
ProBO: Versatile Bayesian Optimization Using Any
Probabilistic Programming Language

Willie Neiswanger1,∗, Kirthevasan Kandasamy2,†, Barnabás Póczos1,
Jeff Schneider1, and Eric P. Xing1,3

1Machine Learning Department, Carnegie Mellon University
2EECS Department, UC Berkeley

3Petuum, Inc.

Abstract. Optimizing an expensive-to-query function is a common task in science
and engineering, where it is beneficial to keep the number of queries to a minimum.
A popular strategy is Bayesian optimization (BO), which leverages probabilistic
models for this task. Most BO today uses Gaussian processes (GPs), or a few other
surrogate models. However, there is a broad set of Bayesian modeling techniques that
could be used to capture complex systems and reduce the number of queries in BO.
Probabilistic programming languages (PPLs) are modern tools that allow for flexible
model definition, prior specification, model composition, and automatic inference. In
this paper, we develop ProBO, a BO procedure that uses only standard operations
common to most PPLs. This allows a user to drop in a model built with an arbitrary
PPL and use it directly in BO. We describe acquisition functions for ProBO, and
strategies for efficiently optimizing these functions given complex models or costly
inference procedures. Using existing PPLs, we implement new models to aid in a few
challenging optimization settings, and demonstrate these on model hyperparameter
and architecture search tasks.

1. Introduction

Bayesian optimization (BO) is a popular method for zeroth-order optimization of an unknown
(“black box”) system. A BO procedure iteratively queries the system to yield a set of input/output
data points, computes the posterior of a Bayesian model given these data, and optimizes an
acquisition function defined on this posterior in order to determine the next point to query.

BO involves performing inference and optimization to choose each point to query, which can
incur a greater computational cost than simpler stategies, but may be ultimately beneficial in
settings where queries are expensive. Specifically, if BO can reach a good optimization objective
in fewer iterations than simpler methods, it may be effective in cases where the expense of
queries far outweighs the extra cost of BO. Some examples of this are in science and engineering,
where a query could involve synthesizing and measuring the properties of a material, collecting
metrics from an industrial process, or training a large machine learning model, which can be
expensive in cost, time, or human labor.

The most common model used in BO is the Gaussian process (GP), for which we can compute
many popular acquisition functions. There has also been some work deriving BO procedures for
other flexible models including random forests [21] and neural networks [45]. In this paper, we
argue that more-sophisticated models that better capture the details of a system can help reduce
the number of iterations needed in BO, and allow for BO to be effectively used in custom and
complex settings. For example, systems may have complex noise [42, 22], yield multiple types of
observations [12], depend on covariates [25], have interrelated subsystems [47], and more. To

∗Correspondence to willie@cs.cmu.edu. †Work done while at CMU. Last revised July 5, 2019.
1

ar
X

iv
:1

90
1.

11
51

5v
2

 [
cs

.L
G

]
 4

 J
ul

 2
01

9

2 W. NEISWANGER, K. KANDASAMY, B. PÓCZOS, J. SCHNEIDER, AND E. P. XING

accurately capture these systems, we may want to design custom models using a broader library
of Bayesian tools and techniques. For example, we may want to compose models—such as GPs,
latent factor (e.g. mixture) models, deep Bayesian networks, hierarchical regression models—in
various ways, and use them in BO.

Probabilistic programming languages (PPLs) are modern tools for specifying Bayesian models
and performing inference. They allow for easy incorporation of prior knowledge and model
structure, composition of models, quick deployment, and automatic inference, often in the
form of samples from or variational approximations to a posterior distribution. PPLs may be
used to specify and run inference in a variety of models, such as graphical models, GPs, deep
Bayesian models, hierarchical models, and implicit (simulator-based) models, to name a few
[7, 30, 40, 50, 5, 33, 2, 31, 54, 9].

We would like to be able to build an arbitrary model with any PPL and then automatically
carry out BO with this model. However, this comes with a few challenges. In BO with GPs,
we have the posterior in closed-form, and use this when computing and optimizing acquisition
functions. PPLs, however, use a variety of approximate inference procedures, which can be
costly to run and yield different posterior representations (e.g. samples [7, 54], variational
approximations [50, 5], implicit models [20, 51], or amortized distributions [39, 28]). We need a
method that can compute and optimize acquisition functions automatically, given the variety of
representations, and efficiently, making judicious use of PPL procedures.

Towards this end, we develop ProBO, a BO system for PPL models, which computes and
optimizes acquisition functions via operations that can be implemented in a broad variety of
PPLs. This system comprises algorithms that cache and use these operations efficiently, which
allows it to be used in practice given complex models and expensive inference procedures. The
overall goal of ProBO is to allow a custom model written in an arbitrary PPL to be “dropped in”
and immediately used in BO.

This paper has two main contributions: (1) We present ProBO, a system for versatile Bayesian
optimization using models from any PPL. (2) We describe optimization settings that are difficult
for standard BO methods and models, and then use PPLs to implement new models for these
settings, which are dropped into ProBO and show good optimization performance. Our open
source release of ProBO is available at https://github.com/willieneis/ProBO.

2. Related Work

A few prior works make connections between PPLs and BO. BOPP [37] describes a BO method
for marginal maximum a posteriori (MMAP) estimates of latent variables in a probabilistic
program. This work relates BO and PPLs, but differs from us in that the goal of BOPP is to
use BO (with GP models) to help estimate latent variables in a given PPL, while we focus on
using PPLs to build new surrogate models for BO.

BOAT [8] provides a custom PPL involving composed Gaussian process models with para-
metric mean functions, for use in BO. For these models, exact inference can be performed and
the expected improvement acquisition directly used. This work has similar goals as us, though
we instead aim to provide a system that can be applied to models from any existing PPL (not
constrained to a certain family of GP models), and specifically with PPLs that use approximate
inference algorithms where we cannot compute acquisition functions in standard ways.

3. ProBO
We first describe a general abstraction for PPLs, and use this abstraction to define ProBO and

present algorithms for computing a few acquisition functions. We then show how to efficiently
optimize these acquisition functions.

https://github.com/willieneis/ProBO

ProBO: VERSATILE BAYESIAN OPTIMIZATION USING ANY PPL 3

(a) aEI(x) (b) aPI(x) (c) aUCB(x) (d) aTS(x)

10 5 0 5 10
x

2

1

0

1

2

M=50
M=500

10 5 0 5 10
x

2

1

0

1

2

M=50
M=500

10 5 0 5 10
x

2

1

0

1

2

M=50
M=500

10 5 0 5 10
x

2

1

0

1

2

M=50
M=500

Figure 1. Visualizations of PPL acquisition functions a(x) given in Algs. 2-5 for
use in ProBO. In each plot, the data and posterior predictive distribution are shown,
and a(x) is given for two fidelities: M = 50 (solid color line) and M = 500 (dashed
black line).

3.1. Abstraction for Probabilistic Programs
Suppose we are modeling a system which, given an input x ∈ X , yields observations y ∈ Y,

written y ∼ s(x). Let f : Y → R be an objective function that maps observations y to real
values. Observing the system n times at different inputs yields a dataset Dn = {(xi, yi)}ni=1.
Suppose we have a Bayesian model for Dn, with likelihood p(Dn|z) =

∏n
i=1 p(yi|z;xi), where

z ∈ Z are latent variables. We define the joint model PDF to be p(Dn, z) = p(z)p(Dn|z), where
p(z) is the PDF of the prior on z. The posterior PDF is then p(z|Dn) = p(Dn, z)/

∫
p(Dn, z)dz.

Our abstraction assumes three basic PPL operations:

(1) inf(D): given data D, this runs an inference algorithm and returns an object post,
which is a PPL-dependent representation of the posterior distribution.

(2) post(s): given a seed s ∈ Z+, this returns a sample from the posterior distribution.

(3) gen(x, z, s): given an input x ∈ X , a latent variable z ∈ Z, and a seed s ∈ Z+, this
returns a sample from the generative distribution p(y|z;x).

