
Black or White? How to Develop an AutoTuner for
Memory-based Analytics∗

Mayuresh Kunjir
Duke University

mayuresh@cs.duke.edu

Shivnath Babu
Unravel Data Systems

shivnath@unraveldata.com

ABSTRACT
There is a lot of interest today in building autonomous (or,
self-driving) data processing systems. An emerging school of
thought is to leverage AI-driven “black box" algorithms for
this purpose. In this paper, we present a contrarian view. We
study the problem of autotuning the memory allocation for
applications running on modern distributed data processing
systems. We show that an empirically-driven “white-box"
algorithm, called RelM, that we have developed provides a
close-to-optimal tuning at a fraction of the overheads com-
pared to state-of-the-art AI-driven “black box" algorithms,
namely, Bayesian Optimization (BO) and Deep Distributed
Policy Gradient (DDPG). The main reason for RelM’s supe-
rior performance is that the memory management in modern
memory-based data analytics systems is an interplay of al-
gorithms at multiple levels: (i) at the resource-management
level across various containers allocated by resource man-
agers like Kubernetes and YARN, (ii) at the container level
among the OS, pods, and processes such as the Java Virtual
Machine (JVM), (iii) at the application level for caching, ag-
gregation, data shuffles, and application data structures, and
(iv) at the JVM level across various pools such as the Young
and Old Generation. RelM understands these interactions
and uses them in building an analytical solution to autotune
the memory management knobs. In another contribution,
called Guided-BO (GBO), we use RelM’s analytical models to
speed up BO. Through an evaluation based on Apache Spark,
we showcase that the RelM’s recommendations are signifi-
cantly better than what commonly-used Spark deployments
provide, and are close to the ones obtained by brute-force

∗This research is supported by NSF grant IIS-1423124.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3380591

exploration; while GBO provides optimality guarantees for a
higher, but still significantly lower cost overhead compared
to the state-of-the-art AI-driven policies.

CCS CONCEPTS
• Information systems→Database administration;Au-
tonomous database administration.

ACM Reference Format:
Mayuresh Kunjir and Shivnath Babu. 2020. Black or White? How to
Develop an AutoTuner for Memory-based Analytics. In Proceedings
of the 2020 ACM SIGMOD International Conference onManagement of
Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3318464.3380591

1 INTRODUCTION
Modern data analytics systems, e.g. Spark, Tez, and Flink,
are increasingly using memory both for data storage and fast
computations. However, memory is a limited resource that
must be managed carefully by three players:
• Application Developer: Judging by the magnitude of Stack-

Overflow posts and user surveys [33, 59], ‘out-of-memory’
errors is a major cause of unreliable application perfor-
mance. To safeguard against such errors, developers need
an understanding of how much memory their application
really needs and how to set the appropriate memory con-
figurations. The prevalent rule-of-thumb to “throw more
memory at your applications” is not the best approach
while considering costs or the interests of other users.

• Resource Manager: A resource manager in a multi-tenant
setting, e.g., YARN, needs to carefully allocate resources
to meet the application performance goals of multiple
tenants. Over-allocation leads to wasted resources and
a lower throughput, while under-allocation could mean
higher latency for tenants. Both problems are commonly
observed in production clusters [9, 23, 51].

• Application Platform: The onus of ensuring a safe usage
of memory is predominantly on the application platforms.
Memory is used for various operations such as joins/ag-
gregation, caching inputs/intermediate results, data shuf-
fling/repartitioning, and sending intermediate/output data
over network. Arbitratingmemory across these operations
is critical in ensuring a reliable and fast execution which is
a major focus of the modern analytics platforms [32, 58].

Research 18: Main Memory Databases and Modern Hardware SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1667

https://doi.org/10.1145/3318464.3380591
https://doi.org/10.1145/3318464.3380591

Challenges and Contributions:
The memory management decisions in the data process-

ing platforms are made at multiple levels (viz. the resource-
management level, at the container level, at the application
level, and inside the Java Virtual Machine) with complex
interplays involved amongst the decisions and the perfor-
mance metrics. Data analytics applications vary widely in
terms of the computational model (e.g., SQL, shuffling, it-
erative processing) and the physical design of input data
(e.g., partition sizes) translating to huge variations in their
resource consumption patterns. Consequently, they exhibit
complex response surfaces to configuration options relating
to resource usage [12, 61]. It is seen that the default settings
provided by the commonly-used system deployments leave
a lot of room for improvement in terms of the reliability and
the running time of the applications. Users running the ap-
plications on such deployments desire an automated tuning
solution for their workload in a short span of time. Building
such solutions is the focus of this paper.

The workload we consider is a data analytics application
workflow along with its input data. Given the wide variety in
the possible computational patterns and the physical design
of data, building analytical cost-based performance mod-
els is non-trivial. Much of the previous work has focussed
on training performance models offline, using a small-scale
benchmark test bed, historical performance data, or from
application performance under low workload [2, 53, 55, 60].
Offline training poses two difficulties in applying the models
in real-world settings: (i) Experiments on small-scale test
beds may not represent intricacies of real applications accu-
rately; and (ii) Applying models in a changed environment
or workload may involve an expensive online learning cycle.
A contrasting option for tuning is an online search of the
configuration space, typically involving a combination of
random sampling and local search [5, 14, 27, 57, 61]. How-
ever, this black-box approach can be very expensive given
the complex non-linear response surfaces and the high costs
associated with running each experiment.
Speeding up exploration calls for an improvement-based

policy which follows a Sequential Model-based Optimiza-
tion (SMBO) approach [17]. SMBO iterates between fitting a
surrogate model and using it to recommend the next probe.
Bayesian optimization (BO) [31] is a powerful state-of-the-
art SMBO technique that provides a theoretically-justified
exploration of the configuration space. Another exciting pos-
sibility is to use a deep reinforcement learning approach that
uses a reward-feedback approach to tuning. Deep Distributed
Policy Gradient (DDPG) [28] is a powerful technique provid-
ing a model-free, actor-critic algorithm which can operate
on continuous action (configuration) spaces.
We approach the tuning problem by developing a deep

understanding of the internal memory management options.

Figure 1: Memory managed by Resource Manager

Figure 2: Container memory managed by JVM

Figure 3: Heap managed by application framework

Rather than directly modeling the high level tuning objec-
tives, such as latency, we model the impact of the memory
configurations on the efficiency of the system resource uti-
lization and the reliability of execution. This understanding
is used to develop an algorithm, called RelM, that quickly
tunes the memory management options using a very small
number (one or two) of profiled application runs. At the core
of RelM is a set of simple analytical models that estimates the
requirements of the various competing memory pools within
an application. Using the models, RelM guarantees a safe,
that is, free of out-of-memory errors and, simultaneously,
highly resource-efficient configuration.

In another contribution, we use RelM’s analytical models
to speed up the black-box tuning of BO. This modification,
called Guided Bayesian Optimization (GBO), plugs in metrics
derived from an application profile relating to reliability,
efficiency, and performance overheads to the BO model.
The two solutions we have designed for tuning memory

management decisions in data analytics both improve the
state-of-the-art significantly and also present an interesting
trade-off to the end user: While RelM offers a good (perform-
ing within top 5 percentile of the exhaustively searched con-
figurations) tuning recommendation with a minimal training
overhead, GBO guarantees optimality given an allowance
for a slightly higher overhead. The reinforcement learning
approach (DDPG) is shown to possess a great ability to adapt
to high dimensional spaces as well as to changes in the test
environment thereby making a strong case for use in other
related auto-tuning problems.

Research 18: Main Memory Databases and Modern Hardware SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1668

2 PROBLEM OVERVIEW
2.1 Memory-based Analytics
Data analytics clusters employ a resource manager, such as
Yarn [52], to allocate cluster resources to applications. Each
application is provided with a set of containers by the re-
source manager. A container is simply a slice of physical
resources carved out of a node allocated exclusively to the
application. Figure 1 shows how cluster memory is allocated
to multiple containers. Many popular data analytics systems
(e.g., Spark, Flink, and Tez) use a JVM-based architecture.
These systems launch a JVM process inside each allocated
container. As shown in Figure 2, the container memory is
divided into two parts: (a) Memory available to the JVM pro-
cess, and (b) An overhead space for OS process management.
JVM further divides its allocation into a heap space and an
off-heap space. All objects, except native byte buffers, cre-
ated by the application code are allocated on heap and are
managed by the JVM’s generational heap management [37].
Applications written in JVM languages do not explicitly

allocate and free memory. Instead, the JVM periodically runs
a process of garbage collection (GC in short) that frees up
unreferenced objects from Heap. We focus on the default
GC policy, called ParallelGC. ParallelGC uses two memory
pools: Young generation and Old generation. As the names
suggest, the Young pool stores newly created objects and the
Old pool stores long-living objects. Young pool is split into
one Eden space and two Survivor spaces only one of which is
occupied at any given time. Newly created objects go to Eden
first. When Eden is filled up, a collection called Young GC
is triggered to collect unreferenced objects from Eden and
the occupied Survivor. Objects that have aged enough 1 are
moved to the Old pool. When a Young GC process finds an
almost full old generation, it triggers a Full GC process which
collects all unreferenced objects from Old and compacts the
Old pool. Key tuning options controlling the time spent by
GC processes are related to the sizes of the pools. Parameter
NewRatio sets the ratio of the capacity of Old to the capacity
of Young. The capacity of Eden within Young is decided by
parameter SurvivorRatiowhich gives the ratio of the capacity
of Eden to the capacity of a Survivor space.
Figure 3 shows Heap from the application’s perspective.

Except for the space reserved for the JVM’s internal objects
and a survivor space, the Heap can be broadly categorized
into three pools:
1 Code Overhead: Memory required for application code ob-
jects (Mi). Treated as a constant overhead.

2 Cache Storage: Memory used to store the data cached by
application (Mc). In particular, storing intermediate results
in memory is beneficial during iterative computations.

1Aging is determined by GC parameters ‘InitialTenuringThreshold’ and
‘MaxTenuringThreshold’ [37]

Table 1: Parameters controlling memory pools across
multiple levels: Container, Application Framework,
and JVM displayed in order from top to bottom.

