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ABSTRACT
Existing deep learning systems commonly parallelize deep neural network (DNN) training using data or model
parallelism, but these strategies often result in suboptimal parallelization performance. We introduce SOAP, a
more comprehensive search space of parallelization strategies for DNNs that includes strategies to parallelize a
DNN in the Sample, Operator, Attribute, and Parameter dimensions. We present FlexFlow, a deep learning engine
that uses guided randomized search of the SOAP space to find a fast parallelization strategy for a specific parallel
machine. To accelerate this search, FlexFlow introduces a novel execution simulator that can accurately predict a
parallelization strategy’s performance and is three orders of magnitude faster than prior approaches that execute
each strategy. We evaluate FlexFlow with six real-world DNN benchmarks on two GPU clusters and show that
FlexFlow increases training throughput by up to 3.3× over state-of-the-art approaches, even when including its
search time, and also improves scalability.

1 Introduction

As deep learning methods have evolved, DNN models have
gotten progressively larger and more computationally ex-
pensive to train. As a result, it is now standard practice to
parallelize DNN training across distributed heterogeneous
clusters (Dean et al., 2012; Abadi et al., 2016). Although
DNN models and the clusters used to parallelize them are
increasingly complex, the strategies used by today’s deep
learning frameworks (e.g., TensorFlow, Caffe2, and MXNet)
to parallelize training remain simple, and often suboptimal.

The most common parallelization strategy is data paral-
lelism (Krizhevsky et al., 2012), which places a replica of
the entire neural network on each device, so that each device
processes a subset of the training data, and synchronizes
network parameters across replicas at the end of an iteration.
Data parallelism is efficient for compute-intensive opera-
tors with a few trainable parameters (e.g., convolution) but
achieves suboptimal parallelization performance for opera-
tors with a large number of parameters (e.g., embedding).

Another common parallelization strategy is model paral-
lelism (Dean et al., 2012), which assigns disjoint subsets of
a neural network each to a dedicated device. This approach
eliminates parameter synchronization between devices but
requires data transfers between operators. ColocRL (Mirho-
seini et al., 2017) uses reinforcement learning to learn effi-
cient operator assignments for model parallelism but only
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explores parallelism in the operator dimension.

We recently proposed OptCNN (Jia et al., 2018), which
uses layer-wise parallelism for parallelizing CNNs with
linear computation graphs. OptCNN uses dynamic program-
ming to jointly optimize how to parallelize each operator
but does not consider parallelism across different operators.
Moreover, OptCNN does not apply to many DNNs used for
language modeling, machine translation, and recommenda-
tions, which tend to be RNNs or other non-linear networks.

In this paper, we introduce a comprehensive SOAP (Sample-
Operator-Attribute-Parameter) search space of paralleliza-
tion strategies for DNNs that generalizes and goes beyond
previous approaches. The operator dimension describes
how different operators in a DNN are parallelized. For a sin-
gle operator, the sample and parameter dimensions indicate
how training samples and model parameters are distributed
across devices. Finally, the attribute dimension defines how
different attributes within a sample are partitioned (e.g., the
height and width dimensions of an image).

We use SOAP in FlexFlow, a deep learning engine that au-
tomatically finds fast parallelization strategies in the SOAP
search space for arbitrary DNNs. Existing approaches only
consider one or a subset of SOAP dimensions. For example,
data parallelism only explores the sample dimension, while
OptCNN parallelizes linear CNNs in the sample, attribute
and parameter dimensions. FlexFlow considers parallelizing
any DNN (linear or non-linear) in all SOAP dimensions and
explores a more comprehensive search space that includes
existing approaches as special cases. As a result, FlexFlow
is able to find parallelization strategies that significantly
outperform existing approaches.
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The key challenge FlexFlow must address is how to ef-
ficiently explore the SOAP search space, which is much
larger than those considered in previous systems and in-
cludes more sophisticated parallelization strategies. To this
end, FlexFlow uses two main components: a fast, incre-
mental execution simulator to evaluate different paralleliza-
tion strategies, and a Markov Chain Monte Carlo (MCMC)
search algorithm that takes advantage of the incremental
simulator to rapidly explore the large search space.