Note that post and gen are deterministic, i.e. for a fixed seed s, post/gen produce the same
output each time they are called.

Scope. This abstraction applies to a number of PPLs, which use a variety of inference strategies
and compute different representations for the posterior. For example, in PPLs using Markov
chain Monte Carlo (MCMC) or sequential Monte Carlo (SMC) algorithms [7, 40, 54], inf
computes a set of posterior samples and post draws uniformly from this set. For PPLs using
variational inference (VI), implicit models, or exact inference methods [50, 5, 14], inf computes
the parameters of a distribution, and post draws a sample from this distribution. In amortized
or compiled inference methods [39, 28, 24], inf trains or calls a pretrained model that maps
observations to a posterior or proposal distribution, and post samples from this.

3.2. Main Procedure
Recall that we use PPLs to model a system s, which yields observations y ∼ s(x) given a

query x, and where f(y) : Y → R denotes the objective value that we want to optimize. The
goal of ProBO is to return x∗ = argminx∈X Ey∼s(x) [f(y)]. We give ProBO in Alg. 1. Each
iteration consists of four steps: call an inference procedure inf, select an input x by optimizing
an acquisition function a that calls post and gen, observe the system at x, and add new
observations to the dataset.

Note that acquisition optimization (line 3) involves only post and gen, while inf is called
separately beforehand. We discuss the computational benefits of this, and the cost of ProBO,

4 W. NEISWANGER, K. KANDASAMY, B. PÓCZOS, J. SCHNEIDER, AND E. P. XING

Algorithm 1 ProBO(D0, inf, gen)

1: for n = 1, . . . , N do
2: post← inf(Dn−1) . Run inference algorithm to compute post
3: xn ← argminx∈X a(x, post, gen) . Optimize acquisition using post and gen
4: yn ∼ s(xn) . Observe system at xn
5: Dn ← Dn−1 ∪ (xn, yn) . Add new observations to dataset
6: Return DN .

in more detail in Sec. 3.4. Also note that many systems can have extra observations y ∈ Y, in
addition to the objective value, that provide information which aids optimization [55, 3, 47].
For this reason, our formalism explicitly separates system observations y from their objective
values f(y). We show examples of models that take advantage of extra observations in Sec. 4.

In the following sections, we develop algorithms for computing acquisition functions a(x) au-
tomatically using only post and gen operations, without requiring any model specific derivation.
We refer to these as PPL acquisition functions.

3.3. PPL Acquisition Functions via post and gen

In ProBO (Alg. 1), we denote the PPL acquisition function with a(x, post, gen). Each PPL
acquisition algorithm includes a parameterM , which represents the fidelity of the approximation
quality of a. We will describe an adaptive method for choosingM during acquisition optimization
in Sec. 3.5. Below, we will make use of the posterior predictive distribution, which is defined to
be p(y|Dn;x) = Ep(z|Dn) [p(y|z;x)].

There are a number of popular acquisition functions used commonly in Bayesian optimization,
such as expected improvement (EI) [34], probability of improvement (PI) [26], GP upper
confidence bound (UCB) [46], and Thompson sampling (TS) [48]. Here, we propose a few simple
acquisition estimates that can be computed with post and gen. Specifically, we give algorithms
for EI (Alg. 2), PI (Alg. 3), UCB (Alg. 4), and TS (Alg. 5) acquistion strategies, though similar
algorithms could be used for other acquisitions involving expectations or statistics of either
p(y|Dn;x) or p(y|z;x).

We now describe the PPL acquisition functions given in Alg. 2-5 in more detail, and discuss
the approximations given by each. Namely, we show that these yield versions of exact acquisition
functions asM →∞. These algorithms are related to Monte Carlo acquisition function estimates
for GP models [44, 15, 16], which have been developed for specific acquisition functions.

Expected Improvement (EI), Alg. 2. Let D be the data at a given iteration of ProBO. In
our setting, the expected improvement (EI) acquisition function will return the expected
improvement that querying the system at x ∈ X will have over the minimal observed objective
value, fmin = miny∈D f(y). We can write the exact EI acquisition function as

a∗EI(x) =

∫
1 {f(y) ≤ fmin} (fmin − f(y)) p (y|D;x) dy. (3.1)

In Alg. 2, for a sequence of stepsm = 1, . . . ,M , we draw zm ∼ p(z|D) and ym ∼ p(y|zm;x) via
post and gen, and then compute λ(y1:M) =

∑M
m=1 1 [f(ym) ≤ fmin] (fmin− f(ym)). Marginally,

ym is drawn from the posterior predictive distribution, i.e. ym ∼ Ep(z|D) [p(y|z;x)] = p(y|D;x).
Therefore, as the number of calls M to post and gen grows, aEI(x) → a∗EI(x) (up to a multi-
plicative constant) at a rate of O(

√
M).

ProBO: VERSATILE BAYESIAN OPTIMIZATION USING ANY PPL 5

Algorithm 2 aEI (x, post, gen) . EI

1: for m = 1, . . . ,M do
2: zm ← post(sm)
3: ym ← gen(x, zm, sm)

4: fmin ← miny∈D f(y)

5: Return
∑M
m=1 1 [f(ym) ≤ fmin] (fmin−f(ym))

Algorithm 3 aPI (x, post, gen) . PI

1: for m = 1, . . . ,M do
2: zm ← post(sm)
3: ym ← gen(x, zm, sm)

4: fmin ← miny∈D f(y)

5: Return
∑M
m=1 1 [f(ym) ≤ fmin]

Algorithm 4 aUCB (x, post, gen) . UCB

1: for m = 1, . . . ,M do
2: zm ← post(sm)
3: ym ← gen(x, zm, sm)

4: Return L̂CB
(
f(ym)Mm=1

)
. See text for

details

Algorithm 5 aTS (x, post, gen) . TS

1: z ← post(s1)
2: for m = 1, . . . ,M do
3: ym ← gen(x, z, sm)

4: Return
∑M
m=1 f(ym)

Probability of Improvement (PI), Alg. 3. In our setting, the probability of improvement (PI)
acquisition function will return the probability that observing the system at query x ∈ X will
improve upon the minimally observed objective value, fmin = miny∈D f(y). We can write the
exact PI acquisition function as

a∗PI(x) =

∫
1 {f(y) ≤ fmin} p (y|D;x) dy. (3.2)

In Alg. 3, for a sequence of steps m = 1, . . . ,M , we draw zm ∼ p(z|D), ym ∼ p(y|zm;x) via
post and gen, and then compute λ(y1:M) =

∑M
m=1 1 [f(ym) ≤ fmin]. As before, ym is drawn

(marginally) from the posterior predictive distribution. Therefore, as the number of calls M to
post and gen grows, aPI(x) → a∗PI(x) (up to a multiplicative constant) at a rate of O(

√
M).

Upper Confident Bound (UCB), Alg. 4. We propose an algorithm based on the principle of
optimization under uncertainty (OUU), which aims to compute a lower confidence bound
for p(f(y)|D;x), which we denote by LCB [p(f(y)|Dn;x)]. In Alg. 4, we use an estimate of
this, L̂CB(f(ym)Mm=1). Note that we use a lower confidence bound since we are performing
minimization, though we denote our acquisition function with the more commonly used title
UCB. Two simples strategies for estimating this LCB are

(1) Empirical quantiles: Order f(ym)Mm=1 into f(1) ≤ . . . ≤ f(M), and return f(b) if b ∈ Z, or
else return 1

2 (f(bbc) + f(bbc+1)), where b ∈ [0,M + 1] is a tradeoff parameter.
(2) Parametric assumption: As an example, if we model p(f(y)|Dn;x) = N (f(y)|µ, σ2), we

can compute µ̂ = 1
M

∑M
m=1 f(ym) and σ̂2 = 1

M−1
∑M
m=1(f(ym)− µ̂)2, and return µ̂−βσ̂2,

where β > 0 is a trade-off parameter.

The first proposed estimate (empirical quantiles) is a consistent estimator, though may yield worse
performance in practice than the second proposed estimate in cases where we can approximate
p(f(ym)|D;x) with some parametric form.