Parameter Description Pool(s) controlled
Heap Size Heap size in a container Heap (Mh)

Cache Capacity Cache storage as a
fraction of Heap Cache Storage (Mc)

Shuffle Capacity Shuffle memory as
a fraction of Heap Task Shuffle (Ms)

Task Concurrency Number of tasks running
concurrently Task Unmanaged (Mu)

NewRatio Ratio of Old capacity
to Young capacity Old (Mo)

SurvivorRatio Ratio of Eden capacity
to Survivor space Eden (Me)

3 Task Memory: The number of tasks running concurrently is
set by a configuration parameter: Task Concurrency. Each
task needs memory for: (a) Shuffle processing tasks such
as sort and aggregation (Ms), (b) Input data objects and
serialization/deserialization buffers (Mu).
Allocation to the pools Cache Storage (Mc) and Task Shuf-

fle (Ms) is controlled by application frameworks both to
make an efficient and error-free use of available memory.
Spark, for example, provides a configuration option called
spark.memory.fraction to bound the two pools [40]. The other
two memory pools Code Overhead (Mi) and Task Unman-
aged (Mu), however, are not managed explicitly. In summary,
Table 1 lists the parameters controlling usage of memory
pools in—and effectively impacting the performance of—
memory-based analytics systems.

2.2 Application Tuning
Performance of the memory-based analytics workloads is
largely dependent on the safety and efficiency of memory
usage. Under this framework, an application can be tuned at
the following levels: (a) while allocating resources from the
resource manager, (b) while setting options provided by the
application framework related to the internal memory pools,
and (c) while configuring JVM parameters related to garbage
collection. Applications we consider for tuning constitute
a given workflow (or query plan) and a given input data.
Re-using tuning results when any of these inputs changes is
left out of the scope of this paper. We first outline three broad
categories of tuning approaches possible for our problem
setup before describing our solution.
I. Robust defaults: Cloud vendors and application frame-
works provide default settings for parameters that are ex-
pected to generalize towards a broad spectrum of applica-
tions. Amazon’s popular cloud-based offering Elastic MapRe-
duce (EMR) provides a default policy for resource allocation
on Spark clusters, called MaxResourceAllocation [34]. This
policy creates a single resource container on each worker
node allocating it the entire compute and memory resources.
Frameworks such as Spark and Flink provide default settings
for application level and JVM level memory pools [35, 40].

Research 18: Main Memory Databases and Modern Hardware SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1669

They use heuristics that generalize well, e.g., Old pool size is
set higher than Cache Storage in order to fit the long living
cache objects in the tenured space. However, the defaults
leave a lot of scope for performance improvements which
can be exploited easily by expert users [21, 47].
II. White-box modeling: One approach towards building
an automated tuning solution is to develop analyticalWhat-If
models for performance estimations [15, 24, 51]. But develop-
ing such models is nontrivial [56] or downright impossible
given the wide variety in the computational models and
the physical design of data to consider. Most of the litera-
ture has focussed on training ML-based performance models
using either a small-scale benchmark test bed, historical per-
formance data, or from application performance under low
workload [2, 13, 29, 53–55, 60]. However, the understanding
developed by these offline approaches may not directly help
tune a new application, or may potentially involve a long
online learning cycle.
III. Black-box modeling: Search-based black-box tuning
approaches to find the optimal configuration [5, 14, 27, 57, 61]
are often expensive given the complex non-linear response
surfaces and the high costs associated with running each
experiment. A better option is to employ an improvement-
based policy which follows a Sequential Model-based Op-
timization (SMBO) [17]. SMBO iterates between fitting a
surrogate model and using it to recommend the next probe
of the configuration space. Bayesian optimization (BO) [31]
is a powerful state-of-the-art SMBO technique that is ap-
plied to varied designs including Database systems [2, 12],
Streaming [20], Storage systems [6], and Cloud infrastruc-
tures [3, 16]. We consider BO as a candidate black-box policy
for our problem. Another popular AI-based policy we con-
sider is Deep Deterministic Policy Gradient (DDPG) [28]. It
provides a powerful reinforcement learning algorithm that
is hugely popular in the fields of robotics and imaging and
has recently been adopted in database systems [26, 60].
Our evaluation shows that despite the advances in the

black-box tuning approaches, the number of experiments
(test runs) required to have sufficient confidence in predic-
tions could still be significant. This number could be lowered
if we could use some internal understanding of the impact of
the memory configurations. We carry out an empirical study
in Section 3 to develop a deep understanding of the vari-
ous interactions among the configuration options and the
resource usage metrics. This study is used in building an ana-
lytical algorithm, called RelM, to recommend a configuration
that is both reliable as well as resource-efficient. RelM relies
on a single application profile to learn application-specific
requirements of the resource requirements for different pro-
cessing needs. The requirements are fed to a set of analytical
models which combine, in quick time, to recommend a setup
most suited to the application’s needs.

In another important contribution, the analytical models
developed in RelM are used to speed-up BO. The idea is
to plug-in the system internal knowledge in the form of a
small number of analytical models as extra parameters to
the surrogate model of BO. These parameters, in turn, help
the model learn the distinction between the undesired (ex-
pensive) regions and the desired regions of the configuration
space in quick time.

3 UNDERSTANDING INTERACTIONS
Data analytics applications vary widely in terms of their com-
putational model (e.g., SQL, shuffling, iterative processing)
and physical design of input data (e.g., partition sizes). This
translates to variations in resource consumption patterns of
the computations. We have listed the most important mem-
ory configuration options in Table 1. Here, we explore the
impact of each option using the five representative bench-
mark applications listed in Table 2. The test suite covers a
broad spectrum of computational models and physical de-
signs making it ideal for the empirical study. All experiments
were carried out on Cluster A listed in Table 3.

3.1 Containers per Node
As shown in Figure 1, physical memory on a node is divided
into multiple containers by the resource manager. This cre-
ates a spectrum of choices from using a small number of
fat containers to a large number of thin containers. Amazon
EMR’s MaxResourceAllocation policy creates one fat con-
tainer on each node assigning it the entire node memory
(minus OS overheads). We vary the number of containers
on a node from 1 to 4. The corresponding Heap allocation
shrinks from 4404MB to 1101MB proportionately. The other
parameters are set to their default values as listed in Table 4.

Figure 4 shows the results. From the runtimes (normalized
to the runtimes on the default setup), it can be noticed that
WordCount and SortByKey perform significantly better on
thin containers. Both the applications do not use any cache
storage and are, therefore, less memory-bound compared to
the ML applications, namely, K-means and SVM. However,
the performance does not scale linearly because of the CPU
and Disk bottlenecks. Tasks running K-means and SVM are
given less memory for processing because of cache storage.
As a result, thin containers run into memory pressures lead-
ing to a degradation of performance. K-means, in fact, runs
into out-of-memory failures with 4 containers per node.
Observation 1: Containers should be adequately sized to just
meet the cache and the task memory requirements.
Failure cases. Results presented in Figure 4 do not include
PageRank application because it fails under each setup. In
our technical report [22], we probe more instances of such
failures. Broadly, two types of failures are observed: (a) Out-
of-memory errors while creating objects on heap for either
input data deserialization or network buffers; (b) Resource

Research 18: Main Memory Databases and Modern Hardware SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1670

1 2 3 4

0.6
0.8
1

Sc
al
e d

Ru
nt
im

e

(a)

1 2 3 4
0.4
0.6
0.8
1

M
ax

H
ea
p
U
til

(b)

1 2 3 4

0.4

0.6

Av
g
CP

U
U
til

(c)

1 2 3 4
0

0.2
0.4
0.6

A v
g
D
is
k
U
til

(d)

WordCount SortByKey K-means SVM

Figure 4: Impact of increasing number of containers per node on runtime (a), maximum heap utilization (b),
average CPU utilization (c), and average disk utilization (d). Missing points correspond to instances of failures.

0 2 4 6 8

0.6
0.8
1

Sc
al
ed

Ru
nt
im

e

(a)

0 2 4 6 8
0.4
0.6
0.8
1

M
ax

H
ea
p
U
til

(b)

0 2 4 6 8
0.2
0.4
0.6

Av
g
CP

U
U
til

(c)

0 2 4 6 8
0

0.2
0.4
0.6

Av
g
D
is
k
U
til

(d)

WordCount SortByKey K-means SVM PageRank

Figure 5: Impact of Task Concurrency on runtime (a), maximum heap utilization (b), average CPU utilization (c),
and average disk utilization (d). PageRank runs out of memory for Task Concurrency≥ 2.

Table 2: Test suite used in evaluation
Application Category Dataset Partition Size
WordCount Map and Reduce Hadoop RandomTextWriter (50GB) 128MB
SortByKey Map and Reduce Hadoop RandomTextWriter (30GB) 512MB
K-means Machine Learning HiBench huge (100M samples) 128MB
SVM Machine Learning HiBench huge (100M examples) 32MB

PageRank Graph LiveJournal [25] (69M edges) 128MB
TPC-H SQL TPC-H DBGen (50 scale factor) 128MB

Table 3: Evaluation cluster setups
Cluster A Cluster B

Node types Physical Virtual EC2
Number of nodes 8 4
Memory per node 6GB 32GB
CPU cores per node 8 31 ECU
Network bandwidth 1Gbps 10Gbps
Compute Framework Spark-2.0.1
Resource Manager Yarn-2.7.2
JVM Framework OpenJDK-1.8.0

Table 4: Config values suggested by MaxResourceAllo-
cation and framework defaults on Cluster A.

Containers per Node 1
Heap Size 4404MB
Task Concurrency 2
Cache Capacity + Shuffle Capacity .6
NewRatio 2
SurvivorRatio 8

manager killing containers that exceed a preset limit for phys-
ical memory usage. Both cases are identified to be caused
by a small amount of memory left for the unmanaged task
objects after provisioning for the other pools.
Observation 2: Over-provisioning for internal memory pools
can result in unreliable performance.

3.2 Task Concurrency
An important optimization to increase throughput is to in-
crease task concurrency. We analyze this in Figure 5. The
runtimes are normalized to the setup with task concurrency
set to 1. The performance of each application is seen to

improve with concurrency before it plateaus. For all appli-
cations except WordCount, the effect can be explained by
memory pressures indicated by the max heap utilization. As
each concurrently running task has to compete for a fixed
sized heap, increasing task concurrency leads to more GC
overheads, curtailing the benefits of the increased parallelism.
Tasks for WordCount, though not bottlenecked by memory,
suffer from CPU and disk bottlenecks.
Observation 3: Resource bottlenecks including CPU, I/O, and
memory must be considered while setting Task Concurrency.
3.3 Cache and Shuffle memory
We explore impact of the memory allocated to the internal
memory pools of Cache Storage and Task Shuffle in Figure 6.
Since Spark uses a unified memory pool [41] to manage both,
we vary a single parameter that changes the fraction of heap
allocated to the unified pool. Further, we single out the ap-
plications K-means, SVM, and PageRank for the analysis
of Cache Capacity as they predominantly use cache. Appli-
cationsWordCount and SortByKey on the other hand, are
analyzed for the shuffle memory since they use the unified
memory pool exclusively for shuffle objects.