FlexFlow’s execution simulator can accurately predict the
performance of a parallelization strategy in the SOAP search
space for arbitrary DNNs and is three orders of magnitude
faster than profiling real executions. We borrow the idea
from OptCNN of measuring the performance of an operator
once for each configuration and feed these measurements
into a task graph that models both the architecture of a DNN
model and the network topology of a cluster. The execu-
tion simulator estimates the performance of a parallelization
strategy by simulating the execution on the task graph. In
addition, we introduce a delta simulation algorithm that sim-
ulates a new strategy using incremental updates to previous
simulations and further improves performance over naive
simulations by up to 6.9×.

The execution simulator achieves high accuracy for predict-
ing parallelization performance. We evaluate the simulator
with six real-world DNNs on two different GPU clusters and
show that, for all the measured executions, the relative differ-
ence between the real and simulated execution time is less
than 30%. Most importantly for the search, we test different
strategies for a given DNN and show that their simulated
execution time preserves real execution time ordering.

Using the execution simulator as an oracle, the FlexFlow ex-
ecution optimizer uses a MCMC search algorithm to explore
the SOAP search space and iteratively propose candidate
strategies based on the simulated performance of previous
candidates. The execution simulator can also work with
other search strategies, such as learning-based search algo-
rithms. When the search procedure is finished, the execution
optimizer returns the best strategy it has discovered.

We evaluate FlexFlow on a variety of real-world DNNs in-
cluding AlexNet (Krizhevsky et al., 2012), ResNet-101 (He
et al., 2016), Inception-v3 (Szegedy et al., 2016), RNN
Text Classification (Kim, 2014), RNN Language Model-
ing (Zaremba et al., 2014) and Neural Machine Transla-
tion (Wu et al., 2016). Compared to data/model paral-
lelism and strategies manually designed by domain ex-
perts (Krizhevsky, 2014; Wu et al., 2016), FlexFlow in-
creases training throughput by up to 3.3×, reduces com-
munication costs by up to 5×, and achieves significantly
better scaling. In addition, FlexFlow outperforms the strate-
gies found by ColocRL by 3.4-3.8× on the same hardware
configuration evaluated in ColocRL. Finally, FlexFlow also

Table 1. The parallelism dimensions used by different approaches.
S, O, A, and P indicate parallelism in the Sample, Operator, At-
tribute, and Parameter dimensions. Hybrid parallelism indicates
an approach supports parallelizing an operator in a combination of
the sample, attribute, and parameter dimensions (see Figure 2).

Parallelization Parallelism Hybrid Supported
Approach Dimensions Parallelism DNNs
Data Parallelism S partial**

Model Parallelism O, P all
Krizhevsky (2014) S, P CNNs**

Wu et al. (2016) S, O RNNs#

ColocRL O partial#

OptCNN S, A, P X linear%

FlexFlow (this paper) S, O, A, P X all
** Does not work for DNNs whose entire model cannot fit on a single device.
# Does not work for DNNs with large operators that cannot fit on a single device.
% Only works for DNNs with linear computation graphs.

outperforms OptCNN, even on linear DNNs, by supporting
a larger search space.

2 Related Work

Data and model parallelism have been widely used by ex-
isting deep learning systems to distribute training across
devices. Data parallelism (Krizhevsky et al., 2012) is in-
efficient for operators with a large number of parameters
(e.g., densely-connected layers) and becomes a scalability
bottleneck in large scale distributed training. Model paral-
lelism (Dean et al., 2012) splits a DNN into disjoint subsets
and trains each subset on a dedicated device, which reduces
communication costs for synchronizing network parameters
but exposes limited parallelism.

Expert-designed parallelization strategies manually opti-
mize parallelization for specific DNNs by using experts’ do-
main knowledge and experience. For example, Krizhevsky
(2014) introduces “one weird trick” that uses data paral-
lelism for convolutional and pooling layers and switches to
model parallelism for densely-connected layers to acceler-
ate CNNs. To parallelize RNNs, Wu et al. (2016) uses data
parallelism that replicates the entire RNN on each node and
switches to model parallelism for intra-node parallelization.
Although these expert-designed strategies improve perfor-
mance over data and model parallelism, they are suboptimal.
We use these expert-designed strategies as baselines in our
experiments and show that FlexFlow can further improve
training throughput by up to 2.3×.

