. The
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Fig. 7 2-join queries on the TPC-H and IMDB data sets. In all queries, PostgreSQL chose different plans using our versus the default estimates.
a Optimizer cost, as number of intermediate tuples generated. Estimated and actual costs are shown. b Execution time. c Time for selectivity
estimation

IMDB-4 query is a 3-join chain query. There, the dynamic
programming algorithm can reduce selectivity estimation
time to about half, and it approaches the time needed by
PostgreSQL. The rest of the queries are 2-join queries, and
the time needed by the basic selectivity estimation algorithm
and the dynamic programming algorithm are similar.

9.3 Measuring estimate accuracy

Although what matters in practice is the execution time of
the resulting plan (as shown in the previous section), using
this as the sole metric for selectivity estimation can be mis-
leading. Due to the complexity of query optimizers and the
fine points of each individual optimizer, a better estimate
does not always result in a better query plan. For example,
a large overestimation may be better than a slight underes-
timation for certain queries, since it may result in a more
“conservative’’ plan. In order to place equal emphasis on
overestimation and underestimation, we use the multiplica-
tive error metric, which is the most appropriate for query
optimization [11,30]. Assume that a relation Q produced
during query execution has cardinality |r | and that the cardi-
nality estimate is |r̂ |. Then, the multiplicative error is defined
as max(|r̂ |, |r |)/min(|r̂ |, |r |).

Given a query Q, we define the average multiplicative
error as the geometric mean of the multiplicative errors for
all estimates that are provided to the query optimizer during
the optimization of the query:

avg-err(Q) =
( ∏

i=1,...,n

max(|q̂i |, |qi |)
min(|q̂i |, |qi |)

)1/n
,

where qi is a relation whose cardinality estimate was
requested by the optimizer.
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Fig. 8 Results on a workload of 400 queries on the TPC-H data set.
a Average multiplicative error. b Average optimization time.

We generated a workload of 400 queries on a cyclic subset
of the TPC-H data set. Figure 8a shows the average multi-
plicative error of the default PostgreSQL and our selectiv-
ity estimates, averaged over queries with the same number
of joins. Our estimates are better across all queries; and for
5-join queries, we can achieve a tenfold reduction of the mul-
tiplicative error. Figure 8b shows the optimization time. The
basic selectivity estimation algorithm is used. The penalty
for our better estimates is an increase in optimization time.
However, optimization time is always on the order of tens
of milliseconds, which is an acceptable overhead consider-
ing the reduced estimation errors. Note that the optimiza-
tion time does not depend linearly on the number of joins.
Rather, optimization time depends on the number of cliques
in the Steiner tree, which in turn depends on the position of
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Fig. 9 Results on Accidents database. a and b Scatter plots of execu-
tion and optimization times. c and d Box plot of execution and opti-
mization times for modified PostgreSQL with equi-width histograms
(ewPG), PostgreSQL (PG), Graphical Model (GM), Query-specific

graphical model (QS), and Query-specific graphical model created
using samples (sQS). A workload of 400 queries was used when run-
ning queries against vanilla PostgreSQL to measure execution time [(a),
(c)], otherwise a workload of 4,000 queries was used

the query variables in the junction tree. Our query-specific
modeling technique solves this problem for acyclic queries,
by selecting a query-specific junction tree with the minimal
number of cliques.

9.4 Results on Accidents database

We measured the savings in terms of execution time and
optimization time overhead using the Accidents database. We
use a large query workload in order to explore the robustness
of our solution.

Figure 9a is a scatter plot that compares the execution
times of about 400 queries when optimized using the default
PostgreSQL and the graphical model selectivity estimates
(note that both axes are in logarithmic scale). The queries
contain 1–5 joins, random selections, and group by clauses.
All queries are issued against a PostgreSQL instance in cold
state. For certain queries, different estimates may lead to dif-
ferent plans, which can greatly affect the execution time. For
other queries, better estimates do not lead to different plans.
As discussed above, due to the complexity of the optimizer,

the quality of estimates has varying effects on execution time;
better estimates may lead to a worse plan. Therefore, we
anticipate cases of regression. We did not create any indexes
in the database; therefore, the only reasons for execution time
difference are a different join order, a different choice of inner
and outer relation, and a different choice of join algorithm,
usually either hash or sort-merge join.