It can be noticed that an increase in Cache Capacity results
in performance gains for each of the K-means, SVM, and
PageRank before either the performance plateaus or contain-
ers run out of memory. We include a plot showing Cache Hit
Ratio which gives a ratio of the number of data partitions
found in cache over the total number of partitions requested
to be cached. It shows SVM can fit 100% partitions in cache
with a capacity over 0.5, the point where its performance
plateaus. K-means hits the memory bottleneck before it can
attain a ratio of 1. GC overheads, derived by averaging the
fraction of time spent by tasks in GC processes, also indicate
a sharp rise before containers fail at a Cache Capacity of 0.8.

Research 18: Main Memory Databases and Modern Hardware SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1671

0 0.20.40.60.8 1
0.5
1

1.5
2

Sc
al
ed

Ru
nt
im

e
(a)

0 0.20.40.60.8 1
0.4
0.6
0.8
1

M
ax

H
ea
p
U
til

(b)

0 0.20.40.60.8 1

0.2
0.4
0.6

G
C
O
ve
rh
ea
ds

(c)

0 0.20.40.60.8 1
0

0.5

1

Ca
ch
e
H
it
Ra

tio

(d)

WordCount SortByKey K-means SVM PageRank

Figure 6: Impact of Cache Capacity and Shuffle Capacity on runtime (a), maximum heap utilization (b), and av-
erage per task GC Overheads (c). X-axis represents Shuffle Capacity as a fraction of Heap for WordCount and
SortByKey. On other applications, it represents Cache Capacity. The cache hit ratio is displayed in plot (d).

0 2 4 6 8
0

0.2

0.4

G
C
O
ve
rh
ea
ds

Figure 7: Impact of NewRatio on GC
Overheads for K-meanswith a Cache
Capacity of 0.6. Error bars indicate
standard deviation.

0.1 0.2 0.3

1

2

3

N
ew

Ra
tio

(a) Runtime (min)

22
24
26
28
30

0.1 0.2 0.3

1

2

3

(b) GC Overheads

0.1
0.2
0.3
0.4

Figure 8: Impact of NewRatio and Shuffle Capacity on runtime (a) and
GC Overheads (b) for SortByKey

Figure 9: Comparingmemory usage timeline for a con-
tainer having NewRatio=2 (left) with a container hav-
ing NewRatio=5. The left side configuration is more
prone to failures due to physical memory usage ex-
ceeding limit set by resource manager.
Observation 4: Leave sufficient memory for tasks while opti-
mizing for cache storage.
Analysis of shuffle memory throws the most counter-

intuitive result for SortByKey where assigning more shuf-
fle memory leads to performance degradation. Tasks run-
ning the reduce stage of SortByKey use memory for the
in-memory sort operation. If the allocation is insufficient,
tasks use an external merge-sort by spilling partially sorted
records to disk and merging them later. Although increasing
shuffle memory leads to lowering the number of spills, in-
creased size of each spill puts more pressure on GC. Tasks
can be seen to spend 60% time doing GC when the Shuffle
Capacity is 0.6. We reason this further in the next subsection.
3.4 Interactions with GC settings
JVM’s heap organization corresponds well to the cache re-
quirements: As the cached objects reside in memory for
a long time, they are served the best off the Old pool of
JVM [40]. In [22], we study the interaction between Old size
and Cache Capacity. The key result is presented next.

Observation 5: Sizing Old smaller than Cache Storage can
lead to huge GC overheads.
The analysis above tells us to set Old size higher than

Cache Storage but how high should it be? It turns out, high
values lead to increased GC overheads due to the frequent
collections. Figure 7 analyzesK-meanswith a Cache Capacity
of 0.6 with NewRatio increased from 1 to 8. Setting NewRatio
to 2 provides the best outcome since it just fits the cache.
The higher NewRatio settings, despite adding GC over-

heads, can help prevent containers exceeding the physical
memory usage limit set by the resource manager. Referring
to Figure 9, low value of NewRatio implies a lower frequency
of GC which results in on-heap references to the objects
created in off-heap space (e.g., Native ByteBuffers used in
network transfers) getting collected less frequently. It causes
the physical memory usage (magenta line) to grow more
rapidly, and in some cases, exceeding the maximum physical
memory cap (yellow line).
Observation 6: Old capacity values larger than Cache Stor-
age present a trade-off between performance and reliability.

The shuffle memory use case is very different to the cache
storage. While the cached objects have a long life, shuffle
objects have a very short time span since tasks repeatedly
spill the partially aggregated/ sorted results to disk. Setting
Shuffle Capacity larger than Eden pool size necessitates a
full GC every time a task spills. Figure 8 plots the runtimes
and the GC overheads for SortByKey executed with Shuffle
Capacity ranging from 0.05 to 0.3. The NewRatio value is
increased from 1 to 3 causing the Eden capacity to go down
from 37% to 18% of Heap. It should be noted that Eden con-
tains not only the shuffle objects but also other task objects,

Research 18: Main Memory Databases and Modern Hardware SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1672

Figure 10: Application tuning process in RelM

making it hard to estimate its occupancy. A good heuristic
could be to set the shuffle memory to 50% of Eden.
Observation 7: Shuffle Capacity larger than (50% of) Eden
can lead to huge GC overheads.
4 RELM TUNER
The goal of RelM tuner is to recommend a setup of memory
pools which ensures a reliable and fast performance. In par-
ticular, RelM meets the following objectives:
(1) Safety: Resource usage should be within allocation.
(2a) High task concurrency: Maximize the number of con-
currently running tasks after ensuring (1).
(2b) High cache hit ratio: Provision sufficient memory for
cache storage after ensuring (1).
(3) Low GC overheads: Limit the time spent by tasks in GC
processes after ensuring (1), (2a), and (2b).
The criteria suggest a priority of goals. Safety is of fore-

most concern as it has the highest implications to the appli-
cation performance. We rank the goals (2a) and (2b) at the
same level. Depending on application characteristics, per-
formance is primarily a function of either one of them or
both (Section 3). While the former is constrained by each of
the CPU, memory, I/O bottlenecks, the latter is constrained
by the memory provisioned alone. The goal of low GC over-
heads is ranked the lowest in the scheme of things: Based
on the settings used to meet high priority goals, we tune the
parameters affecting GC overheads.

It should be noted that we do not pursue a goal of lowering
shuffle data spillage here. Based on an extensive empirical
study carried out by Iorgulescu et. al. [18] on Hadoop, Spark,
Flink, and Tez frameworks—in addition to our own evalua-
tion presented in Section 3—it is evident that the memory
provisioned for data shuffle has a limited positive impact on
application runtime. Moreover, high values for shuffle mem-
ory could lead to GC bottlenecks as shown in Section 3.4.
We avoid these overheads by tuning shuffle memory and GC
pool settings together as part of the goal (3).
RelM relies on a profile of application run to understand

the resource requirements. The statistics derived from this
run are used in evaluation of all combinations of container
sizes, application memory pools settings, and JVM configu-
rations using analytical modeling. We first comment on the
container sizes we enumerate. We support multiple homoge-
neous containers carved out of a single node with the node

Table 5: Statistics derived from an application profile
Notation Description Example
N Containers per Node 1
Mh Heap size 4404MB
CPUavд Average CPU usage 35%
Diskavд Average disk usage 2%
Mi Code Overhead 90%ile value 115MB
Mc Cache Storage 90%ile value 2300MB
Ms Task Shuffle 90%ile value 0MB
Mu Task Unmanaged 90%ile value 770MB
P Task Concurrency 2

H
Cache Hit Ratio (the fraction of cached
data partitions actually read from cache) 0.3

S
Data Spillage Fraction (the fraction of
shuffle data spilled to disk) 0

memory distributed equally as shown in Figure 1. This gives
us a small finite number of container size configurations.
Example. Amazon EMR’s m4.large nodes set the maximum
memory for resource manager to 6GB with a minimum allo-
cation size of 1GB. The possible container configurations in
this case, listed as (Containers per Node, Heap Size), are: (1,
4404MB), (2, 2202MB), (3, 1468MB), and (4, 1101MB). Rest of
the memory is left for OS overheads.

Figure 10 describes the steps in tuning.
1 Application profile is processed by the Statistics Generator
to derive a set of statistics listed in Table 5. (Section 4.1)

2 The Enumerator module runs each container size configu-
ration through Initializer and Arbitrator.

3 Given a container size and the statistics from application
profile, the Initializer module sets initial settings for mem-
ory pools optimizing each pool independently. (Section 4.2)

4 The Arbitrator arbitrates memory assigned to various pools
by the Initializer in order to ensure reliability and low GC
overheads. It also calculates a utility score for the resulting
configuration. (Section 4.3)

5 Finally, the best settings for each of the probed container
configurations are ranked by Selector based on their utility
score and the best is returned as the final recommendation.
4.1 Statistics Generation
We use Thoth [21] framework to obtain a profile of the ap-
plication which includes the JVM GC profile [38] as well the
resource usage timeline generated using IBM’s PAT tool [36]
for each container in addition to the application event log
profile generated by the application framework. Table 5 lists
the statistics for an application. We leave a detailed expla-
nation of the statistics to the technical report [22], instead
provide an example for illustration.
Example. Statistics for the PageRank application studied in
Section 3 are listed in the third column of Table 5. It can be
noticed that the application has a high Cache Storage require-
ment indicated by a high Mc and a low H . Further, a high
Mu indicates a high task memory footprint which makes the
application susceptible to out-of-memory errors.