Automated frameworks have been proposed for finding
efficient parallelization strategies in a limited search space.
ColocRL (Mirhoseini et al., 2017) uses reinforcement learn-
ing to find efficient device placement for model parallelism.
OptCNN (Jia et al., 2018) uses dynamic programming to par-
allelize linear CNNs. OptCNN’s approach does not explore
parallelism across operators and is not applicable to DNNs
with non-linear computation graphs. Gao et al. (2017; 2019)
exploited hybrid parallelization on tiled domain-specific
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Figure 1. FlexFlow overview.

hardware and proposed various dataflow optimizations for
both intra-layer and inter-layer data communication.

Table 1 summarizes the parallelism dimensions explored
by existing approaches. Data parallelism uses the sample
dimension to parallelize training, while model parallelism
exploits the parameter and operator dimensions. Expert-
designed strategies exploit parallelism in the sample or pa-
rameter dimension to parallelize an operator but do not
support hybrid parallelism that uses a combination of the
sample, attribute, and parameter dimensions to parallelize
an operator (see Figure 2). Compared to these manually
designed strategies, FlexFlow considers more sophisticated,
and often more efficient, strategies to parallelize a single op-
erator. In addition, compared to existing automated frame-
works (e.g., ColocRL and OptCNN), FlexFlow supports
more generic DNNs and finds strategies that are up to 3.8×
faster by exploring a significantly larger search space.

Graph-based cluster schedulers. Previous work has pro-
posed cluster schedulers that schedule cluster-wide tasks
by using graph-based algorithms. For example, Quincy (Is-
ard et al., 2009) maps task scheduling to a flow network
and uses a min-cost max-flow (MCMF) algorithm to find
efficient task placement. Firmament (Gog et al., 2016) gen-
eralizes Quincy by employing multiple MCMF optimiza-
tion algorithms to reduce task placement latencies. Existing
graph-based schedulers optimize task placement by assum-
ing a fixed task graph. However, FlexFlow solves a different
problem that requires jointly optimizing how to partition an
operator into tasks by exploiting parallelism in the SOAP
dimensions and how to assign tasks to devices.

3 Overview

Similar to existing deep learning frameworks (e.g., Tensor-
Flow and PyTorch), FlexFlow uses an operator graph G
to describe all operators and state in a DNN. Each node
oi ∈ G is an operator (e.g., matrix multiplication, convo-

Table 2. Parallelizable dimensions for different operators. The
sample and channel dimension index different samples and neu-
rons, respectively. For images, the length and the combination of
height and width dimensions specify a position in an image.

Operator Parallelizable Dimensions
(S)ample (A)ttribute (P)arameter

1D pooling sample length, channel
1D convolution sample length channel
2D convolution sample height, width channel
Matrix multiplication sample channel
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Figure 2. Example parallelization configurations for 1D convolu-
tion. Dashed lines show partitioning the tensor.

lution, etc.), and each edge (oi, oj) ∈ G is a tensor (i.e., a
n-dimensional array) that is an output of oi and an input of
oj . In addition, FlexFlow also takes a device topology graph
D = (DN ,DE) describing all available hardware devices
and their interconnections, as shown in Figure 1. Each node
di ∈ DN represents a device (e.g., a CPU or a GPU), and
each edge (di, dj) ∈ DE is a hardware connection (e.g., a
NVLink, a PCI-e, or a network link) between device di and
dj . The edges are labeled with the bandwidth and latency
of the connection.

FlexFlow takes an operator graph and a device topology
as inputs and automatically finds an efficient strategy in
the SOAP search space. All strategies in the search space
perform the same computation defined by the DNN and
therefore maintains the same model accuracy by design.

The main components of FlexFlow are shown in Figure 1.
The execution optimizer uses a MCMC search algorithm to
explore the space of possible parallelization strategies and
iteratively proposes candidate strategies that are evaluated
by an execution simulator. The execution simulator uses
a delta simulation algorithm that simulates a new strategy
using incremental updates to previous simulations. The
simulated execution time guides the search in generating
future candidates. When the search time budget is exhausted,
the execution optimizer sends the best discovered strategy to
a distributed runtime for parallelizing the actual executions.