Thompson Sampling (TS), Alg. 5. Thompson sampling (TS) proposes proxy values for unknown
model variables by drawing a posterior sample, and then performs optimization as if this sample
were the true model variables, and returns the result. In Alg. 5, we provide an acquisition

6 W. NEISWANGER, K. KANDASAMY, B. PÓCZOS, J. SCHNEIDER, AND E. P. XING

function to carry out a TS strategy in ProBO , using post and gen. At one given iteration of BO,
a specified seed is used so that each call to aTS(x) produces the same posterior latent variable
sample z̃ ∼ p(z|D) via post. After, gen is called repeatedly to produce ym ∼ p(y|z̃;x) for
m = 1, . . . ,M , and the objective values of these are averaged to yield λ(y1:M) =

∑M
m=1 f(ym).

Here, each f(ym) ∼ Ep(y|z̃;x) [f(y)]. Optimizing this acquisition function serves as a proxy
for optimizing our model given the true model variables, using posterior sample z̃ in place of
unknown model variables.

In Summary. As M →∞, for constants c1, c2, c3, and c4,

aEI(x, post, gen)→ c1

∫
1

{
f(y) ≤ min

y′∈D
f(y′)

}(
min
y′∈D

f(y′)− f(y)

)
p(y|D;x)dy (3.3)

aPI(x, post, gen)→ c2

∫
1

{
f(y) ≤ min

y′∈D
f(y′)

}
p(y|D;x)dy (3.4)

aUCB(x, post, gen)→ c3 LCB [p(f(y)|D;x)] (3.5)

aTS(x, post, gen)→ c4

∫
f(y) p(y|z̃;x)dy, for z̃ ∼ p(z|D), (3.6)

We visualize Alg. 2-5 in Fig. 1 (a)-(d), showing M ∈ {50, 500}.

3.4. Computational Considerations
In ProBO, we run a PPL’s inference procedure when we call inf, which has a cost dependent

on the underlying inference algorithm. For example, most MCMC methods have complexity
O(n) per iteration [4]. However, ProBO only runs inf once per query; acquisition optimization,
which may be run hundreds of times per query, instead uses only post and gen. For many PPL
models, post and gen can be implemented cheaply. For example, post often involves drawing
from a pool of samples or from a known distribution, and gen often involves sampling from a
fixed-length sequence of known distributions and transformations, both of which typically have
O(1) complexity. However, for some models, gen can involve running a more costly simulation.
For these cases, we provide acquisition optimization algorithms that use post and gen efficiently
in Sec. 3.5.

3.5. Efficient Optimization of PPL Acquisition Functions
In ProBO, we must optimize over the acquisition algorithms defined in the previous section,

i.e. compute xn = argminx∈X a(x, post, gen). Note that post and gen are not in general
analytically differentiable, so in contrast with [53], we cannot optimize a(x) with gradient-based
methods. We therefore explore strategies for efficient zeroth-order optimization.

In Alg. 2-5, M denotes the number of times post and gen are called in an evaluation of a(x).
As seen in Fig. 1, a small M will return a noisy estimate of a(x), while a large M will return a
more-accurate estimate. However, for some PPLs, the post and/or gen operations can be costly
(e.g. if gen involves a complex simulation [49, 32]), and we’d like to minimize the number of
times they are called.

This is a special case of a multi-fidelty optimization problem [11], with fidelity parameter M .
Unlike typical multi-fidelity settings, our goal is to reduce the number of calls to post and gen
for a single x only, via modifying the acquisition function a(x, post, gen). This way, we can drop
in any off-the-shelf optimizer that makes calls to a. Suppose we have F fidelities ranging from a
small number of samples Mmin to a large number Mmax, i.e. Mmin = M1 < . . . < MF = Mmax.
Intuitively, when calling a(x, post, gen) on a given x, we’d like to use a small M if a(x) is far
from the minimal value a(x∗), and a larger M if a(x) is close to a(x∗).

ProBO: VERSATILE BAYESIAN OPTIMIZATION USING ANY PPL 7

We propose the following procedure: Suppose amin is the minimum value of a seen so far
during optimization (for any x). For a given fidelity Mf (starting with f=1), we compute a
lower confidence bound (LCB) for the sampling distribution of a(x, post, gen) with Mf calls to
post and gen. We can do this via the bootstrap method [10] along with the LCB estimates
described in Sec. 3.3. If this LCB is below amin, it remains plausible that the acquisition function
minimum is at x, and we repeat these steps at fidelity Mf+1. After reaching a fidelity f∗ where
the LCB is above amin (or upon reaching the highest fidelity f∗ = F), we return the estimate
a(x, post, gen) with Mf∗ calls. We give this procedure in Alg. 6.

Algorithm 6 aMF (x, post, gen)

1: amin ← Min value of a seen so far
2: ` = −∞, f = 1
3: while ` ≤ amin do
4: `← LCB-bootstrap (post, gen,Mf)
5: f ← f + 1

6: Return a(x, post, gen) using M = Mf

Algorithm 7 LCB-bootstrap(post, gen,Mf)

1: y1:Mf
← Call post and gen Mf times

2: for j = 1, . . . , B do
3: ỹ1:Mf

← Resample(y1:Mf
)

4: aj ← λ(ỹ1:Mf
) . See text for details

5: Return LCB (a1:B)

In Alg. 7 we use notation λ(y1:M) to denote the final operation (last line) in one of Algs. 2-5
(e.g. λa(y1:M) =

∑M
m=1 1[f(ym) ≤ fmin] in the case of PI). As a simple example, we could run

a two-fidelity algorithm, with M ∈ {M1,M2}, where M1 �M2. For a given x, aMF would first
call post and gen M1 times, and compute the LCB with the bootstrap. If the LCB is greater
than amin, it would return an a(x, post, gen) with the M1 calls; if not, it would return it with
M2 calls. Near optima, this will make M1 +M2 calls to post and gen, and will make M1 calls
otherwise.

One can apply any derivative-free (zeroth-order) global optimization procedure that iteratively
calls aMF. In general, we can replace the optimization step in ProBO (Alg. 1, line 3) with
xn ← argminx∈X aMF(x), for each of the PPL acquisition functions described in Sec. 3.3. In
Sec. 4.5, we provide experimental results for this method, showing favorable performance relative
to high fidelity acquisition functions, as well as reduced calls to post and gen.

4. Examples and Experiments

We provide examples of models to aid in complex optimization scenarios, implement these
models with PPLs, and show empirical results. Our main goals are to demonstrate that we can
plug models built with various PPLs into ProBO, and use these to improve BO performance (i.e.
reduce the number of iterations) when compared with standard methods and models. We also
aim to verify that our acquisition functions and extensions (e.g. multi-fidelity aMF) perform
well in practice.

PPL Implementations: We implement models with Stan [7] and Edward [50], which (respectively)
make use of the No U-Turn Sampler [18] (a form of Hamiltonian Monte Carlo) and black box
variational inference [38]. We also use George [2] and GPy [14] for GP comparisons.

4.1. BO with State Observations
Setting: Some systems exhibit unique behavior in different regions of the input space X based
on some underlying state. We often do not know these state regions apriori, but can observe
the state of an x when it is queried. Two examples of this, for computational systems, are:

8 W. NEISWANGER, K. KANDASAMY, B. PÓCZOS, J. SCHNEIDER, AND E. P. XING

• Timeouts or failures: there may be regions where queries fail or time out. We can observe
if a query has a “pass” or “fail” state [12, 13, 27].

• Resource usage regions: queries can have distinct resource usage patterns. We can observe
this pattern for a query, and use it to assign a state [1, 8].

Assume that for each query x ∈ X , s(x) returns a y ∈ Y = R×Z+, with two types of information:
an objective value y0 and an state observation y1 indicating the region assignment. We take the
objective function to be f(y) = y0.