Research 18: Main Memory Databases and Modern Hardware SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1673

Importance of full GC events: In case the provided ap-
plication profile contains no full GC events (significant of
an application with very low memory footprint), estimat-
ing Mu accurately becomes hard. One solution is to base
the calculations on maximum Old pool occupancy. This ap-
proach, though, leads to an over-estimation of task memory
requirements and in effect, sub-optimal, albeit reliable rec-
ommendations provided by the RelM tuner. An empirical
analysis is included in [22]. Based on the empirical evidence,
we discard using Old pool occupancy to estimate Mu . In-
stead, we recommend simple changes to the configuration
used for profiling based on three practical heuristics for in-
creasing GC pressure: (a) Decrease Heap Size, (b) Increase
Task Concurrency, and (c) Increase NewRatio. The new pro-
file generated using the heuristics is expected to contain full
GC events, making it more suited to the RelM tuner.
4.2 Initializer
We use the statistics presented in Table 5 to configure each
memory pool for a given container configuration identified
by the Containers per Node n and the Heap Size of eachmh .
Notation of small letters is used to differentiate the test con-
figuration from the profiled configuration. A safety factor δ
denotes a fraction of memory to be kept unassigned. It acts
as a safeguard against out-of-memory errors. The Initializer
uses analytical models to configure each of Cache Storage,
Task Shuffle, and Task Unmanaged independently. Mem-
ory pressures and potential GC bottlenecks in the resulting
configurations are handled by the Arbitrator module later.
Cache storage. Cache Storage requirement is determined by
scaling the maximum cache storage observed in the applica-
tion profile by the cache hit ratio number.

mc =mh ∗min
(Mc

H ∗Mh
, 1 − δ

)
(1)

Shuffle memory. We estimate Task Shuffle by scaling the
maximum shufflememory observed in the application profile
by the data spillage fraction. It is assumed that each concur-
rently running task is an equal contributor to the spillage.

ms = min
(Ms

1 − S/P
, (1 − δ) ∗mh

)
(2)

GC settings. The Old pool of JVM needs to be sized at
least as big as the long term requirements, viz. Mi andmc ,
in order to lower the GC overheads (Section 3.4). The GC
parameter NewRatio(NR) is set accordingly. Eden size is
calculated by subtracting two survivor spaces specified by
SurvivorRatio(SR) from Young pool size.

NR =ceil
(Mi +mc

mh −Mi −mc

)
mo =mh ∗

NR

NR + 1
,me =mh ∗

1
NR + 1

∗
SR − 2
SR

(3)

Task Concurrency. Task concurrency in a container is esti-
mated based on the following stats obtained from the appli-
cation profile: (a) avg CPU usage per task, (b) avg disk usage

per task, and (c) max per-task memory required. The models
assume a linear relation to obtain a conservative estimate.
pCPU =

1
n

(1 − δ) ∗ 100
CPUavд/P

, pdisk =
1
n

(1 − δ) ∗ 100
Diskavд/P

pmem =
(1 − δ) ∗mh

Mu
, p = min(pCPU ,pdisk ,pmem)

(4)

Example. The PageRank application studied in Section 3 when
evaluated on the container configuration of n = 1 andmh =

4404MB, with safety factor δ = 0.1, generates:
mc = 3798MB,ms = 0MB,p = 5,NR = 9 (5)

4.3 Arbitrator
Building on the empirical analysis in Section 3, we build a
general algorithm to tune a given configuration for reliability
and low GC overhead. Algorithm 1 presents the pseudo-code.
Algorithm 1 RelM Arbitrator

Input: Configuration c = (Mi ,Mu ,p,mc ,ms), Safety
factor δ

1: if (Mi +Mu) > (1 − δ) ∗mh then
2: Return flagging insufficient memory
3: end if
4: while (Mi + p ∗Mu +mc) > mo do
5: one of the following three in a round-robin manner:
6: I. Decrease p by 1 if p > 1
7: II. Reducemc byMu ensuring thatmc > 0.
8: Change GC pools using Equation 3.
9: III. Increasemo byMu ensuringmo < (1 − δ) ∗mh
10: end while
11: Set shuffle memoryms = min(ms , 0.5 ∗me/p)
12: Set output C = (Mi ,Mu ,p,mc ,ms)

13: Set utility score UC =
Mi+mc+p∗(Mu+ms)

mh
14: Return (C, UC).
Line 1 checks if the configuration satisfies the bare mini-

mum requirement of a container running at least one task
at any given time. Lines 4-10 represent the main loop where
actions to change configuration are carried out if the com-
bined memory consumed by Code Overhead, Cache Storage,
and Task Unmanaged exceeds Old. Please recall that the
task memory values are obtained by profiling full GC events
and correspond to the task objects tenured to Old. If the
combined memory exceedsmo , we perform one of the three
actions given in Lines 6, 7, and 9 in a round-robinmanner:
• Decrease Task Concurrency by 1. This reduces the mem-
ory footprint byMu .

• Decrease Cache Capacity byMu . We also adjust GC pools
so that Old pool is just larger than the valueMi +mc . The
idea is to probe if an optimal GC setting for the given
Cache Storage value can ensure safety as well.

• Increase old generation pool size byMu . This optimization
trades-off performance to ensure safety against out-of-
memory errors (Recall Observation 6 from Section 3.4).

Research 18: Main Memory Databases and Modern Hardware SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1674

p
: 5
,m

c
:3
.7
G
B
,N

R
:9

(1)

p
:4
,m

c
:3
.7
G
B
,N

R
:9

(2)

p
: 4
,m

c
:3
G
B
,N

R
:3

(3)

p
: 4
,m

c
:3
G
B
,N

R
:9

(4)

p
:3
,m

c
:3
G
B
,N

R
:9

(5)

p
: 3
,m

c
:2
.3
G
B
,N

R
:2

(6)

p
:3
,m

c
:2
.3
G
B
,N

R
:6

(7)

p
:2
,m

c
:2
.3
G
B
,N

R
:6

(8)

p
: 2
,m

c
:1
.5
G
B
,N

R
:1

(9)

p
: 2
,m

c
:1
.5
G
B
,N

R
:3

(10)

mo Mi mc p ∗Mu mh

Figure 11: Working example showing steps of RelM’s Arbitrator algorithm on PageRank application
At the end of the loop, settings for Task Concurrency,

Cache Capacity, and NewRatio are locked in. Based on the
available Eden, Task Shuffle is tuned in Line 11 which avoids
the high GC overheads explained in Figure 8. Finally, Line 13
computes a utility score U which corresponds to the fraction
of Heap allocated to the internal memory pools.
Example. Continuing with the PageRank example for which
the configuration produced by the initializer is given in Eq. 5.
Figure 11 details the changes in memory pools starting with
the initial configuration shown in (1). After 9 iterations of the
main, a reliable configuration is found which sets Task Con-
currency = 2, Cache Capacity = 1.5GB, and NR = 3. Compared
to the profiled application run, this configuration lowers the
cache capacity by 700MB. This, however, is not the only reliable
configuration RelM finds: A better performing configuration
is obtained when the process is repeated on a configuration of
2 Containers per Node. Section 6.2 presents this result.
Analysis: As stated in RelM goals, safety is the primary
objective. The Arbitrator meets this objective by ensuring
that the combined allocation of internal memory pools re-
mains within Heap. The next two performance objectives, a
high task concurrency and a high cache hit ratio, are achieved
by a two-phase process. Initializer first optimizes the Task
Unmanaged and Cache Storage pools corresponding to the
two requirements independently against the entire heap size.
Arbitrator then takes small chunks out of the two pools in a
round-robin manner until it can meet the safety condition.
This process results in a proportionally fair [4] allocation
for the two memory pools. The arbitration is invoked for
each enumerated container configuration which is a small
number because of the physical constraints in resource al-
location. Within an invocation, the number of iterations of
the main loop is a linear function of the maximum degree of
parallelism (number of cores) in the worst case. So overall,
the algorithm needs only a handful steps to recommend a
configuration that best meets the goals.
5 BLACK-BOX TUNERS
AI-driven black-box formulation is a popular choice for auto-
tuning because of its applicability to a wide variety of prob-
lem setups. The basic idea is to incrementally probe samples

from the space of configurations to learn their impact on per-
formance. We adopt two popular techniques to our problem:
(1) A sequential model-based optimization called Bayesian
Optimization, and (2) A model-free deep reinforcement learn-
ing algorithm called Deep Distributed Policy Gradient.
5.1 Bayesian Optimization
Bayesian Optimization [31] is a powerful learning technique
which approximates complex response surface through adap-
tive sampling of the search space while balancing exploration
(i.e., probing new regions) and exploitation (i.e., favoring the
promising regions). At the core of BO is a surrogate model
used to approximate the response surface. Gaussian Pro-
cess [45] is an attractive choice because of its salient features
such as confidence bound on predictions, support for noisy
observations, and its use gradient-based methods [48].

We are given a data analytics application A and d param-
eters x1, x2, . . . , xd to tune. The parameters are listed in Ta-
ble 1. The performance metric, denoted by y, corresponds
to the wall-clock duration of the application A on a setting
(x1, x2, . . . , xd) ∈ X. Tuning is carried out by adaptively
collecting samples ⟨x,y⟩ = ⟨x1 = v1, x2 = v2, . . . , xd =
vd ,y = p⟩. The prior belief in Gaussian Process is modeled
as f (x) ∼ GP(µ0,k), where µ0 : X → R denotes the prior
mean function and k : X × X → R denotes the covariance
function. Given n sampled points x1:n and noisy observa-
tions y1:n (σ 2 denoting a constant observation noise), the
unknown function values f := f1:n are assumed to be jointly
Gaussian, i.e. f |x ∼ N(m,K), and the observations y := y1:n
are normally distributed given f , i.e. y|f,σ 2 ∼ N(f,σ 2I). The
posterior mean and variance are then given by the following:

µn(x) = µ0(x) + k(x)⊤(K + σ 2I)−1(y −m)

σ 2
n(x) = k(x, x) − k(x)⊤(K + σ 2I)−1k(x)

(6)

where k(x) is a vector of covariance between x and x1:n .
An acquisition function provided by BO suggests the next

probe based on the posterior. Expected Improvement (EI),
defined below, is a popular choice for the acquisition.

EI (x; x1:n,y1:n) = (τ − µn(x))Φ(Z) + σn(x)ϕ(Z) (7)
Here, τ denotes the current best, Z = (τ − µn(x))/σn(x), and
Φ and ϕ are the standard normal cumulative distribution

Research 18: Main Memory Databases and Modern Hardware SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1675

Figure 12: Design of Guided Bayesian Optimization

and density functions respectively. The next sample will try
to balance exploration, captured by the uncertainty σn(x),
and exploitation, captured by (τ − µn(x)). A combination
of random sampling and standard gradient-based search is
carried out to find the highest expected improvement [31].
5.2 Guided Bayesian Optimization
Recent work has shown that using execution profiles along
with a knowledge of system internals can help speed up the
tuning process significantly. Dalibard et. al. [10] propose
Structured Bayesian Optimization (SBO) which lets system
developers develop bespoke probabilistic models by includ-
ing simple parametric models inferred from low-level perfor-
mance metrics observed during a tuning run. Arrow [16], tar-
geted at finding best VM configurations, augments a bayesian
optimizer driven by VM characteristics with low-level per-
formance metrics. Following in with the same philosophy,
we design Guided Bayesian Optimization (GBO) to tune
memory-based analytics applications.