4 The SOAP Search Space

This section introduces the SOAP search space of paral-
lelization strategies for DNNs. To parallelize a DNN oper-
ator across devices, we require each device to compute a
disjoint subset of the operator’s output tensors. Therefore,
we model the parallelization of an operator oi by defining
how the output tensor of oi is partitioned.
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Figure 3. An example parallelization configuration for a matrix
multiplication operator.

For an operator oi, we define its parallelizable dimensions
Pi as the set of all divisible dimensions in its output tensor.
Pi always includes a sample dimension. For all other dimen-
sions in Pi, we call it a parameter dimension if partitioning
over that dimension requires splitting the model parame-
ters and call it an attribute dimension otherwise. Table 2
shows the parallelizable dimensions of some example oper-
ators. Finally, we also consider parallelism across different
operators in the operator dimension.

A parallelization configuration ci of an operator oi defines
how the operator is parallelized across multiple devices. Fig-
ure 2 shows some example configurations for parallelizing
a 1D convolution operator in a single dimension as well as
combinations of multiple dimensions.

For each parallelizable dimension in Pi, ci includes a posi-
tive integer that is the degree of parallelism in that dimen-
sion. |ci| is the product of the parallelism degrees for all
parallelizable dimensions of ci. We use equal size parti-
tions in each dimension to guarantee well-balanced work-
load distributions. A parallelization configuration ci par-
titions the operator oi into |ci| independent tasks, denoted
as ti:1, ..., ti:|ci|, meanwhile ci also includes the device as-
signment for each task ti:k (1 ≤ k ≤ |ci|). Given the
output tensor of a task and its operator type, we can infer
the necessary input tensors to execute each task.

Figure 3 shows an example parallelization configuration
for a matrix multiplication operator (i.e., U = VW ). The
operator is partitioned into four independent tasks assigned
to different GPU devices. The input and output tensors of
the tasks are shown in the figure.

A parallelization strategy S describes one possible paral-
lelization of an application. S includes a parallelization
configuration ci for each operator oi, and each oi’s configu-
ration can be chosen independently from among all possible
configurations for oi.

5 Execution Simulator

In this section, we describe the execution simulator, which
takes an operator graph G, a device topology D, and a par-
allelization strategy S as inputs and predicts the execution
time to run G on D using strategy S.

The simulator depends on the following assumptions:

A1. The execution time of each task is predictable with low
variance and is independent of the contents of input
tensors.

A2. For each connection (di, dj) between device di and
dj with bandwidth b, transferring a tensor of size s
from di to dj takes s/b time (i.e., the communication
bandwidth can be fully utilized).

A3. Each device processes the assigned tasks with a FIFO
(first-in-first-out) scheduling policy. This is the policy
used by modern devices such as GPUs.

A4. The runtime has negligible overhead. A device be-
gins processing a task as soon as its input tensors are
available and the device has finished previous tasks.

To simulate an execution, we borrow the idea from
OptCNN (Jia et al., 2018) to measure the execution time
of each distinct operator once for each configuration and
include these measurements in a task graph, which includes
all tasks derived from operators and dependencies between
tasks. The simulator can generate an execution timeline by
running a simulation algorithm on the task graph.

5.1 Task Graph

A task graph models dependencies between individual tasks
derived from operators. To unify the abstraction, we model
each hardware connection between devices as a communica-
tion device that can only perform communication tasks (i.e.,
data transfers). Note that devices and hardware connections
are modeled as separate devices, which allows computation
(i.e., normal tasks) and communication (i.e., communication
tasks) to be overlapped if possible.

Given an operator graph G, a device topology D, and a
parallelization strategy S, we use the following steps to
construct a task graph T = (TN , TE), where each node
t ∈ TN is a task (i.e., a normal task or a communication
task) and each edge (ti, tj) ∈ TE is a dependency that task
tj cannot start until task ti is completed. Note that the edges
in the task graph are simply ordering constraints—the edges
do not indicate data flow, as all data flow is included in the
task graph as communication tasks.