Model: Instead of using a single black box model for the entire input space X we provide a
model that infers the distinct regions and learns a model for each. For the case of two states, we
can write the generative model for this as: c ∼ Bernoulli(·|C(x)), y ∼ cM1(·|x) + (1− c)M2(·|x),
where M1 and M2 are models for y|x (e.g. GP regression models) and C is a classification
model (e.g. a Bayesian NN) that models the probability of M1. We refer to this model as a
switching model. This model could be extended to more states. We show inference in this model
in Fig. 2 (d). Comparing this with a a GP (Fig. 2 (c)), we see that GP hyperparameter estimates
can be negatively impacted due to the nonsmooth landscape around region boundaries.

Empirical Results: We demonstrate the switching model on the task of neural network architec-
ture and hyperparameter search [56, 23] with timeouts, where in each query we train a network
and return accuracy on a held out validation set. However, training must finish within a given
time threshold, or it times out, and instead returns a preset (low accuracy) value. We optimize
over multi-layer perceptron (MLP) neural networks, where we represent each query as a vector
x ∈ R4, where x = (number of layers, layer width, learning rate, and batch size). We train and
validate each network on the Pima Indians Diabetes Dataset [43]. Whenever training has not
converged within 60 seconds, the system times out and returns a fixed accuracy value of 30%.
We use a GP regression model for M1, and a Gaussian model (with mean and variance latent
variables) for M2. We compare ProBO with this switching model against standard BO using
GPs, plotting the maximum validation accuracy found vs iteration n, averaged over 10 trials, in
Fig. 2 (e)-(f).

4.2. Robust Models for Contaminated BO
Setting: We may want to optimize a system that periodically yields “contaminated observations,”
i.e. outliers drawn from a second noise distribution. Examples of this are queries involving
unstable simulations [29], or faulty computer systems [41]. This is similar to the setting of
Huber’s ε-contamination model [19], and we refer to this as contaminated BO. The contaminating
distribution may have some dependence on input X (e.g. may be more prevalent in a window
around the optimum value x∗). Note that this differs from Sec. 4.1 because we do not have
access to state observations, and the noise distributions are not in exclusive regions of X . To
perform accurate BO in this setting, we need models that are robust to the contamination noise.

Model: We develop a denoising model, which infers (and ignores) contaminated data points.
Given a system model Ms and contamination model Mc we write our denoising model as
y ∼ wsMs(·|zs;x) + wcMc(·|zc;x), where zs, zc ∼ Prior(·), and ws, wc ∼ Prior(·|x) (and where
Prior denotes some appropriate prior density). This is a mixture where weights (ws, wc) can
depend on input x. We show inference in this model in Fig. 3 (c)-(d).

Empirical Results: We show experimental results for ProBO on a synthetic optimization task.
This allows us to know the true optimal value x∗ and objective f(s(x∗)), which may be
difficult to judge in real settings (given the contaminations), and to show results under different
contamination levels. For an x ∈ Rd, with probability 1 − p we query the function f(x) =

ProBO: VERSATILE BAYESIAN OPTIMIZATION USING ANY PPL 9

BO with State Observations

(a) Data and true system mean (b) GP (on state 1 data only)

6 4 2 0 2 4
x

3

2

1

0

1

2

3

4

s(
y)

State 1
State 2
True observation mean

6 4 2 0 2 4
x

3

2

1

0

1

2

3

4

s(
y)

State 1
State 2
GP mean (on state 1 data only)

(c) GP (on all data) (d) Switching model (on all data)

6 4 2 0 2 4
x

3

2

1

0

1

2

3

4

s(
y)

State 1
State 2
GP mean

6 4 2 0 2 4
x

3

2

1

0

1

2

3

4

s(
y)

State 1
State 2
Mean of switching model

(e) EI and UCB (f) PI and TS

10 20 30 40 50 60 70
n

64

65

66

67

68

69

70

71

72

Va
lid

at
io

n
Ac

cu
ra

cy

Switching Model (EI)
Switching Model (UCB)
GP (EI)
GP (UCB)
RAND

10 20 30 40 50 60 70
n

64

65

66

67

68

69

70

71

72

Va
lid

at
io

n
Ac

cu
ra

cy

Switching Model (PI)
Switching Model (TS)
GP (PI)
GP (TS)
RAND

Figure 2. BO with state observations (Sec. 4.1). We show (a) the true system,
and inference results on (b) a GP model fit on state 1 data only, (c) the same
GP model fit on all data, where hyperparameter estimates are badly influenced,
and (d) our switching model fit on all data. In (e)-(f) we show results on the
task of neural network architecture and hyperparameter search with timeouts,
comparing ProBO using a switching model to BO using GPs. Curves are
averaged over 10 trials, and error bars represent one standard error.

10 W. NEISWANGER, K. KANDASAMY, B. PÓCZOS, J. SCHNEIDER, AND E. P. XING

Contaminated BO

(a) GP (n = 20) (b) GP (n = 50)

4 2 0 2 4

2

0

2

4
GP mean
True function
True data
Contaminated data

4 2 0 2 4

2

0

2

4
GP mean
True function
True data
Contaminated data

(c) Denoising GP (n = 20) (d) Denoising GP (n = 50)

4 2 0 2 4

2

0

2

4
Denoising GP mean
True function
True data
Contaminated data

4 2 0 2 4

2

0

2

4
Denoising GP mean
True function
True data
Contaminated data

(e) EI and UCB (p = .01) (f) PI and TS (p = .01)

0 20 40 60
n

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f m
in

GP (EI)
GP (UCB)
Denoising GP (EI)
Denoising GP (UCB)
RAND

0 20 40 60
n

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f m
in

GP (PI)
GP (TS)
Denoising GP (PI)
Denoising GP (TS)
RAND

(g) EI and UCB (p = .33) (h) PI and TS (p = .33)

0 20 40 60
n

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f m
in

GP (EI)
GP (UCB)
Denoising GP (EI)
Denoising GP (UCB)
RAND

0 20 40 60
n

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f m
in

GP (PI)
GP (TS)
Denoising GP (PI)
Denoising GP (TS)
RAND

Figure 3. Contaminated BO (Sec. 4.2). We show (a) inference in a GP
with n=20 and (b) n=50, and (c)-(d) inference in a denoising GP. In (e)-(f),
for low corruption (p = .01), ProBO using denoising GPs is competitive with
standard BO using GP models. In (g)-(h), for higher corruption (p = .33),
ProBO converges to the optimal value while standard BO does not. Curves are
averaged over 10 trials, and error bars represent one standard error.

ProBO: VERSATILE BAYESIAN OPTIMIZATION USING ANY PPL 11

‖x‖2 −
1
d

∑d
i=1 cos(xi), which has a minimum value of f(x∗) = −1 at x∗ = 0d, and with

probability p, we receive a contaminated value with distribution f(x) ∼ Unif([fmax/10, fmax]),
where fmax is maxx∈X f(x). We compare ProBO using a denoising GP model with standard
BO using GPs. We show results for both a low contamination setting (p = .01) and a high
contamination setting (p = .33), in Fig. 3 (e)-(h), where we plot the minimal found value (under
the noncontaminated model) fmin = mint≤n f(yt) vs iteration n, averaged over 10 trials. In the
low contamination setting, both models converge to a near-optimal value and perform similarly,
while in the high contamination setting, ProBO with denoising GP converges to a near optimal
value while standard BO with GPs does not.