Figure 12 shows the concept of GBO. The most important
building block of GBO is a white-box model which is given
a configuration and a set of profiled statistics for the applica-
tion under test. The model outputs a set of derived metrics
which is used in addition to the original configuration op-
tions for the optimization. The additional metrics are derived
using simple analytical models with the purpose of separat-
ing out the most suitable region of configuration space from
the more expensive region. Compared to SBO [10], which
requires a system expert to design a parametric model by
observing the system performance while tuning, GBO sim-
plifies the process with a white-box model that can be used
right from the beginning on any type of workload.
Guiding white-box model: The model used as a guide, Q ,
is based on the empirical analysis carried out in Section 3.
Inputs to the model include: (a) Configuration options under
test (x), and (b) Profiled statistics from a prior execution, not
necessarily using the same configuration (Table 5).

qx1 =
Mi +min(mx

c ,mc) + p
x ∗ (Mu +min(mx

s ,ms)

mx
h

)

qx2 =
Mi +mc

min(mx
o,m

x
c)
, qx3 =

px ∗min(mx
s ,ms)

0.5 ∗mx
e

qx = {qx1,q
x
2,q

x
3}

(8)

Q generates three metrics as listed in Eq. 8. q1 corresponds
to the expected heap occupancy of a container. The numera-
tor adds up the expected memory usage by every application

level memory pool. The Cache Storage and Task Shuffle re-
quirements (denoted bymc andms) are modeled by Eq. 1 and
Eq. 2 respectively. The intuition is to identify both the config-
urations under-utilizing memory (those with low scores) as
well as the potentially unsafe ones (those with scores over 1).
q2 corresponds to the expected long term memory efficiency.
Here, the numerator corresponds to the long term require-
ment while the denominator corresponds to the available
long term memory storage considering the limits enforced
by the configuration options. A high q2 could mean either
high disk overheads on account of data not fitting in memory
or high GC overheads on account of data not fitting in Old
pool. q3 corresponds to the efficiency of the shuffle memory
usage. Based on Observation 7, a high q3 score implies a high
GC overhead because of the large-sized data spills.

The set of metrics derived by modelQ is designed to be the
most practical means to identify safe, highly efficient, and
low overhead configurations in accordance with the goals
set out by RelM. This set could be expanded to add more
indicators of the RelM goals in future.
Changes to surrogatemodel: The surrogate model is mod-
ified to fit metrics from model Q , i.e., GP(x1:n, q1:n,y1:n). As
before, the next probe is identified using the Expected Im-
provement score.

xn+1 = argmax
x∈X

EI (x, qx; x1:n, q1:n,y1:n) (9)

5.3 Reinforcement Learning
Reinforcement Learning (RL) involves an agent that inter-
acts with an environment E in discrete timesteps. At each
timestep t , it makes an observation, takes an action at , and
receives a reward rt . The action changes the state of the en-
vironment to st . We first map the terminology to our setup
before describing the specific RL agent we use.
For the problem of tuning a given data analytics applica-

tion, an action constitutes a change in configuration knobs
(listed in Table 1). Similar to the approach used in CDB-
Tune [60] for DBMS tuning, a state corresponds to a set of
resource usage metrics. The statistics on CPU, IO, and mem-
ory usage listed in Table 5 constitute one half of the metrics.
Following the philosophy of GBO, we add to this set the
metrics derived from model Q (Eq. 8) to get a visibility into
utilization of the internal memory pools. The reward func-
tion is borrowed from CDBTune as well; it considers the
performance change at not only the previous timestep but
also compared to the time tuning request was made.
DDPG Overview: Deep Deterministic Policy Gradient [28]
is a policy-based model-free RL agent which combines Deep
Q Neural Network with Actor-Critic models to work with
continuous configuration parameter space. The DDPG actor
learns a policy function at = µ(st |θ

µ), where θ µ maps state st
to value of action at . A critic function Q(st ,at |θ

Q) evaluates
the policy function estimated by the actor. Evaluation of

Research 18: Main Memory Databases and Modern Hardware SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1676

Figure 13: Reinforcement learning adopted for auto-
tuning memory-based analytics
the value considers not only the current reward but also
discounted future rewards. DDPG uses an experience replay
memory to store the explored state-action pairs and uses a
sample from the memory for learning its critic model.
DDPG, being a model-free algorithm, does not need to

store all the combinations of states and actions it has ex-
plored. Exploration of action space is carried out by adding
a noise sampled from a noise process N to the actor µ.
6 EVALUATION
6.1 Setup
Our evaluation uses two Spark clusters listed in Table 3. The
applications we have picked represent Map and Reduce com-
putations, machine learning, distributed graph processing,
and SQL processing use cases. The test suite including input
data sources is provided in Table 2. The input data is stored
in HDFS co-located with the compute cluster. We have delib-
erately changed partition sizes for some of the applications
from the default HDFS block size of 128MB to create another
dimension of variability in the test suite.
Configuration Space. The maximum heap available for
allocation per node is 4404MB on cluster A and 16GB on
cluster B. We allow it to be distributed equally among 1, 2,
3, or 4 Containers per node. The number of concurrently
running tasks on a node is limited by the number of physical
cores. Therefore, the Task Concurrency value can range from
1 to the ratio of the physical cores to the number of containers.
Cache Capacity and Shuffle Capacity values are set as a
fraction (ranging from 0 to 1) of Heap. As Spark provides a
unified memory pool [41] combining both Cache Storage
and Task Shuffle, we set the capacity of the unified pool to
the sum of Cache Capacity and Shuffle Capacity. The lowest
possible value for NewRatio is 1. The maximum value, while
unbounded in theory, is limited to 9 (giving 10% heap to the
young pool) in our setup. SurvivorRatio is set to default.
Default Policy. The default configuration byAmazon EMR’s
MaxResourceAllocation policy is listed in Table 4.
Exhaustive Search. Our exhaustive search policy grids
the configuration space by discretizing the domain of each
parameter into 4 values. Only one of Cache Capacity and
Shuffle Capacity is used depending on the dominant require-
ment of the application just to avoid collecting insignificant
data. The minor memory pool capacity is set to 0.1. Despite
the dimensionality reduction, Exhaustive Search is clearly an

WordCountSortByKey K-means SVM PageRank

0
2
4
6
8 14

9

20
25

11
6 8 10 9

74 5 5
6

41 1 1 1 1Ti
m
e
as

%
of

Ex
ha

us
tiv

e
Se
ar
ch

Figure 14: Training overheads of tuning policies. Num-
ber of iterations is shown on top of bars.

WordCount SortByKey K-means SVM PageRank

0.4

0.6

0.8

1
2

1

2
2

2

Sc
al
ed

Ru
nt
im

e

MaxResourceAllocation DDPG Exhaustive
BO GBO RelM

Figure 15: Runtime of every recommended configura-
tion is scaled to the runtime ofMaxResourceAllocation.
Number of failed containers is shown on top of bars.

inefficient policy: The time taken to run all 192 configura-
tions for an application on cluster A is at least 3 days.
Black-box Policies. Bayesian Optimization (BO) is imple-
mented using scikit-learn library in Python [43]. Since the ac-
curacy of BO predictions depends on the number of samples
explored, we bootstrap the model with 4 samples generated
using Latin Hypercube Sampling [19] The objective function
is set to the application runtime. If a run is aborted due to
errors, the objective value for the sample is set to twice the
worst runtime obtained on the samples explored so far. This
heuristic ensures that the failing region is ranked low during
exploration. The same setup is mimicked for our optimized
policy of Guided Bayesian Optimization (GBO).

Reinforcement learning (DDPG) is another black-box pol-
icy we evaluate. DDPG algorithm described in Section 5.3
is implemented using PyTorch [42] library with its neural
network parameters borrowed from CDBTune [60].
White-box Policy. RelM is our white-box model. Modules
Initializer and Arbitrator are implemented in Java with ≈ 200
lines of code; the source is available online [39]. The safety
fraction δ is set to 0.1 throughout.
6.2 Quality of Results
The first question we want to answer is how long does it
take to produce high quality tuning results?. We carry
out Exhaustive Search on Cluster A and use it as a baseline
for other policies. The black-box policies are trained on each
application individually until they find a configuration with
performance within top 5 percentile of the baseline. The
process is repeated 5 to 10 times and only the mean values
of overheads are plotted in Figure 14.

Research 18: Main Memory Databases and Modern Hardware SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1677

0 10 20
10

20

30

Number of Samples

Ti
m
e
(m

in
) MaxResourceAllocation

DDPG

BO

GBO

Top 5 percentile

Figure 16: Convergence of tuning policies for K-means.
Each tuner is run 5 times; themean, min, andmax val-
ues for the lowest runtime observed so far are plotted.

Table 6: Recommendations made for K-means
Policy Containers

per Node
Task

Concurrency
Cache

Capacity
New
Ratio

Exhaustive 3 2 .8 7
DDPG 1 4 .6 4
BO 3 1 .75 3
GBO 3 1 .8 5
RelM 2 2 .68 4

Table 7: Analysis of a BO run for SVM.
Sample # Containers

per node
Task

concurrency
Cache
capacity

New
Ratio

Runtime
(minutes)

0 1 4 0.6 7 8.5
0 2 1 0.4 3 9.3
0 3 2 0.2 5 7.1
0 4 2 0.8 1 13
1 4 2 0.2 5 7.3
2 2 3 0.2 7 7.5
3 3 2 0.2 3 6.6
4 3 2 0.2 1 6.5
5 2 3 0.2 1 6.7
6 2 4 0.2 1 7

Table 8: Comparing tuning algorithm overheads
Component DDPG BO GBO RelM
Statistics Collection 5ms 1ms 5ms 5ms
Model Fitting 100ms 140ms 180ms 0.1ms
Model Probing 2ms 800ms 1500ms 0.02ms
Model Size 3Kb 5Kb 6Kb -

RelM needs a single application run in each case to an-
alytically find a desired configuration. So it has the lowest
overhead. The regression policies, BO and GBO, require less
than 4% of the effort needed for Exhaustive Search with GBO
being about 2 times faster. TheDDPG policy takes longer, but
still less than 10% time compared to the exhaustive search.
Compared to BO, DDPG can be seen to take longer to

optimize. Figure 16 shows an example run showing how the
policies converge. For the first 12 iterations, DDPG tries out
configurations with lower values for Cache Storage with
very low rewards. Post which, it starts exploring higher val-
ues for cache, higher rewards follow, and the model con-
verges to the desired performance. Between BO and GBO,
we observe that GBO model fits data earlier compared to
BO. Our technical report [22] carries out an analysis using a
validation set which corroborates the observation.