In Fig. 9a, we observe improvement in execution time for
almost all queries. The improvement can vary from being
minimal to 4 orders of magnitude. Figure 9c is a box plot of
the execution time of the workload as a whole. As shown,
the median time is slightly reduced, and the third quartile is
reduced by a factor of 3 compared to vanilla PostgreSQL.
The difference between the medians of vanilla PostgreSQL
and the version with modified equi-width histograms is one
second. We conclude that the improved estimates due to the
use of the graphical model can make a query optimizer more
robust. Instead of nearly five orders of magnitude variation
(the x axis of Fig. 9a) for the execution time of the queries, we
obtain a two orders of magnitude variation for most queries.
Finally, there is a substantial bottom-line improvement.
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Fig. 10 Model construction results. a Scalability of model construction algorithm. b Optimization using cubes and samples

For the workload as a whole, we observed a 20× speedup in
execution time compared to vanilla PostgreSQL.

We also investigated the effect of sampling on the exe-
cution time. Instead of using the full database to create the
junction tree marginals, we used samples of 10,000 tuples
over the base tables and over the 2-relation joins defined by
the join indicators. The sample size used adequately captures
the accuracy needed, and at the same time keeps the model
construction time low. It takes about 4 s to construct the model
using the sampled data (see Fig. 10b). Figure 9c shows the
execution time using the estimates built with samples and the
query-specific model construction method that provides bet-
ter plan quality (“sQS” in the figure). We observed a slight
increase in the median and the third quartile (by 1 s each). As
expected, a small sample of the database is usually enough
to capture distributions similar to the ones obtained using
the complete data set. Prior work offers techniques to calcu-
late good sample sizes [6]. We note that PostgreSQL uses a
reservoir sampling scheme internally, but does not expose a
sampling interface to the SQL layer; therefore, we create our
samples with queries of the form

select * from R order by random() limit 10000,

which need a full scan and sort of the relations. To create
samples of two-table joins, we sample after fully executing
the join, as joining samples provides unacceptable results in
practice [2]. We note that more advanced techniques can be
used [7].

Figure 9b is a scatter plot of the optimization time needed
by the baseline propagation method, and the improved query-
specific modeling from Sect. 7. We used a large workload
of 4,000 queries that is a superset of the workload used
for execution time experiments. Note again the logarithmic
scale on both axes. The figure also shows the optimization

time needed by vanilla PostgreSQL, measured on the y axis.
These times are in the range from 0.5 to 2.5 ms. Optimiza-
tion with graphical models cannot match such a low over-
head, which is due to the complexity of performing multi-
plications on two-dimensional histograms. The overhead is
one order of magnitude higher, usually from 2.5 to 50 ms.
However, this overhead is modest, and it pays off in terms of
execution time savings. The query-specific modeling method
gives an overall speedup of 1.7× for the workload as a whole.
Perhaps more importantly, it reduces the standard deviation
of the optimization time by a factor of 2. This is expected;
query-specific modeling results in smaller junction trees and
therefore fewer clique multiplications. The size of the junc-
tion tree is no longer random, but depends on the number
of predicates (selections and joins) in the query. We expect
the speedup to be higher for databases that have more rela-
tions and attributes, and that then have larger junction trees
if query-specific modeling is not used. As shown in the box
plot of Fig. 9d, both the median value and the third quar-
tile are reduced by almost a factor of 2 using query-specific
modeling.

9.5 Model construction scalability

We study the scalability and efficiency of our model construc-
tion algorithm (Algorithm 1). Recall that the construction
algorithm first identifies the best moral graph of the data-
base, then creates a junction tree from the moral graph, and
finally writes the junction tree to the PostgreSQL catalog.
Figure 10a shows the time needed for these three steps when
the database size varies from 500 MB to 32 GB (note the
logarithmic scale on both axes). All experiments were con-
ducted on the Accidents database. The total time needed is
the sum of the three phases. The time needed to construct the
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moral graph always accounts for more than 90 % of the total
time. This is expected; constructing the moral graph includes
querying the database for the probability distributions of all
pairs of attributes and join indicators using the SQL queries
described in Sect. 4.

The construction time scales well with the size of the data-
base. To understand the behavior better, consider that the bulk
of time needed to construct the model is spent on evaluating
queries of the form

select R.X, R.Y, count(∗) from R
group by R.X, R.Y

for computing P(X,Y ), and queries of the form

select R.X, S.Y, count(∗) from R,S
where R.A = S.B group by R.X, S.Y

for computing P(X,Y, JRS). The PostgreSQL optimizer
chose hash joins and aggregates for these queries in our
setting.