4.3. BO with Prior Structure on the Objective Function
Setting: In some cases, we have prior knowledge about properties of the objective function, such
as trends with respect to x ∈ X . For example, consider the task of tuning hyperparameters
of a machine learning model, where the hyperparameters correspond with model complexity.
For datasets of moderate size, there are often two distinct phases as model complexity grows:
a phase where the model underfits, where increasing modeling complexity reduces error on a

BO with Prior Structure on the Objective Function

(a) GP (b) Basin model

0 100 200 300 400
Layer Width

0

10

20

30

40

50

60

70

Va
lid

at
io

n
E

rr
or

GP mean
True function

0 100 200 300 400
Layer Width

0

10

20

30

40

50

60

70

Va
lid

at
io

n
E

rr
or

Basin model mean
True function

(c) EI and UCB (d) PI and TS

0 10 20 30 40 50
n

87.0

87.2

87.4

87.6

87.8

88.0

88.2

88.4

88.6

88.8

Va
lid

at
io

n
Ac

cu
ra

cy

Basin model (EI)
Basin model (UCB)
GP (EI)
GP (UCB)
RAND

0 10 20 30 40 50
n

87.0

87.2

87.4

87.6

87.8

88.0

88.2

88.4

88.6

88.8

Va
lid

at
io

n
Ac

cu
ra

cy

Basin model (PI)
Basin model (TS)
GP (PI)
GP (TS)
RAND

Figure 4. Basin model for overfitting (Sec. 4.3). We plot validation accuracy
vs layer width for a small dataset, and show inference in (a) a GP and (b) our
basin model. In (c-d) we show results of model complexity hyperparameter
tuning experiments, comparing ProBO using a basin model with BO using GPs.
Curves are averaged over 10 trials, and error bars represent one standard error.

12 W. NEISWANGER, K. KANDASAMY, B. PÓCZOS, J. SCHNEIDER, AND E. P. XING

Structured Multi-task BO

(a) GP (two task) (b) Warp model (two task) (c) EI

4

2

0 GP
True

6 4 2 0 2 4
x

2.5

0.0

2.5

4

2

0 Warp
True

6 4 2 0 2 4
x

2.5

0.0

2.5

10 20 30 40 50 60 70 80 90
n

69.0

69.5

70.0

70.5

71.0

71.5

72.0

72.5

73.0

Va
lid

at
io

n
Ac

cu
ra

cy

Warp Model (EI)
GP (EI)
RAND

Figure 5. Structured multi-task BO (Sec. 4.4). We show (a) independent
GPs and (b) our warp model, in a two-task setting (task one on top, task two
on bottom). In (c) we show results for structured multi-task BO on a neural
network hyperparameter search problem (details in Appendix Sec. A). Curves
are averaged over 10 trials, and error bars represent one standard error.

held-out validation set; and a phase where the model overfits, where validation error increases
with respect to model complexity. We can design a model that leverages trends such as these.

Model: We design a model for tuning model complexity, which we refer to as a basin model.
Let y ∼ N (R(x− µ; a, b) + c, σ2) where R(x; a, b) = aTReLU(x) + bTReLU(−x), with priors on
parameters µ ∈ Rd, a, b ∈ R+

d , c ∈ R, and σ2 > 0. This model captures the inflection point with
variable µ, and uses variables a and b to model the slope of the optimization landscape above
and below (respectively) µ. We give a one dimensional view of validation error data from an
example where x corresponds to neural network layer width, and show inference with a basin
model for this data in Fig. 4 (b).

Empirical Results: In this experiment, we optimize over the number of units (i.e. layer width)
of the hidden layers in a four layer MLP trained on the Wisconsin Breast Cancer Diagnosis
dataset [6]. We compare ProBO using a basin model, with standard BO using a GP. We see
in Fig 4 (c)-(d) that ProBO with the basin model can significantly outperform standard BO
with GPs. In this optimization task, the landscape around the inflection point (of under to over
fitting) can be very steep, which may hurt the performance of GP models. In contrast, the basin
model can capture this shape and quickly identify the inflection point via inferences about µ.

4.4. Structured Models for Multi-task and Contextual BO, and Model Ensembles
We may want to optimize multiple systems jointly, where there is some known relation

between the systems. In some instances, we have a finite set of systems (multi-task BO) and in
some cases systems are each indexed by a context vector c ∈ Rd (contextual BO). We develop a
model that can incorporate prior structure about the relationship among these systems. Our
model warps a latent model based on context/task-specific parameters, so we call this a warp
model. We show inference in this model in Fig. 5 (b). In Appendix Sec. A we define this model,
and describe experimental results shown in Fig. 5 (c).

Alternatively, we may have multiple models that capture different aspects of a system, or we
may want to incorporate information given by, for instance, a parametric model (e.g. a model

ProBO: VERSATILE BAYESIAN OPTIMIZATION USING ANY PPL 13

Multi-fidelity Acquisition Functions

(a) EI (b) UCB (c) Calls to gen

0 20 40 60 80
n

0.25

0.20

0.15

0.10

0.05

0.00

0.05

f m
in

EI high fidelity
EI low fidelity
EI multi-fidelity
RAND

0 20 40 60 80
n

0.25

0.20

0.15

0.10

0.05

0.00

0.05

f m
in

UCB high fidelity
UCB low fidelity
UCB multi-fidelity
RAND

Figure 6. Results on aMF experiments (Sec. 4.5), showing (a)-(b) ProBO using
aMF (Alg. 6) vs using a fixed high-fidelity a (M = 1000) and a fixed low-fidelity
a (M = 10). Here, aMF performs competitively with the high-fidelity a, while
low fidelity a performs worse. In (c) we show the average number of post/gen
calls per evaluation of a. We see that the aMF reduces the number of calls.
Curves are averaged over 10 trials, and error bars represent one standard error.

with a specific trend, shape, or specialty for a subset of the data) into a nonparametric model
(e.g. a GP, which is highly flexible, but has fewer assumptions). To incorporate multiple sources
of information or bring in side information, we want a valid way to create ensembles of multiple
PPL models. We develop strategies to combine the posterior predictive densities of multiple
PPL models, using only our three PPL operations. We describe this in Appendix Sec. B.

4.5. Multi-fidelity Acquisition Optimization
We empirically assess our multi-fidelity acquisition function optimization algorithm (Sec. 3.5).

Our goal is to demonstrate that increasing the fidelityM in black box acquisitions can yield better
performance in ProBO, and that our multi-fidelity method (Alg. 6) maintains the performance of
the high-fidelity acquisitions while reducing the number of calls to post and gen. We perform an
experiment in a two-fidelity setting, where M ∈ {10, 1000}, and we apply aMF to EI and UCB,
using a GP model and the (non-corrupted) synthetic system described in Sec. 4.2. Results are
shown in Fig. 6 (a)-(c), where we compare high-fidelity a (M = 1000), low-fidelity a (M = 10),
and multi-fidelity aMF, for EI and UCB acquisitions. For both, the high-fidelity and multi-fidelity
methods show comparable performance, while the low-fidelity method performs worse. We also
see in Fig. 6 (c) that the multi-fidelity method reduces the number of calls to post/gen by a
factor of 3, on average, relative to the high fidelity method.

5. Conclusion

In this paper we presented ProBO, a system for performing Bayesian optimization using models
from any probabilistic programming language. We developed algorithms to compute acquisition
functions using common PPL operations (without requiring model-specific derivations), and
showed how to efficiently optimize these functions. We presented a few models for challenging
optimization scenarios, and we demonstrated promising empirical results on the tasks of BO
with state observations, contaminated BO, BO with prior structure on the objective function,
and structured multi-task BO, where we were able to drop-in models from existing PPL
implementations.

14 W. NEISWANGER, K. KANDASAMY, B. PÓCZOS, J. SCHNEIDER, AND E. P. XING

References

1. Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Minlan Yu, and
Ming Zhang, Cherrypick: Adaptively unearthing the best cloud configurations for big data analytics,
14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), 2017,
pp. 469–482.

2. S. Ambikasaran, D. Foreman-Mackey, L. Greengard, D. W. Hogg, and M. O’Neil, Fast Direct
Methods for Gaussian Processes and the Analysis of NASA Kepler Mission Data, (2014).

3. Raul Astudillo and P Frazier, Multi-attribute bayesian optimization under utility uncertainty,
Proceedings of the NIPS Workshop on Bayesian Optimization, 2017.

4. Rémi Bardenet, Arnaud Doucet, and Chris Holmes, On markov chain monte carlo methods for tall
data, The Journal of Machine Learning Research 18 (2017), no. 1, 1515–1557.

5. Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis
Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman, Pyro: Deep Universal
Probabilistic Programming, Journal of Machine Learning Research (2018).