The second question we want to analyze is how much
performance improvement is exhibited by our tuning

policies?. We use a stopping criteria for black-box explo-
ration policies: Bayesian policies are executed until the ex-
pected improvement falls below 10% and at least 6 new sam-
ples have been observed in addition to the 4 LHS samples [3];
DDPG is similarly stopped when it has observed 10 new sam-
ples. Although both the policies are capable of re-using mod-
els from prior tuning runs, we train them with a cold start
in this evaluation; model re-use is discussed in Section 6.5.
Figure 15 compares the performance. RelM consistently

achieves a runtime within 10% of the best configuration
found using Exhaustive Search. Moreover, RelM ensures no
containers run out of memory. Table 6 lists the recommen-
dations for K-means. It can be noted that a high memory
is allocated to Cache Storage by the policies of Exhaustive,
BO, and GBO leaving very small memory for other objects
thereby risking out-of-memory failures.

The performance improvement over the default setup, in
most cases, is between 50%-70%. In the case of SVM, however,
BO and GBO policies find configurations that are better
than the default ones by only 10% and 20% respectively. This
happens due to exploration hitting a local minima.
Black-box models can get stuck in a local minima.
We saw an example earlier where DDPG took a long time to
explore a region outside a local optima. Here, we note that
the quality of results of BO, to a large extent, depends on the
initial samples used in bootstrapping. We provide a log of
BO run for SVM in Table 7. Based on the initial samples, BO
pins down the Cache Capacity to 0.2 and continues exploring
the other parameters. The application requires a capacity
over 0.5 to fit in the entire cached data in memory. While this
fact is captured in the white-box models of RelM, BO fails
to explore this region. GBO, though not exempt, tends to
come out of a local minima quicker because of the additional
features from model Q guiding the exploration.
6.3 Algorithm Overheads
Overheads presented in Figure 14 are largely dominated by
observation (stress testing) times. We focus on the other com-
ponents here, viz. (1) Statistics collection, (2) Model fitting,
and (3) Model probe. Table 8 compares one iteration from
each algorithm. Except BO, all algorithms involve collecting
internal resource usage statistics to build either white-box
models or state metrics.

While model fitting involves an update of the actor-critic
networks in DDPG, it requires an update of Gaussian Pro-
cess with a new observation in BO. The higher overhead for
GBO compared to BO is down to the added dimensionality
due to model Q . The same is true when probing the model
which involves computing expected improvement on a sam-
ple of configuration space. These numbers show why the BO
regression model is not suited for high dimensional spaces.
In the case of RelM, both model fitting, which evaluates

a small series of analytical models, and model probe, which

Research 18: Main Memory Databases and Modern Hardware SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1678

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14Q15Q16Q17Q18Q19Q20Q21Q22

2

4

6
Ru

nt
im

e
(m

in
)

MaxResourceAllocation RelM

Figure 17: Performance comparison of TPC-H Queries run usingMaxResourceAllocation policy and using RelM.

WordCountSortByKeyK-means SVM PageRank

108

109

M
em

or
y
(B
yt
es
)

Mi Mu

Figure 18: Analyzing sensitivity to the initial profile
by invoking RelMwith 16 unique initial profiles. Error
bars indicate the standard error of the mean.

involves looping through a small handful of container config-
urations, are inexpensive. We performed a small scalability
test by artificially creating 100 container configurations, a
considerably large number compared to the practical cluster
setups. The model probe time goes up to 10ms which, though
is a considerable increase from our test environment, is a
small overhead when compared to other algorithms.
The black-box models can be saved for later use if an

application similar to previously seen one is to be tuned. We
compare the storage overhead of the models for the same.
WhileDDPG stores the learned parameters of the actor-critic
neural network, BO stores the entire training data. Though
the last row of Table 8 shows that both DDPG and BO have a
small storage overhead, the size of BO model grows linearly
with training data making it suitable only when the number
of samples used for training is small.
6.4 Analysis of RelM
As shown in Figure 15, RelM can handle different workload
types. We also evaluate TPC-H benchmark workload on
Cluster B to further press the point. As seen from Figure 17,
the workload when executed using MaxResourceAllocation
takes a total of 66 minutes. Using profile of this run, RelM
cuts the runtime down to 40 minutes, a saving of 40%.
Section 4.1 discussed the importance of full GC events

in the profile. We include a plot in Figure 18 showing the
variability in the estimates of Code Overhead (Mi) and Task
Unmanaged (Mu) pools by using different profiles contain-
ing full GC events. It is shown that the estimated memory
requirements have little variance. The algorithm, as a result,
recommends the same (with minor changes) configuration.
6.5 Generality of models
We analyze how our tuning policies adapt to a new envi-
ronment or a new workload. As RelM takes a profile-based
white-box approach to tuning, it needs at least a single run in

DDPGB
A DDPGB

B DDPGs2
s1 DDPGs2

s2

0

5

10

Ru
nt
im

e
(m

in
)

Figure 19: Studying generality of DDPG by applying it
to a different cluster and to a different input dataset
the test environment. We have shown that a single profiling
run is often sufficient as well since it contains enough infor-
mation of the expected memory usage of both the resource
containers and internal memory pools. Adaptability of RelM
is evident from tests carried out on varied computational
patterns, data layout (partition size), and resource clusters.
Black-box tuning policies, however, need to find ways to

generalize models in order to reduce the stress testing time.
OtterTune [2] re-uses Bayesian model trained on a prior
workload by mapping the present workload based on the
measurements of a set of external performance metrics. The
OtterTune strategy is replicated in our setup by matching
two applications based on the performance statistics (shown
in Table 5) derived on the default configuration. However, the
saved regression models cannot be adapted to the changes
in hardware configuration and input data.

Unlike the performance-based regressionmodel of BO, the
DDPG model is trained using reward-feedback. It, therefore,
showcases better adaptability to changes in test environment.
We present an evaluation in Figure 19. First, we use a model
trained on Cluster A to cross test the same workload, SVM
application in this case, on Cluster B (denoted by DDPGB

A).
Its output is compared with the output produced by a model
trained on Cluster B (DDPGB

B). The cross testing is allowed
to use only 5 test samples. By using the insights gained
during prior training, the DDPG policy can quickly adapt to
the hardware changes. Another experiment carried out by
changing the input data scale factor for SVM workload on
Cluster B (from s1 to s2) shows similar observation.
Summary
The tuning policies we evaluated each have their strong
points. The evaluation justifies our approach of modeling in-
teractions between the memory configuration options using
which RelM model provides a good recommendation very
quickly. Bayesian regression policies can provide optimality
guarantees at a higher training cost; with GBO speeding

Research 18: Main Memory Databases and Modern Hardware SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1679

up the exploration by 2x. DDPG policy supports an equally
powerful AI-based tuning with minimal algorithm overheads
and better adaptability to changes in environment making
it an attractive choice for tuning problems where no simple
white-box models can assist.
7 RELATEDWORK
There has been a large body of work on auto-tuning the
physical design of database systems [7] which includes in-
dex selection [8], data partitioning [44], and view material-
ization [1]. Comparatively less work has looked at on auto-
tuning the internal configuration parameters like memory
pools. Most commercial database systems provide config-
uration tuning wizards to DBAs which, based on the user
feedback on workload performance, suggest better settings
for configuration parameters using white-box models [24].
DB2 provides a Self-tuning Memory Manager (STMM) [50]
which uses analytical models to determine cost-benefits of
the internal memory pools. Oracle’s ADDM can identify per-
formance bottlenecks due to misconfigurations and recom-
mend necessary changes [11].
Recent attempts at auto-tuning systems have either fo-

cussed on building What-If performance models [15, 49, 51]
or, more popularly, on training ML-based performance mod-
els [2, 13, 29, 53–55, 60]. These models are trained either
using a small-scale benchmark test bed, historical profiles, or
from application performance under low workload. We ar-
gue that developing models that cater to changing workload
or system environment is either impractical or potentially
involves an expensive online learning cycle.

Black-box approaches are often employed to build an un-
derstanding of the interactions among configuration options
on a newly seen workload. Many search-based approaches
exist that use a combination of random sampling and local
search [5, 14, 27, 57, 61]. However, such approaches are not
suitable for our setup since there is a very high cost associ-
ated with running each experiment. Sequential Model-based
Optimization (SMBO) approach [17] helps speed up the ex-
ploration by using a surrogate model to fit existing observa-
tions and using it to recommend the next probe. Bayesian
optimization [31] is a powerful state-of-the-art SMBO tech-
nique that has found applications in many system tuning
problems [2, 3, 6, 12, 16, 20]. We adapt the Bayesian Optimiza-
tion using Gaussian Process [45] surrogate model for our
problem setup. Alternate surrogate models such as Random
Forest and Boosted Regression Trees have been shown to be
better at modeling the non-linear interactions [16]. However,
they lack theoretical guarantees on the confidence bounds
that Gaussian Process offers. Also we did not find much qual-
itative difference among the models when evaluated in our
setup and, therefore, do not include the results.

Guided Bayesian Optimization (GBO) we have developed
is heavily motivated by Structured Bayesian Optimization

(SBO) [10] which lets the system developers add structure to
the optimization by means of bespoke probabilistic models
consisting of a non-parametric bayesian model and a set of
evolving parametric models inferred from low-level perfor-
mance metrics. In comparison, GBO simplifies the process
with a white-box model that can be used from the begin-
ning of the tuning process on any workload. Another recent
work targeted at finding the best VM configurations [16]
augments a bayesian optimizer with low-level performance
metrics though without building any analytical models.

Reinforcement learning is a powerful AI technique which
is being adapted by database researchers for traditional prob-
lems such as query optimization [30] and database tuning [26,
60]. While both CDBTune and QTune use DDPG for data-
base tuning, QTune adds a featurization step for SQL query
workload to build models specific to the workload. We use
DDPG in a similar manner, though without using featuriza-
tion, since our goal is to tune each application individually.
We have focussed at the memory management options

in data analytics workloads. Most cloud-based deployments
provide robust settings that are expected to generalize well
across applications. As an example, Amazon’s Elastic MapRe-
duce (EMR) provides a default policy for resource allocation
on Spark clusters, called MaximizeResourceAllocation [34].
We establish through a thorough empirical analysis that the
framework defaults do not generalize well and leave a lot
of scope for performance improvements, a fact also shown
by others [21, 47]. Like ours, there have been a few recent
notable attempts at a systematic empirical analysis of data
analytics systems. Charles Reiss [46] carried out an extensive
evaluation of memory management in Spark and developed
a tool to provision cluster memory to satisfy maximummem-
ory requirements. Iorgulescu et. al. [18] studied memory
elasticity in Hadoop, Flink, Spark, and Tez frameworks and
used it to improve cluster scheduling. Both papers analyze
each memory pool individually unlike RelM which also con-
siders the interactions amongst the pools at multiple levels.