1. For each operator oi ∈ G with parallelization configu-
ration ci, we add tasks ti:1, ..., ti:|ci| to TN .

2. For each tensor (oi, oj) ∈ G, which is an output of op-
erator oi and an input of oj , we compute the output sub-
tensors written by tasks ti:ki (1 ≤ ki ≤ |ci|) and the
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Figure 4. Simulating an example parallelization strategy. The tasks’ exeTime and device are shown on the top of each column. In
Figure 4c and 4d, the word “r” and “s” indicate the readyTime and startTime of each task, respectively, and the dashed edges
indicate the nextTask.

Table 3. Properties for each task in the task graph.
Property Description

Properties set in graph construction
exeTime The elapsed time to execute the task.
device The assigned device of the task.
I(t) {tin|(tin, t) ∈ TE}
O(t) {tout|(t, tout) ∈ TE}

Properties set in simulation
readyTime The time when the task is ready to run.
startTime The time when the task starts to run.
endTime The time when the task is completed.
preTask The previous task performed on device.
nextTask The next task performed on device.

Internal properties used by the full simulation algorithm

state
Current state of the task, which is one of
NOTREADY, READY, and COMPLETE.

input sub-tensors read by tasks tj:kj
(1 ≤ kj ≤ |cj |).

For every task pair ti:ki
and tj:kj

with shared tensors,
if two tasks are assigned to the same device, we add
an edge (ti:ki , tj:kj ) into TE , indicating a dependency
between the two tasks, and no communication task is
needed. If ti:ki

and tj:kj
with shared tensors are as-

signed to different devices, we add a communication
task tc to TN and two edges (ti:ki , t

c) and (tc, tj:kj ) to
TE . The new task tc is assigned to the communication
device between the devices that perform ti:ki and tj:kj .

Figure 4a shows an example parallelization strategy for a
standard 3-layer RNN consisting of an embedding layer, a
recurrent layer, and a linear layer. It represents commonly
used model parallelism that assigns operators in each layer
to a dedicated GPU. Figure 4b shows the corresponding task
graph. Each square and hexagon indicate a normal and a
communication task, respectively, and each directed edge
represents a dependency between tasks.

Table 3 lists the properties for each task in the task graph.
For a normal task derived from an operator, its exeTime
is the time to execute the task on the given device and is
estimated by running the task multiple times on the device
and measuring the average execution time (assumption A1).
A task’s exeTime is cached, and all future tasks with the
same operator type and input/output tensor shapes will use
the cached value without rerunning the task. For a communi-

cation task, its exeTime is the time to transfer a tensor (of
size s) between devices with bandwidth b and is estimated
as s/b (assumption A2).

In addition to exeTime, FlexFlow also sets device, I(t),
and O(t) (defined in Table 3) during graph construction.
Other properties in Table 3 remain unset and must be filled
in by the simulation.

5.2 Full Simulation Algorithm

We now describe a full simulation algorithm that we use
as a baseline for comparisons with our delta simulation al-
gorithm. The full simulation algorithm first builds a task
graph using the method described in Section 5.1 and then
sets the properties for each task using a variant of Dijkstra’s
shortest-path algorithm (Cormen et al., 2009). Tasks are
enqueued into a global priority queue when ready (i.e., all
predecessor tasks are completed) and are dequeued in in-
creasing order by their readyTime. Therefore, when a
task t is dequeued, all tasks with an earlier readyTime
have been scheduled, and we can set the properties for task
t while maintaining the FIFO scheduling order (assumption
A3). Figure 4c shows the execution timeline of the example
parallelization strategy.

5.3 Delta Simulation Algorithm

FlexFlow uses a MCMC search algorithm that proposes a
new parallelization strategy by changing the parallelization
configuration of a single operator in the previous strategy
(see Section 6.2). As a result, in the common case, most of
the execution timeline does not change from one simulated
strategy to the next. Based on this observation, we introduce
a delta simulation algorithm that starts from a previous task
graph and only re-simulates tasks involved in the portion of
the execution timeline that changes, an optimization that dra-
matically speeds up the simulator, especially for strategies
for large distributed machines.

To simulate a new strategy, the delta simulation algorithm
first updates tasks and dependencies from an existing task
graph and enqueues all modified tasks into a global prior-
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ity queue. Similar to the Bellman-Ford shortest-path algo-
rithm (Cormen et al., 2009), the delta simulation algorithm
iteratively dequeues updated tasks and propagates the up-
dates to subsequent tasks.