Figure 10a indicates that the overhead of constructing the
model is quite high (about 15 h for a 32 GB database). We
briefly comment on techniques that can lower this overhead.

First, samples can be used to create distributions of similar
accuracy. For our approach, we need to sample over single
tables and two-table joins. In fact, our model construction
algorithm issues exactly the same queries to the database as
CORDS [18], where it was shown that a small sample size
can give excellent accuracy, rendering the model construc-
tion time independent of the size of the database. We obtained
empirical evidence that supports this finding. Using sam-
ples of 10,000 tuples, we observed similar execution times
(Fig. 9c), with the time needed to build the model from the
samples being about 4 s (Fig. 10b).

Second, if the samples are still large enough to cause per-
formance concerns, we note that the workload resulting from
the model construction algorithm can benefit from fast scans,
columnar storage, parallel processing, and the techniques of
Bravo et al. [4].

Another possible optimization is to pre-compute or lever-
age existing data cubes for each relation and for each two-
relation join for which a join indicator exists, and then answer
the queries using the data cubes. Experimental results of
using this technique are shown in Fig. 10b. We extracted
the query workload resulting from our model construction
and issued it to PostgreSQL. This corresponds to the naive
model construction line in the figure. Then, we rewrote these
queries to be on pre-computed data cubes for each relation,
and for each two-relation join that corresponds to a join
indicator. While the creation of the data cubes has the same
overhead as the naive construction of the model for large
databases, the availability of pre-computed cubes can reduce
the model construction overhead by an order of magnitude.

For the 32 GB database, this reduces the overhead for con-
structing the model from 15 h to 25 min.

The space needed to store the model is on the order of
64 kilobytes, and 128 kilobytes when query-specific model-
ing is used. A final observation from Fig. 10a is that the time
to construct the junction tree is much higher than the time to
write it to the catalog. This means that the query-specific
modeling algorithm also offers lower model construction
overhead; it skips the step of constructing the junction tree,
while it needs to write more cliques to the catalog.

9.6 Summary of experimental results

We conclude this section with a summary of our experimen-
tal findings and offer guidelines to implementors. We have
found that our proposed fixed model structure can greatly
improve the estimates and the running times of a wide class
of queries with very few observed regressions. We suggest the
query-specific modeling as the model construction method of
choice because it provides a direct mapping from query size
to query optimization overhead for acyclic queries, making
the optimization overhead predictable.

For selectivity estimation, while the dynamic program-
ming algorithm can greatly reduce the number of clique mul-
tiplications, its overhead depends on the shape of the Steiner
tree, and it can become unacceptable for high treewidths.
Thus, we recommend the propagation algorithm for all but
queries that result in chain Steiner trees. This can be easily
decided at compile time. We note that this recommendation
is dependent on the types of histograms used to store the
junction tree cliques. If more compact histograms are used,
the dynamic programming algorithm may become beneficial
for a wider variety of cases. This tradeoff is a promising topic
that we plan to address in future work.

For model construction, we have found that relatively
small samples over base relations and 2-relation joins can
provide high quality estimates, and capture most correla-
tions. If larger samples are used, pre-computing cubes can
drive the model construction time down.

10 Related work

A recent survey [16] offers a comprehensive coverage of
related work on discovering and exploiting statistical prop-
erties for query optimization. It classifies proposed methods
into two categories: proactive methods that use the database
to create a model and reactive methods that rely on query
feedback. Our work falls into the first category but is also
classified as workload-aware since it makes limited use of
a workload in order to define the random variables of the
model.
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To relax the attribute value independence assumption and
to model data correlations, one cannot avoid the need to
approximate multi-dimensional probability distributions.

Multi-dimensional histograms attempt to directly approx-
imate a distribution using a fixed number of buckets. While
practical one-dimensional histograms can be built in poly-
nomial time [24], the same problem is NP-hard even for two
dimensions [32]. Therefore, research has focused on provid-
ing good heuristics. Early solutions focus on equi-depth [31]
and recursive hierarchical partitioning [33], and later works
allowed bucket overlap [15] and “holes” [5], and exploited
query feedback [1,5]. All of these methods are only applica-
ble to few dimensions. Therefore, they cannot be used to
model the distribution of a real-world database. They can be
used to approximate the model factors after a decomposition
has been achieved.