8 NEED FOR DATABASE PERFORMANCE
DATA SCIENTISTS

We studied the problem of autotuning the memory allocation
for data analytics applications using a state-of-the-art, AI-
driven, black-box approach and our new empirically-driven,
white-box solution called RelM. We showed how RelM pro-
vides better quality results (in terms of the desired objectives
of low wall-clock time and performance reliability) with
minimal overheads. RelM’s superior performance highlights
that tuning algorithms developed by Database Performance
Data Scientists who combine an understanding of the un-
derlying database platform with the ability to develop data-
driven algorithms must not be overlooked while building
autonomous/self-driving data processing systems.

Research 18: Main Memory Databases and Modern Hardware SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1680

REFERENCES
[1] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. 2000. Au-

tomated Selection of Materialized Views and Indexes in SQL Databases.
In Proceedings of the 26th International Conference on Very Large Data
Bases (VLDB ’00). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 496–505. http://dl.acm.org/citation.cfm?id=645926.671701

[2] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang.
2017. Automatic Database Management System Tuning Through
Large-scale Machine Learning. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu, Wenchao Zhou,
Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 1009–1024.
https://doi.org/10.1145/3035918.3064029

[3] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram
Venkataraman, Minlan Yu, and Ming Zhang. 2017. CherryPick: Adap-
tively Unearthing the Best Cloud Configurations for Big Data Ana-
lytics. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). USENIX Association, Boston, MA, 469–
482. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/alipourfard

[4] A. K. Austin. 1982. Sharing a Cake. The Mathematical Gazette 66, 437
(1982), 212–215. http://www.jstor.org/stable/3616548

[5] Liang Bao, Xin Liu, and Weizhao Chen. 2018. Learning-based Auto-
matic Parameter Tuning for Big Data Analytics Frameworks. CoRR
abs/1808.06008 (2018). arXiv:1808.06008 http://arxiv.org/abs/1808.
06008

[6] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok. 2018.
Towards Better Understanding of Black-box Auto-tuning: A Com-
parative Analysis for Storage Systems. In Proceedings of the 2018
USENIX Conference on Usenix Annual Technical Conference (USENIX
ATC ’18). USENIX Association, Berkeley, CA, USA, 893–907. http:
//dl.acm.org/citation.cfm?id=3277355.3277441

[7] Surajit Chaudhuri and Vivek Narasayya. 2007. Self-tuning Database
Systems: A Decade of Progress. In Proceedings of the 33rd International
Conference on Very Large Data Bases (VLDB ’07). VLDB Endowment,
3–14. http://dl.acm.org/citation.cfm?id=1325851.1325856

[8] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-
Driven Index Selection Tool for Microsoft SQL Server. In Proceedings of
the 23rd International Conference on Very Large Data Bases (VLDB ’97).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 146–155.
http://dl.acm.org/citation.cfm?id=645923.673646

[9] Carlo Curino, Djellel E. Difallah, Chris Douglas, Subru Krishnan, Raghu
Ramakrishnan, and Sriram Rao. 2014. Reservation-based Scheduling:
If You’Re Late Don’T Blame Us!. In Proceedings of the ACM Symposium
on Cloud Computing (SOCC ’14). ACM, New York, NY, USA, Article 2,
14 pages. https://doi.org/10.1145/2670979.2670981

[10] Valentin Dalibard, Michael Schaarschmidt, and Eiko Yoneki. 2017.
BOAT: Building Auto-Tuners with Structured Bayesian Optimization.
In Proceedings of the 26th International Conference on World Wide Web
(WWW ’17). International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, Switzerland, 479–488.
https://doi.org/10.1145/3038912.3052662

[11] Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani,
and Graham Wood. 2005. Automatic Performance Diagnosis and Tun-
ing in Oracle. In CIDR 2005, Second Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, USA, January 4-7, 2005, On-
line Proceedings. www.cidrdb.org, 84–94. http://cidrdb.org/cidr2005/
papers/P07.pdf

[12] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tun-
ing Database Configuration Parameters with iTuned. PVLDB 2, 1
(2009), 1246–1257. https://doi.org/10.14778/1687627.1687767

[13] Anastasios Gounaris and Jordi Torres. 2018. A Methodology for Spark
Parameter Tuning. Big Data Research 11 (2018), 22 – 32. https://
doi.org/10.1016/j.bdr.2017.05.001 Selected papers from the 2nd INNS
Conference on Big Data: Big Data and Neural Networks.

[14] Herodotos Herodotou, Fei Dong, and Shivnath Babu. 2011. No One
(Cluster) Size Fits All: Automatic Cluster Sizing for Data-intensive
Analytics (SOCC ’11). ACM, New York, NY, USA, Article 18, 14 pages.
https://doi.org/10.1145/2038916.2038934

[15] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang
Dong, Fatma Bilgen Cetin, and Shivnath Babu. 2011. Starfish: A Self-
tuning System for Big Data Analytics. In In CIDR. 261–272.

[16] Chin-Jung Hsu, Vivek Nair, Vincent W. Freeh, and Tim Menzies. 2018.
Arrow: Low-Level Augmented Bayesian Optimization for Finding the
Best Cloud VM. In 38th IEEE International Conference on Distributed
Computing Systems, ICDCS 2018, Vienna, Austria, July 2-6, 2018. IEEE
Computer Society, 660–670. https://doi.org/10.1109/ICDCS.2018.00070

[17] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequen-
tial model-based optimization for general algorithm configuration.
In International Conference on Learning and Intelligent Optimization.
Springer, 507–523.

[18] Calin Iorgulescu, Florin Dinu, Aunn Raza, Wajih Ul Hassan, and Willy
Zwaenepoel. 2017. Don’t cry over spilled records: Memory elasticity
of data-parallel applications and its application to cluster schedul-
ing. In 2017 USENIX Annual Technical Conference (USENIX ATC 17).
USENIX Association, Santa Clara, CA, 97–109. https://www.usenix.
org/conference/atc17/technical-sessions/presentation/iorgulescu

[19] Clarence Ireland. 1965. Fundamental Concepts In The
Design of Experiments. Technometrics 7, 4 (1965), 652–
653. https://doi.org/10.1080/00401706.1965.10490308
arXiv:https://www.tandfonline.com/doi/pdf/10.1080/00401706.1965.10490308

[20] Pooyan Jamshidi and Giuliano Casale. 2016. An Uncertainty-Aware Ap-
proach to Optimal Configuration of Stream Processing Systems. In 24th
IEEE International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, MASCOTS 2016, London,
United Kingdom, September 19-21, 2016. IEEE Computer Society, 39–48.
https://doi.org/10.1109/MASCOTS.2016.17

[21] Mayuresh Kunjir and Shivnath Babu. 2017. Thoth in Action: Memory
Management in Modern Data Analytics. Proc. VLDB Endow. 10, 12
(Aug. 2017), 1917–1920. https://doi.org/10.14778/3137765.3137808

[22] Mayuresh Kunjir and Shivnath Babu. 2020. Black or White? How
to Develop an AutoTuner for Memory-based Analytics [Extended
Version]. arXiv:cs.DC/2002.11780

[23] Mayuresh Kunjir, Brandon Fain, KameshMunagala, and Shivnath Babu.
2017. ROBUS: Fair Cache Allocation for Data-parallel Workloads. In
Proceedings of the 2017 ACM International Conference on Management
of Data (SIGMOD ’17). ACM, New York, NY, USA, 219–234. https:
//doi.org/10.1145/3035918.3064018

[24] Eva Kwan, Sam Lightstone, K. Bernhard Schiefer, Adam J. Storm, and
Leanne Wu. 2003. Automatic Database Configuration for DB2 Uni-
versal Database: Compressing Years of Performance Expertise into
Seconds of Execution. In BTW 2003, Datenbanksysteme für Business,
Technologie und Web, Tagungsband der 10. BTW-Konferenz, 26.-28.
Februar 2003, Leipzig (LNI), Gerhard Weikum, Harald Schöning, and
Erhard Rahm (Eds.), Vol. 26. GI, 620–629. http://subs.emis.de/LNI/
Proceedings/Proceedings26/article665.html

[25] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data.

[26] Guoliang Li, Xuanhe Zhou, Shifu Li, and BoGao. 2019. QTune: AQuery-
aware Database Tuning System with Deep Reinforcement Learning.
Proc. VLDB Endow. 12, 12 (Aug. 2019), 2118–2130. https://doi.org/10.
14778/3352063.3352129

Research 18: Main Memory Databases and Modern Hardware SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1681

http://dl.acm.org/citation.cfm?id=645926.671701
https://doi.org/10.1145/3035918.3064029
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
http://www.jstor.org/stable/3616548
http://arxiv.org/abs/1808.06008
http://arxiv.org/abs/1808.06008
http://arxiv.org/abs/1808.06008
http://dl.acm.org/citation.cfm?id=3277355.3277441
http://dl.acm.org/citation.cfm?id=3277355.3277441
http://dl.acm.org/citation.cfm?id=1325851.1325856
http://dl.acm.org/citation.cfm?id=645923.673646
https://doi.org/10.1145/2670979.2670981
https://doi.org/10.1145/3038912.3052662
http://cidrdb.org/cidr2005/papers/P07.pdf
http://cidrdb.org/cidr2005/papers/P07.pdf
https://doi.org/10.14778/1687627.1687767
https://doi.org/10.1016/j.bdr.2017.05.001
https://doi.org/10.1016/j.bdr.2017.05.001
https://doi.org/10.1145/2038916.2038934
https://doi.org/10.1109/ICDCS.2018.00070
https://www.usenix.org/conference/atc17/technical-sessions/presentation/iorgulescu
https://www.usenix.org/conference/atc17/technical-sessions/presentation/iorgulescu
https://doi.org/10.1080/00401706.1965.10490308
http://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/00401706.1965.10490308
https://doi.org/10.1109/MASCOTS.2016.17
https://doi.org/10.14778/3137765.3137808
http://arxiv.org/abs/cs.DC/2002.11780
https://doi.org/10.1145/3035918.3064018
https://doi.org/10.1145/3035918.3064018
http://subs.emis.de/LNI/Proceedings/Proceedings26/article665.html
http://subs.emis.de/LNI/Proceedings/Proceedings26/article665.html
http://snap.stanford.edu/data
https://doi.org/10.14778/3352063.3352129
https://doi.org/10.14778/3352063.3352129

[27] Min Li, Liangzhao Zeng, Shicong Meng, Jian Tan, Li Zhang, Ali R Butt,
and Nicholas Fuller. 2014. Mronline: Mapreduce online performance
tuning. In Proceedings of the 23rd international symposium on High-
performance parallel and distributed computing. ACM, 165–176.