For the example in Figure 4, consider a new parallelization
strategy derived from the original strategy (Figure 4a) by
only reducing the parallelism of operator o3 to 1 (i.e., |c3| =
1). Figure 4d shows the task graph for the new paralleliza-
tion strategy, which can be generated from the original task
graph (in Figure 4c) by updating the simulation properties
of tasks in the grey area.

6 Execution Optimizer

The execution optimizer takes an operator graph and a de-
vice topology as inputs and automatically finds an efficient
parallelization strategy. Using the simulator as an oracle,
FlexFlow transforms the parallelization optimization prob-
lem into a cost minimization problem, namely minimizing
the predicted execution time.

Finding the optimal parallelization strategy is NP-hard, by
an easy reduction from minimum makespan (Lam & Sethi,
1977). In addition, the number of possible strategies is
exponential in the number of operators of an operator graph
(see Section 4), which makes it intractable to exhaustively
enumerate the search space. To find a low-cost strategy,
FlexFlow uses a cost minimization search to heuristically
explore the space and returns the best strategy discovered.

6.1 MCMC Sampling

This section briefly introduces the Metropolis-Hastings al-
gorithm (Hastings, 1970) we use for MCMC sampling in
the execution optimizer. The algorithm maintains a current
strategy S and randomly proposes a new strategy S∗. S∗
is accepted and becomes the new current strategy with the
following probability:

α(S∗|S) = min
(
1, exp

(
β · (cost(S)− cost(S∗)

))
(1)

MCMC tends to behave as a greedy search algorithm, pre-
ferring to move towards lower cost whenever that is readily
available, but can also escape local minima.

6.2 Search Algorithm

Our method for generating proposals is simple: an operator
in the current parallelization strategy is selected at random,
and its parallelization configuration is replaced by a random
configuration. We use the predicted execution time from the
simulator as the cost function in Equation 1 and use existing
strategies (e.g., data parallelism, expert-designed strategies)
as well as randomly generated strategies as the initial can-
didates for the search algorithm. For each initial strategy,

the search algorithm iteratively proposes new candidates
until one of the following two criteria is satisfied: (1) the
search time budget for current initial strategy is exhausted;
or (2) the search procedure cannot further improve the best
discovered strategy for half of the search time.

7 FlexFlow Runtime

We found that existing deep learning systems (e.g., Ten-
sorFlow, PyTorch, Caffe2, and MXNet) only support paral-
lelizing an operator in the sample dimension through data
parallelism, and it is non-trivial to parallelize an operator in
other dimensions or combinations of several SOAP dimen-
sions in these systems.

To support parallelizing DNN models using any strategy
in the SOAP search space, we implemented the FlexFlow
distributed runtime in Legion (Bauer et al., 2012), a high-
performance parallel runtime for distributed heterogeneous
architectures, and use cuDNN (Chetlur et al., 2014) and
cuBLAS (cuBLAS) as the underlying libraries for process-
ing DNN operators. We use the Legion high-dimensional
partitioning interface (Treichler et al., 2016) to support paral-
lelizing an operator in any combination of the parallelizable
dimensions.

8 Evaluation

This section evaluates the performance of FlexFlow on six
real-world DNN benchmarks and two GPU clusters.

Table 4 summarizes the DNNs used in our experiments.
AlexNet, Inception-v3, and ResNet-101 are three CNNs
that achieved the best accuracy in the ILSVRC competi-
tions (Russakovsky et al., 2015). For AlexNet, the per-
iteration training time is smaller than the time to load train-
ing data from disk. We follow the suggestions in TensorFlow
Benchmarks ∗ and use synthetic data to benchmark the per-
formance of AlexNet. For all other experiments, the training
data is loaded from disk in the training procedure.

RNNTC, RNNLM and NMT are sequence-to-sequence
RNN models for text classification, language modeling, and
neural machine translation, respectively. RNNTC uses four
LSTM layers with a hidden size of 1024. RNNLM uses two
LSTM layers with a hidden size of 2048. Both RNN models
include a softmax linear after the last LSTM layer. NMT
includes an encoder and a decoder, both of which consist
of 2 LSTM layers with a hidden size of 1024. To improve
model accuracy, we also use an attention layer on top of the
last decoder LSTM layer (Bahdanau et al., 2014). Figure 13
illustrates the structure of the NMT model. For all three
RNN models, we set the number of unrolling steps for each
recurrent layer to 40.
∗https://www. tensorflow.org/performance/benchmarks
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Table 4. Details of the DNNs and datasets used in evaluation.
DNN Description Dataset Reported Acc. Our Acc.