Dependency-based histograms [11] use graphical models
to decompose the distribution of all attributes within a rela-
tion. Reference [11] also includes implementations of factor
multiplication and marginalization when factors are imple-
mented as hierarchically decomposed histograms [33].

We build on Probabilistic Relational Models (PRMs)
[13,14], the first work that approximates the distribution of
a database as a whole including join indicators, by using
Bayesian networks (BNs). PRMs are limited to tree-shaped
query graphs and key-foreign key join relationships that
induce a topological order in all relations. Further, they
allow arbitrary BNs, which can lead to high-dimensional
distributions, that can cause performance to degrade signifi-
cantly.

CORDS [18] provides a cost-effective schema-level
synopsis that makes the uniform distribution assumption, but
not the attribute and join independence assumptions. CORDS
discovers correlated attributes, but does not create the cor-
responding probability distributions. Further, it is limited to
pairs of attributes. Similarly to CORDS, we also consider
only pairs of attributes in order to create the model efficiently.
However, we avoid all three assumptions at once. Further,
by organizing the dependencies in a junction tree, we can
model indirect dependencies between attributes via chains
or trees of dependencies. Our model construction algorithm
has roughly the same complexity as CORDS.

Our work can be seen as a bridge between CORDS and
PRMs. Like PRMs, we do not make the attribute value inde-
pendence or the uniformity assumptions, and we are able
to estimate selectivities of arbitrary conjuncts of predicates
and joins. Unlike PRMs, we are not restricted to a stratified
schema graph [14]. Like CORDS, we only consider pairwise
correlations to limit the overheads of selectivity estimation
and model construction.

A different approach to the problem is to estimate
cardinalities from samples. Join synopses [2] is the first work
on sampling over joins. Like PRMs, they are limited to an

acyclic schema graph of key-foreign key joins that defines a
topological order on the relations. We overcome this prob-
lem through our fixed model structure that needs only two-
table joins. Graph-based synopses [36] choose a subset of
the complete tuple graph of a database and use that subset to
perform selectivity estimation. That approach encodes inde-
pendence assumptions in the heuristic model construction
algorithm. In contrast, our approach makes the (conditional)
independence assumptions explicit by means of a graphi-
cal model. Although the approaches have different origins
(graphical models and XML graph summarization), it would
be interesting to experimentally compare their efficiency in
the future.

Cardinality estimation via maximum entropy [27,34]
addresses the problem of finding the best way to estimate
the selectivity of a conjunct of predicates given that many
equivalent ways of computing this selectivity are possible.
Maximum entropy considers the wider space log-linear mod-
els that subsume graphical models [11]. On the other hand,
many estimates need an expensive application of an iterative
scaling algorithm, which can be avoided using our model.
Finally, these works do not consider the problem of selecting
the underlying summaries.

11 Conclusions and future work

Missed statistical correlations is one of the most frequent
sources of estimation errors in modern optimizers, and they
very often lead to severely sub-optimal plan selection. We
provide a principled approach to selectivity estimation that
does not make the attribute value independence assumption.
Our approach is theoretically founded on graphical models.
To balance expressive power with low query optimization
overhead, we restrict the space of possible models to an
interesting class of models that in most cases require only
two-dimensional histograms.

A very important piece of our work is integrating graphical
models for selectivity estimation in a real DBMS kernel. We
provide two techniques for using a junction tree to perform
selectivity estimation, and we provide a novel technique that
defers junction tree construction until a query is optimized,
which renders the size of the junction tree both minimal and
predictable.

We report on extensive experiments with our prototype,
showcasing the scalability, efficiency, and robustness of our
approach. A model that belongs to the proposed reduced class
of models can be constructed efficiently, since the construc-
tion algorithm issues only one-way joins. Use of the new
selectivity estimates enables reductions of the multiplica-
tive estimation error of up to a factor of 10. The reduced
errors lead to more efficient plans and increased robustness
of the query optimizer. Optimization time is kept low, in the
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order of tens of milliseconds, often an acceptable overhead
for modern systems.

One direction for future work is to enable incremen-
tal and efficient model updates when the underlying data
changes. We can possibly exploit techniques from the graph-
ical model literature [12]. A more challenging direction is
to provide error guarantees. Recently, a connection between
multiplicative error bounds and plan optimality has been
established [30], and one-dimensional histograms that pro-
vide these bounds have been proposed [26]. Designing multi-
dimensional histograms that can offer similar guarantees, and
can be efficiently combined with each other using our tech-
niques is a promising direction for increasing the robustness
of query optimizers.
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