6. CL Blake and CJ Merz, Uci repository of machine learning databases. irvine, ca: University of
california, department of information and computer science, 1998.

7. Bob Carpenter, Andrew Gelman, Matt Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt,
Marcus A Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell, Stan: a probabilistic programming
language, Journal of Statistical Software (2015).

8. Valentin Dalibard, Michael Schaarschmidt, and Eiko Yoneki, Boat: Building auto-tuners with
structured bayesian optimization, Proceedings of the 26th International Conference on World Wide
Web, International World Wide Web Conferences Steering Committee, 2017, pp. 479–488.

9. Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore,
Brian Patton, Alex Alemi, Matt Hoffman, and Rif A Saurous, Tensorflow distributions, arXiv
preprint arXiv:1711.10604 (2017).

10. Bradley Efron, Bootstrap methods: another look at the jackknife, Breakthroughs in statistics,
Springer, 1992, pp. 569–593.

11. Alexander IJ Forrester, András Sóbester, and Andy J Keane, Multi-fidelity optimization via surrogate
modelling, Proceedings of the royal society of london a: mathematical, physical and engineering
sciences, vol. 463, The Royal Society, 2007, pp. 3251–3269.

12. Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian QWeinberger, and John P Cunningham,
Bayesian optimization with inequality constraints, ICML, 2014, pp. 937–945.

13. Michael A Gelbart, Jasper Snoek, and Ryan P Adams, Bayesian optimization with unknown
constraints, arXiv preprint arXiv:1403.5607 (2014).

14. GPy, GPy: A gaussian process framework in python, http://github.com/SheffieldML/GPy, 2012.
15. Philipp Hennig and Christian J Schuler, Entropy search for information-efficient global optimization,

Journal of Machine Learning Research 13 (2012), no. Jun, 1809–1837.
16. José Miguel Hernández-Lobato, Michael A Gelbart, Matthew W Hoffman, Ryan P Adams, and

Zoubin Ghahramani, Predictive entropy search for bayesian optimization with unknown constraints,
(2015).

17. Geoffrey E Hinton, Training products of experts by minimizing contrastive divergence, Neural
computation 14 (2002), no. 8, 1771–1800.

18. Matthew D Hoffman and Andrew Gelman, The no-u-turn sampler: Adaptively setting path lengths
in hamiltonian monte carlo, arXiv preprint arXiv:1111.4246 (2011).

19. Peter J Huber, Robust estimation of a location parameter, Breakthroughs in statistics, Springer,
1992, pp. 492–518.

20. Ferenc Huszár, Variational inference using implicit distributions, arXiv preprint arXiv:1702.08235
(2017).

21. Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown, Sequential model-based optimization for
general algorithm configuration, International Conference on Learning and Intelligent Optimization,
Springer, 2011, pp. 507–523.

22. Pasi Jylänki, Jarno Vanhatalo, and Aki Vehtari, Robust gaussian process regression with a student-t
likelihood, Journal of Machine Learning Research 12 (2011), no. Nov, 3227–3257.

http://github.com/SheffieldML/GPy

REFERENCES 15

23. Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric Xing, Neural
architecture search with bayesian optimisation and optimal transport, arXiv preprint arXiv:1802.07191
(2018).

24. Diederik P Kingma and Max Welling, Auto-encoding variational bayes, arXiv preprint
arXiv:1312.6114 (2013).

25. Andreas Krause and Cheng S Ong, Contextual gaussian process bandit optimization, Advances in
Neural Information Processing Systems, 2011, pp. 2447–2455.

26. Harold J Kushner, A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise, Journal of Basic Engineering 86 (1964), no. 1, 97–106.

27. Remi Lam and Karen Willcox, Lookahead bayesian optimization with inequality constraints, Advances
in Neural Information Processing Systems, 2017, pp. 1890–1900.

28. Tuan Anh Le, Atilim Gunes Baydin, and Frank Wood, Inference compilation and universal
probabilistic programming, arXiv preprint arXiv:1610.09900 (2016).

29. DD Lucas, R Klein, J Tannahill, D Ivanova, S Brandon, D Domyancic, and Y Zhang, Failure analysis
of parameter-induced simulation crashes in climate models, Geoscientific Model Development 6
(2013), no. 4, 1157–1171.

30. David J Lunn, Andrew Thomas, Nicky Best, and David Spiegelhalter, Winbugs-a bayesian modelling
framework: concepts, structure, and extensibility, Statistics and computing 10 (2000), no. 4, 325–337.

31. Vikash Mansinghka, Daniel Selsam, and Yura Perov, Venture: a higher-order probabilistic program-
ming platform with programmable inference, arXiv preprint arXiv:1404.0099 (2014).

32. Vikash K Mansinghka, Tejas D Kulkarni, Yura N Perov, and Josh Tenenbaum, Approximate
bayesian image interpretation using generative probabilistic graphics programs, Advances in Neural
Information Processing Systems, 2013, pp. 1520–1528.

33. Tom Minka, Infer. net 2.5, http://research. microsoft. com/infernet (2012).
34. Jonas Močkus, On bayesian methods for seeking the extremum, Optimization Techniques IFIP

Technical Conference, Springer, 1975, pp. 400–404.
35. Willie Neiswanger, Chong Wang, and Eric Xing, Asymptotically exact, embarrassingly parallel mcmc,

Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence (UAI 2014), 2014.
36. Willie Neiswanger and Eric Xing, Post-inference prior swapping, Proceedings of the 34th Interna-

tional Conference on Machine Learning-Volume 70, JMLR. org, 2017, pp. 2594–2602.
37. Tom Rainforth, Tuan Anh Le, Jan-Willem van de Meent, Michael A Osborne, and Frank Wood,

Bayesian optimization for probabilistic programs, Advances in Neural Information Processing
Systems, 2016, pp. 280–288.

38. Rajesh Ranganath, Sean Gerrish, and David Blei, Black box variational inference, Artificial
Intelligence and Statistics, 2014, pp. 814–822.

39. Daniel Ritchie, Paul Horsfall, and Noah D Goodman, Deep amortized inference for probabilistic
programs, arXiv preprint arXiv:1610.05735 (2016).

40. John Salvatier, Thomas V Wiecki, and Christopher Fonnesbeck, Probabilistic programming in
python using pymc3, PeerJ Computer Science 2 (2016), e55.

41. Bianca Schroeder and Garth Gibson, A large-scale study of failures in high-performance computing
systems, IEEE transactions on Dependable and Secure Computing 7 (2009), no. 4, 337–350.

42. Amar Shah, Andrew Wilson, and Zoubin Ghahramani, Student-t processes as alternatives to
gaussian processes, Artificial Intelligence and Statistics, 2014, pp. 877–885.

43. Jack W Smith, JE Everhart, WC Dickson, WC Knowler, and RS Johannes, Using the adap learning
algorithm to forecast the onset of diabetes mellitus, Proceedings of the Annual Symposium on
Computer Application in Medical Care, American Medical Informatics Association, 1988, p. 261.

44. Jasper Snoek, Hugo Larochelle, and Ryan P Adams, Practical bayesian optimization of machine
learning algorithms, Advances in neural information processing systems, 2012, pp. 2951–2959.

45. Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams, Scalable bayesian optimization using deep neural
networks, International Conference on Machine Learning, 2015, pp. 2171–2180.

46. Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger, Gaussian process
optimization in the bandit setting: No regret and experimental design, arXiv preprint arXiv:0912.3995

16 REFERENCES

(2009).
47. Kevin Swersky, Jasper Snoek, and Ryan P Adams, Multi-task bayesian optimization, Advances in

neural information processing systems, 2013, pp. 2004–2012.
48. William R Thompson, On the likelihood that one unknown probability exceeds another in view of

the evidence of two samples, Biometrika 25 (1933), no. 3/4, 285–294.
49. Tina Toni, David Welch, Natalja Strelkowa, Andreas Ipsen, and Michael PH Stumpf, Approximate

bayesian computation scheme for parameter inference and model selection in dynamical systems,
Journal of the Royal Society Interface 6 (2008), no. 31, 187–202.

50. Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and David M. Blei, Ed-
ward: A library for probabilistic modeling, inference, and criticism, arXiv preprint arXiv:1610.09787
(2016).

51. Dustin Tran, Rajesh Ranganath, and David Blei, Hierarchical implicit models and likelihood-free
variational inference, Advances in Neural Information Processing Systems, 2017, pp. 5523–5533.

52. Xiangyu Wang, Fangjian Guo, Katherine A Heller, and David B Dunson, Parallelizing mcmc with
random partition trees, arXiv preprint arXiv:1506.03164 (2015).

53. James T Wilson, Frank Hutter, and Marc Peter Deisenroth, Maximizing acquisition functions for
bayesian optimization, arXiv preprint arXiv:1805.10196 (2018).

54. Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka, A new approach to probabilistic
programming inference, Proceedings of the 17th International conference on Artificial Intelligence
and Statistics, 2014, pp. 1024–1032.

55. Jian Wu, Matthias Poloczek, Andrew G Wilson, and Peter Frazier, Bayesian optimization with
gradients, Advances in Neural Information Processing Systems, 2017, pp. 5267–5278.

56. Barret Zoph and Quoc V Le, Neural architecture search with reinforcement learning, arXiv preprint
arXiv:1611.01578 (2016).

APPENDIX 17

Appendix A. Structured Models for Multi-task and Contextual BO

In this section we provide details about our models for multi-task and contextual BO, described
in Sec. 4.4 and shown in Fig. 5. Many prior methods have been proposed for for multi-task
BO [47] and contextual BO [25], though these often focus on new acquisition strategies for GP
models. Here we propose a model for the case where we have some structured prior information
about the relation between systems, or some parametric relationship that we want to incorporate
into our model.

We first consider the multi-task setting and then extend this to the contextual setting. Suppose
that we have T tasks (i.e. subsystems to optimize) with data subsets D = {D1, . . . ,DT }, where
Dt has data {xt,i, yt,i}nt

i=1, and where nt denotes the number of observations in the tth task. For
each (xt,i, yt,i) pair within D, we have a latent variable zt,i ∈ Z. Additionally, for each task t,
we have task-specific latent “warp” variables, denoted wt.

Given these, we define our warp model to be

(1) For t = 1, . . . , T :

(a) wt ∼ Prior(w)

(b) For i = 1, . . . , nt:

(i) zt,i ∼ p(z|xt,i)
(ii) yt,i ∼ p(y|zt,i, xt,i, wt)

We call p(z|xt,i) our latent model, and p(y|zt,i, xt,i, wt) our warp model, which is parameterized
by warp variables wt. Intuitively, we can think of the variables zt,i as latent “unwarped” versions
of observations yt,i, all in a single task. Likewise, we can intuitively think of observed variables
yt,i as “warped versions of zt,i”, where wt dictates the warping for each subset of data Dt.

We now give a concrete instantiation of this model. Let the latent model be p(z|xt,i) =
GP (µ(x), k(x, x′)), i.e. we put a Gaussian process prior on the latent variables z. For a given
task, let the warping model for y be a linear function of both z and x (with some added noise),
where warping parameters w are parameters of this linear model, i.e. yt,i ∼ w0+w1xt,i+w2zt,i+ε.

Intuitively, this model assumes that there is a latent GP, which is warped via a linear model
of both the GP output z and input x to yield observations y for a given task (and that there is
a separate warp for each task). We illustrate this model in Fig. 7 and 8 (where n1 = 7 in both,

Task 1 (n1 = 7) Task 2 (n2 = 5)

8 6 4 2 0 2 4
x

4

2

0

2

4

y

8 6 4 2 0 2 4
x

4

2

0

2

4

y

Figure 7. Warp model inference on tasks one (left) and two (right), where
n1 = 7 and n2 = 5. This warp model assumes a linear warp with respect to
both the latent variables z and inputs x. Posterior mean, posterior samples,
and posterior predictive distribution are shown.

18 APPENDIX

Task 1 (n1 = 7) Task 2 (n2 = 3)

8 6 4 2 0 2 4
x

4

2

0

2

4

y

8 6 4 2 0 2 4
x

4

2

0

2

4

y

Figure 8. Warp model inference on tasks one (left) and two (right), where
n1 = 7 and n2 is reduced to n2 = 3. This warp model assumes a linear warp
with respect to both the latent variables z and inputs x. Posterior mean,
posterior samples, and posterior predictive distribution are shown. Here, we
see more uncertainty around the two removed points in task two, relative to
Fig. 7.

n2 = 5 in the former, and n2 = 3 in the latter). As we remove points x in task two, we see more
uncertainty in the posterior predictive distribution at these points.

We can also extend this warp model for use in a contextual optimization setting, where we
want to jointly optimize over a set of systems each indexed by a context vector c ∈ Rd. In
practice, we observe the context ci for input xi ∈ X , and therefore perform inference on a
dataset Dn = {xi, ci, yi}ni=1.

To allow for this, we simply let our warp model also depend on c, i.e. let the warp model be
p(y|zt,i, xt,i, wt, ct,i). Intuitively, this model assumes that there is a single latent system, which
is warped by various factors (e.g. the context variables) to produce observations.

A.1. Empirical Results
Here we describe the empirical results shown in Fig. 5 (c). We aim to perform the neural

architecture and hyperparameter search task from Sec. 4.1, but for two different settings, each
with a unique preset batch size. Based on prior observations, we believe that the validation
accuracy of both systems at a given query x can be accurately modeled as a linear transformation
of some common latent system, and we apply the warp model described above. We compare
ProBO using this warp model with a single GP model over the full space of tasks and inputs.
We show results in Fig. 5 (c), where we plot the best validation accuracy found over both tasks
vs iteration n. Both methods use the EI acquisition function, and we compare these against a
baseline that chooses queries uniformly at random. Here, ProBO with the warp model is able
to find a query with a better maximum validation accuracy, relative to standard BO with GP
model.

Appendix B. Ensembles of PPL Models within ProBO
We may have multiple models that capture different aspects of a system, or we may want to

incorporate information given by, for instance, a parametric PPL model (e.g. a model with a
specific trend, shape, or specialty for a subset of the data) into a nonparametric PPL model
(e.g. a GP, which is flexible, but has fewer assumptions).

APPENDIX 19

To incorporate multiple sources of information or bring in side information, we want a
valid way to create ensembles of multiple models. Here, we develop a method to combine the
posterior predictive densities of multiple PPL models, using only our three PPL operations.
Our procedure constructs a model similar to a product of experts model [17], and we call our
strategy a Bayesian product of experts (BPoE). This model can then be used in our ProBO
framework.

As an example, we show an ensemble of two models, M1 and M2, though this could be
extended to an arbitrarily large group of models. Assume M1 and M2 are both plausible
models for a dataset Dn = {(xi, yi)}ni=1.

LetM1 have likelihood p1(Dn|z1) =
∏n
i=1 p1(yi|z1;xi), where z1 ∈ Z1 are latent variables with

prior p1(z1). We define the joint model PDF forM1 to be p1(Dn, z1) = p1(z1)
∏n
i=1 p1(yi|z1;xi).