Convolutional Neural Networks (CNNs)
AlexNet A 12-layer CNN Synthetic data - -
Inception-v3 A 102-layer CNN with Inception modules (Szegedy et al., 2014) ImageNet 78.0%a 78.0%a

ResNet-101 A 101-layer residual CNN with shortcut connections ImageNet 76.4%a 76.5%a

Recurrent Neural Networks (RNNs)
RNNTC 4 recurrent layers followed by a softmax layer Movie Reviews (Movies) 79.8% 80.3%
RNNLM 2 recurrent layers followed by a softmax layer Penn Treebank (Marcus et al.) 78.4b 76.1b

NMT 4 recurrent layers followed by an attention and a softmax layer WMT English-German (WMT) 19.67c 19.85c

a top-1 accuracy for single crop on the validation dataset (higher is better).
b word-level test perplexities on the Peen Treebank dataset (lower is better).
c BLEU scores (Papineni et al., 2002) on the test dataset (higher is better).
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Figure 5. Architectures of the GPU clusters used in the experi-
ments. An arrow line indicates a NVLink connection. A solid line
is a PCI-e connection. Dashed lines are Infiniband connections
across different nodes.

We follow prior work (Krizhevsky et al., 2012; Szegedy
et al., 2016; He et al., 2016; Kim, 2014; Zaremba et al.,
2014; Wu et al., 2016) to construct operator graphs and set
hyperparameters (e.g., learning rates, weight decays). We
use synchronous training and a per-GPU batch size of 64
for all DNN benchmarks, except for AlexNet, which has a
much smaller model and uses a per-GPU batch size of 256.

To evaluate the performance of FlexFlow with different
device topologies, we performed the experiments on two
GPU clusters, as shown in Figure 5. The first cluster con-
tains 4 compute nodes, each of which is equipped with two
Intel 10-core E5-2600 CPUs, 256GB main memory, and
four NVIDIA Tesla P100 GPUs. GPUs on the same node
are connected by NVLink, and nodes are connected over
100GB/s EDR Infiniband. The second cluster consists of 16
nodes, each of which is equipped with two Intel 10-core E5-
2680 GPUs, 256GB main memory, and four NVIDIA Tesla
K80 GPUs. Adjacent GPUs are connected by a separate
PCI-e switch, and all GPUs are connected to CPUs through
a shared PCI-e switch. Compute nodes in the cluster are
connected over 56 GB/s EDR Infiniband.

Unless otherwise stated, we set 30 minutes as the time
budget for the execution optimizer and use data parallelism
and a randomly generated strategy as the initial candidates
for the search. As shown in Table 5, the search terminates
in a few minutes in most cases.
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Figure 6. Per-iteration training performance on six DNNs. Num-
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experiments. The dash lines show the ideal training throughput.

8.1 Parallelization Performance

8.1.1 Per-iteration Performance

We compare the per-iteration training performance of
FlexFlow with the following baselines. Data parallelism
is commonly used in existing deep learning systems. To
control for implementation differences, we ran data paral-
lelism experiments in TensorFlow r1.7, PyTorch v0.3, and
our implementation and compared the performance numbers.
Compared to TensorFlow and PyTorch, FlexFlow achieves
the same or better performance numbers on all six DNN
benchmarks, and therefore we report the data parallelism
performance achieved by FlexFlow in the experiments.

Expert-designed strategies optimize parallelization based
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Figure 7. Parallelization performance for NMT on 64 K80 GPUs
(16 nodes). FlexFlow reduces per-iteration execution time by 1.7-
2.4× and data transfers by 2-5.5× compared to other approaches.
FlexFlow achieves similar overall task computation time as expert-
designed strategy, which is 20% fewer than data parallelism.

on domain experts’ knowledge and experience. For
CNNs, (Krizhevsky, 2014) uses data parallelism for par-
allelizing convolutional and pooling layers and switches
to model parallelism for densely-connected layers. For
RNNs, (Wu et al., 2016) uses data parallelism that replicates
the entire operator graph on each compute node and uses
model parallelism that assign operators with the same depth
to the same GPU on each node. These expert-designed
strategies are used as a baseline in our experiments. Model
parallelism only exposes limited parallelism by itself, and
we compare against model parallelism as a part of these
expert-designed strategies.