[28] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Contin-
uous control with deep reinforcement learning. In 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, Yoshua Bengio and
Yann LeCun (Eds.). http://arxiv.org/abs/1509.02971

[29] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth
Kandula. 2016. Resource Management with Deep Reinforcement
Learning. In Proceedings of the 15th ACM Workshop on Hot Topics
in Networks (HotNets ’16). ACM, New York, NY, USA, 50–56. https:
//doi.org/10.1145/3005745.3005750

[30] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad
Alizadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019.
Neo: A Learned Query Optimizer. Proc. VLDB Endow. 12, 11 (July 2019),
1705–1718. https://doi.org/10.14778/3342263.3342644

[31] J. Mockus. 1989. Bayesian approach to global optimization: theory and
applications. Kluwer Academic. https://books.google.com/books?id=
FknvAAAAMAAJ

[32] Online. 2015. Juggling with Bits and Bytes. https://flink.apache.
org/news/2015/05/11/Juggling-with-Bits-and-Bytes.html [Online; ac-
cessed 10-July-2019].

[33] Online. 2016. What Ails Spark in production? https://www.pepperdata.
com/2016/07/11/ails-spark-production/ [Online; accessed 10-October-
2018].

[34] Online. 2019. Amazon EMR Documentation. https://amzn.to/2zrpNtt
[Online; accessed 10-July-2019].

[35] Online. 2019. Flink Configuration. https://ci.apache.org/projects/flink/
flink-docs-stable/ops/config.html [Online; accessed 10-July-2019].

[36] Online. 2019. Intel’s Performance Analysis Tool. https://github.com/
intel-hadoop/PAT [Online; accessed 10-July-2019].

[37] Online. 2019. Java Garbage Collection Basics. https://bit.ly/2N8JyOp
[Online; accessed 10-July-2019].

[38] Online. 2019. Java Management Extensions (JMX). https://bit.ly/
2KIvbNn [Online; accessed 10-July-2019].

[39] Online. 2019. RelM Source code. https://github.com/dukedbgroup/
global_log [Online; accessed 10-February-2020].

[40] Online. 2019. Spark Configuration. https://spark.apache.org/docs/
latest/configuration.html [Online; accessed 10-July-2019].

[41] Andrew Or. 2016. Deep Dive: Apache Spark Memory Management.
https://bit.ly/2C2x1YH [Online; accessed 10-July-2019].

[42] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, AlbanDesmaison, Luca Antiga, and
Adam Lerer. 2017. Automatic differentiation in PyTorch. In NIPS-W.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research 12 (2011), 2825–2830.

[44] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy Lohman. 2002. Au-
tomating Physical Database Design in a Parallel Database. In Pro-
ceedings of the 2002 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD ’02). ACM, New York, NY, USA, 558–569.
https://doi.org/10.1145/564691.564757

[45] Carl Edward Rasmussen. 2006. Gaussian processes for machine learn-
ing. MIT Press.

[46] Charles Reiss. 2016. Understanding Memory Configurations for In-
Memory Analytics. Ph.D. Dissertation. EECS Department, University of
California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/

2016/EECS-2016-136.html
[47] Sandy Ryza. 2015. How-to: Tune Your Apache Spark Jobs (Part 2).

https://bit.ly/2BuyZyS [Online; accessed 10-July-2019].
[48] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and

Nando de Freitas. 2016. Taking the Human Out of the Loop: A Review
of Bayesian Optimization. Proc. IEEE 104 (2016), 148–175.

[49] Juwei Shi, Jia Zou, Jiaheng Lu, Zhao Cao, Shiqiang Li, and Chen
Wang. 2014. MRTuner: A Toolkit to Enable Holistic Optimization
for Mapreduce Jobs. Proc. VLDB Endow. 7, 13 (Aug. 2014), 1319–1330.
https://doi.org/10.14778/2733004.2733005

[50] Adam J. Storm, Christian Garcia-Arellano, Sam S. Lightstone, Yixin
Diao, and M. Surendra. 2006. Adaptive Self-tuning Memory in DB2. In
Proceedings of the 32Nd International Conference on Very Large Data
Bases (VLDB ’06). VLDB Endowment, 1081–1092. http://dl.acm.org/
citation.cfm?id=1182635.1164220

[51] Zilong Tan and Shivnath Babu. 2016. Tempo: Robust and Self-tuning
Resource Management in Multi-tenant Parallel Databases. Proc. VLDB
Endow. 9, 10 (June 2016), 720–731. https://doi.org/10.14778/2977797.
2977799

[52] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley,
Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. 2013. Apache
Hadoop YARN: Yet Another Resource Negotiator. In Proceedings of the
4th Annual Symposium on Cloud Computing (SOCC ’13). ACM, New
York, NY, USA, Article 5, 16 pages. https://doi.org/10.1145/2523616.
2523633

[53] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin
Recht, and Ion Stoica. 2016. Ernest: Efficient Performance Prediction
for Large-Scale AdvancedAnalytics. In 13th USENIX Symposium onNet-
worked Systems Design and Implementation (NSDI 16). USENIX Associ-
ation, Santa Clara, CA, 363–378. https://www.usenix.org/conference/
nsdi16/technical-sessions/presentation/venkataraman

[54] Guolu Wang, Jungang Xu, and Ben He. 2016. A Novel Method for
Tuning Configuration Parameters of Spark Based onMachine Learning.
586–593. https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0088

[55] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, Anthony Brockwell,
Christos Faloutsos, and Gregory R Ganger. 2004. Storage device perfor-
mance prediction with CART models. In The IEEE Computer Society’s
12th Annual International Symposium on Modeling, Analysis, and Simu-
lation of Computer and Telecommunications Systems, 2004.(MASCOTS
2004). Proceedings. IEEE, 588–595.

[56] Gerhard Weikum, Axel Moenkeberg, Christof Hasse, and Peter Zab-
back. 2002. Self-tuning Database Technology and Information Services:
From Wishful Thinking to Viable Engineering. In Proceedings of the
28th International Conference on Very Large Data Bases (VLDB ’02).
VLDB Endowment, 20–31. http://dl.acm.org/citation.cfm?id=1287369.
1287373

[57] Bowei Xi, Zhen Liu, Mukund Raghavachari, Cathy H. Xia, and Li
Zhang. 2004. A Smart Hill-climbing Algorithm for Application Server
Configuration. In Proceedings of the 13th International Conference on
World Wide Web (WWW ’04). ACM, New York, NY, USA, 287–296.
https://doi.org/10.1145/988672.988711

[58] Reynold Xin and Josh Rosen. 2015. Project Tungsten: Bringing Apache
Spark Closer to Bare Metal. http://bitly.com/1KPpFBC [Online;
accessed 10-July-2019].

[59] L. Xu, W. Dou, F. Zhu, C. Gao, J. Liu, H. Zhong, and J. Wei. 2015.
Experience report: A characteristic study on out of memory errors in
distributed data-parallel applications. In 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE). 518–529. https:
//doi.org/10.1109/ISSRE.2015.7381844

Research 18: Main Memory Databases and Modern Hardware SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1682

http://arxiv.org/abs/1509.02971
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.14778/3342263.3342644
https://books.google.com/books?id=FknvAAAAMAAJ
https://books.google.com/books?id=FknvAAAAMAAJ
https://flink.apache.org/news/2015/05/11/Juggling-with-Bits-and-Bytes.html
https://flink.apache.org/news/2015/05/11/Juggling-with-Bits-and-Bytes.html
https://www.pepperdata.com/2016/07/11/ails-spark-production/
https://www.pepperdata.com/2016/07/11/ails-spark-production/
https://amzn.to/2zrpNtt
https://ci.apache.org/projects/flink/flink-docs-stable/ops/config.html
https://ci.apache.org/projects/flink/flink-docs-stable/ops/config.html
https://github.com/intel-hadoop/PAT
https://github.com/intel-hadoop/PAT
https://bit.ly/2N8JyOp
https://bit.ly/2KIvbNn
https://bit.ly/2KIvbNn
https://github.com/dukedbgroup/global_log
https://github.com/dukedbgroup/global_log
https://spark.apache.org/docs/latest/configuration.html
https://spark.apache.org/docs/latest/configuration.html
https://bit.ly/2C2x1YH
https://doi.org/10.1145/564691.564757
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-136.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-136.html
https://bit.ly/2BuyZyS
https://doi.org/10.14778/2733004.2733005
http://dl.acm.org/citation.cfm?id=1182635.1164220
http://dl.acm.org/citation.cfm?id=1182635.1164220
https://doi.org/10.14778/2977797.2977799
https://doi.org/10.14778/2977797.2977799
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1145/2523616.2523633
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/venkataraman
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/venkataraman
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0088
http://dl.acm.org/citation.cfm?id=1287369.1287373
http://dl.acm.org/citation.cfm?id=1287369.1287373
https://doi.org/10.1145/988672.988711
http://bitly.com/1KPpFBC
https://doi.org/10.1109/ISSRE.2015.7381844
https://doi.org/10.1109/ISSRE.2015.7381844

[60] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu
Xing, YangtaoWang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang
Li. 2019. An End-to-End Automatic Cloud Database Tuning System
Using Deep Reinforcement Learning. In Proceedings of the 2019 Inter-
national Conference on Management of Data (SIGMOD ’19). ACM, New
York, NY, USA, 415–432. https://doi.org/10.1145/3299869.3300085

[61] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma,
Zhuoyue Liu, Kunpeng Song, and Yingchun Yang. 2017. Bestconfig:
tapping the performance potential of systems via automatic configura-
tion tuning. In Proceedings of the 2017 Symposium on Cloud Computing.
ACM, 338–350.

Research 18: Main Memory Databases and Modern Hardware SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1683

https://doi.org/10.1145/3299869.3300085

	Abstract
	1 Introduction
	2 Problem Overview
	2.1 Memory-based Analytics
	2.2 Application Tuning

	3 Understanding interactions
	3.1 Containers per Node
	3.2 Task Concurrency
	3.3 Cache and Shuffle memory
	3.4 Interactions with GC settings

	4 RelM Tuner
	4.1 Statistics Generation
	4.2 Initializer
	4.3 Arbitrator

	5 Black-box tuners
	5.1 Bayesian Optimization
	5.2 Guided Bayesian Optimization
	5.3 Reinforcement Learning

	6 Evaluation
	6.1 Setup
	6.2 Quality of Results
	6.3 Algorithm Overheads
	6.4 Analysis of RelM
	6.5 Generality of models

	7 Related Work
	8 Need for Database Performance Data Scientists
	References