The posterior (conditional) PDF forM1 can then be written p1(z1|Dn) = p1(Dn, z1)/p1(Dn).
We can write the posterior predictive PDF forM1 as

p1(y|Dn;x) = Ep1(z1|Dn) [p1(y|z1;x)] . (B.1)

Similarly, letM2 have likelihood p2(Dn|z2) =
∏n
i=1 p2(yi|z2;xi), where z2 ∈ Z2 are latent

variables with prior PDF p2(z2). We define the joint model PDF forM2 to be p2(Dn, z2) =
p2(z2)

∏n
i=1 p2(yi|z2;xi), the posterior (conditional) PDF to be p2(z2|Dn) = p2(Dn, z2)/p2(Dn),

and the posterior predictive PDF to be

p2(y|Dn;x) = Ep2(z2|Dn) [p2(y|z2;x)] . (B.2)

Note that z1 ∈ Z1 and z2 ∈ Z2 need not be in the same space nor related.
Given modelsM1 andM2, we define the Bayesian Product of Experts (BPoE) ensemble

model, Me, with latent variables z = (z1, z2) ∈ Z1 × Z2, to be the model with posterior
predictive density

p(y|Dn;x) ∝ p1(y|Dn;x)p2(y|Dn;x). (B.3)

The posterior predictive PDF for the BPoE ensemble modelMe is proportional to the product
of the posterior predictive PDFs of the constituent modelsM1 andM2. Note that this uses the
product of expert assumption [17] on y, which intuitively means that p(y|Dn;x) is high where
both p1(y|Dn;x) and p2(y|Dn;x) agree (i.e. an “and” operation). Intuitively, this model gives
a stronger posterior belief over y in regions where both models have consensus, and weaker
posterior belief over y in regions given by only one (or neither) of the models.

Given this model, we need an algorithm for computing and using the posterior predictive
for Me within the ProBO framework. In our acquisition algorithms, we use gen to generate
samples from predictive distributions. We can integrate these with combination algorithms
from the embarrassingly parallel MCMC literature [35, 52, 36] to develop an algorithm that
generates samples from the posterior predictive of the ensemble modelMe and uses these in a
new acquisition algorithm. We give this procedure in Alg. 8, which introduces the ensemble
operation. Note that ensemble takes as input two operations gen1 and gen2 (assumed to be
from two PPL models), as well as two sets of M posterior samples zM1 and zM2 (assumed to
come from calls to post1 and post2 from the two PPL models). Also note that in Alg. 8 we’ve
used Combine(y1, y2) to denote a combination algorithm, which we detail in appendix Sec. B.2.

We can now swap the ensemble operation in for the gen operation in Algs. 2-5. Note that the
BPoE allows us to easily ensemble models written in different PPLs. For example, a hierarchical
regression model written in Stan [7] using Hamiltonian Monte Carlo for inference could be
combined with a deep Bayesian neural network written in Pyro [5] using variational inference
and with a GP written in GPy [14] using exact inference.

20 APPENDIX

Phase Shift (PS) Model Gaussian Process (GP) BPoE Ensemble (PS, GP)
n
=

2

10 5 0 5 10
x

5

0

5
y

10 5 0 5 10
x

5

0

5

y

10 5 0 5 10
x

5

0

5

y

n
=

50

10 5 0 5 10
x

5

0

5

y

10 5 0 5 10
x

5

0

5

y

10 5 0 5 10
x

5

0

5

y

Figure 9. Visualization of the Bayesian product of experts (BPoE) ensemble model
(column 3) of a phase shift (PS) model (column 1), defined in Sec. B.1, and a GP
(column two). In the first row (n = 2), when n is small, the BPoE ensemble more
closely resembles the PS model. In the second row (n = 50), when n is larger, the
BPoE ensemble more closely resembles the GP model, and both accurately reflect the
true landscape (red dashed line). In all figures, the posterior predictive is shown in
gray.

Algorithm 8 ensemble(x, gen1, gen2, zM1 , zM2) . PPL model ensemble with BPoE

1: for m = 1, . . . ,M do
2: s1, s2 ∼ Unif ({1, . . . ,M})
3: ỹ1,m ← gen1(x, z1,s1 , s1)
4: ỹ2,m ← gen2(x, z2,s2 , s2)

5: y1:M ← Combine(ỹ1,M , ỹ2,M)
6: Return y1:M .

B.1. Example: Combining Phase-Shift and GP Models.
We describe an example and illustrate it in Fig. 9. Suppose we expect a few phase shifts in

our input space X , which partition X into regions with uniform output. We can model this
system with y ∼ N (y|

∑K
k=1 logistic(x;mk, sk, µk) + bk, σ

2), where latent variables m1:K , s1:K ,
µ1:K , and b1:K are assigned appropriate priors, and where logistic(x;m, s, µ) = m

1+exp(−s(x−µ)) .
This model may accurately describe general trends in the system, but it may be ultimately
misspecified, and underfit as the number of observations n grows.

Alternatively, we could model this system as a black box using a Gaussian process. The
GP posterior predictive may converge to the correct landscape given enough data, but it is
nonparametric, and does not encode our assumptions.

We can use the BPoE model to combine both the phase shift and GP models. We see in
Fig. 9 that when n = 2 (first row), the BPoE model resembles the phase shift model, but when
n = 50 (second row), it more closely resembles the true landscape modeled by the GP.

B.2. Combination Algorithms for the ensemble Operation (Alg. 8)
We make use of combination algorithms from the embarrassingly parallel MCMC literature

[35, 52, 36], to define the ensemble operation (Alg. 8) for use in applying the ProBO framework
to a BPoE model. We describe these combination algorithms here in more detail.

For convenience, we describe these methods for two Bayesian models,M1 andM2, though
these methods apply similarly to an abitrarily large set of models.

APPENDIX 21

The goal of these combination methods is to combine a set of M samples y1,1:M ∼ p1(y|Dn;x)
from the posterior predictive distribution of a model M1, with a disjoint set of M samples
y2,1:M ∼ p2(y|Dn;x) from the posterior predictive distribution of a model M2, to produce
samples

y3,1:M ∼ p(y|Dn;x) ∝ p1(y|Dn;x)p2(y|Dn;x), (B.4)

where p(y|Dn;x) denotes the posterior predictive distribution of a BPoE ensemble modelMe,
with constituent modelsM1 andM2.

We use the notation Combine(y1,1:M , y2,1:M) to denote a combination algorithm. We give a
combination algorithm in Alg. 9 for our setting based on a combination algorithm presented in
[35].

Algorithm 9 Combine(y1,1:M , y2,1:M)) . Combine sample sets

1: t1, t2
iid∼ Unif ({1, . . . ,M})

2: for i = 1, . . . ,M do
3: c1, c2

iid∼ Unif ({1, . . . ,M})
4: u ∼ Unif ([0, 1])
5: if u > w(c1,c2)

w(t1,t2)
then

6: t1 ← c1
7: t2 ← c2

8: y3,i ∼ N
(
ȳ(t1,t2),

i−1/2

2

)
9: Return y3,1:M .

We must define a couple of terms used in Alg. 9. The mean output ȳ(t1,t2), for indices
t1, t2 ∈ {1, . . . ,M}, is defined to be

ȳ(t1,t2) =
1

2
(y1,t1 + y2,t2) , (B.5)

and weights w(t1,t2) (alternatively, w(c1,c2)), for indices t1, t2 ∈ {1, . . . ,M}, are defined to be

w(t1,t2) = N
(
y1,t1 |ȳ(t1,t2), i

−1/2
)
N
(
y2,t2 |ȳ(t1,t2), i

−1/2
)
. (B.6)

Note that this Combine(y1,1:M , y2,1:M) algorithm (Alg. 9) holds for sample sets from two
arbitrary posterior predictive distributions p1(y|Dn;x) and p2(y|Dn;x), without any parametric
assumptions such as Gaussianity.

	1. Introduction
	2. Related Work
	3. ProBO
	3.1. Abstraction for Probabilistic Programs
	3.2. Main Procedure
	3.3. PPL Acquisition Functions via post and gen
	3.4. Computational Considerations
	3.5. Efficient Optimization of PPL Acquisition Functions

	4. Examples and Experiments
	4.1. BO with State Observations
	4.2. Robust Models for Contaminated BO
	4.3. BO with Prior Structure on the Objective Function
	4.4. Structured Models for Multi-task and Contextual BO, and Model Ensembles
	4.5. Multi-fidelity Acquisition Optimization

	5. Conclusion
	References
	Appendix A. Structured Models for Multi-task and Contextual BO
	A.1. Empirical Results

	Appendix B. Ensembles of PPL Models within ProBO
	B.1. Example: Combining Phase-Shift and GP Models.
	B.2. Combination Algorithms for the ensemble Operation (Alg. 8)