Figure 6 shows the per-iteration training performance on
all six DNN benchmarks. For ResNet-101, FlexFlow finds
strategies similar to data parallelism (except using model
parallelism on a single node for the last fully-connected
layer) and therefore achieves similar parallelization perfor-
mance. For other DNN benchmarks, FlexFlow finds more
efficient strategies than the baselines and achieves 1.3-3.3×
speedup. Note that FlexFlow performs the same operators
as data parallelism and expert-designed strategies, and the
performance improvement is achieved by using faster par-
allelization strategies. We found that the parallelization
strategies discovered by FlexFlow have two advantages over
data parallelism and expert-designed strategies.

Reducing overall communication costs. Similar to exist-
ing deep learning systems, the FlexFlow distributed runtime
supports overlapping data transfers with computation to hide
communication overheads. However, as we scale the num-
ber of devices, the communication overheads increase, but
the computation time used to hide communication remains
constant. Therefore, reducing overall communication costs
is beneficial for large-scale distributed training. Figure 7b
shows that, to parallelize the NMT model on 64 K80 GPUs
(16 nodes), FlexFlow reduces the per-iteration data transfers
by 2-5.5× compared to other parallelization approaches.

Reducing overall task computation time. Data paral-
lelism always parallelizes an operator in the batch dimen-
sion. However, as reported in (Jia et al., 2018), parallelizing
an operator through different dimensions can result in dif-
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Figure 9. Comparison among the parallelization strategies found
by different automated frameworks.

ferent task computation time. For the matrix multiplication
operator in the NMT model, parallelizing it in the chan-
nel dimension reduces the operator’s overall computation
time by 38% compared to parallelizing the operator in the
batch dimension. Figure 7c shows that FlexFlow reduces
the overall task computation time by 20% compared to data
parallelism for the NMT model. The expert-designed strat-
egy achieves slightly better total task computation time than
FlexFlow. However, this is achieved by using model paral-
lelism on each node, which disables any parallelism within
each operator and results in imbalanced workloads. As a
result, the expert-designed strategy achieves even worse ex-
ecution performance than data parallelism (see Figure 7a).
FlexFlow reduces the task computation time while enabling
parallelism within an operator and maintaining load balance.

8.1.2 End-to-end Performance

FlexFlow performs the same computation as other deep
learning systems for a DNN model and therefore achieves
the same model accuracy. Table 4 verifies that FlexFlow
achieves the state-of-the-art accuracies on the DNN bench-
marks used in the experiments.

In this experiment, we compare the end-to-end training per-
formance between FlexFlow and TensorFlow on Inception-
v3. We train Inception-v3 on the ImageNet dataset until the
model reaches the single-crop top-1 accuracy of 72% on the
validation set. The training processes in both frameworks
use stochastic gradient decent (SGD) with a learning rate of
0.045 and a weight decay of 0.0001. Figure 8 illustrates the
training curves of the two systems and show that FlexFlow
reduces the training time by 38% compared to TensorFlow.
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Table 5. The end-to-end search time with different simulation algorithms (seconds).
Num. AlexNet ResNet Inception RNNTC RNNLM NMT
GPUs Full Delta Speedup Full Delta Speedup Full Delta Speedup Full Delta Speedup Full Delta Speedup Full Delta Speedup

4 0.11 0.04 2.9× 1.4 0.4 3.2× 14 4.1 3.4× 16 7.5 2.2× 21 9.2 2.3× 40 16 2.5×
8 0.40 0.13 3.0× 4.5 1.4 3.2× 66 17 3.9× 91 39 2.3× 76 31 2.5× 178 65 2.7×

16 1.4 0.48 2.9× 22 7.3 3.1× 388 77 5.0× 404 170 2.4× 327 121 2.7× 998 328 3.0×
32 5.3 1.8 3.0× 107 33 3.2× 1746 298 5.9× 1358 516 2.6× 1102 342 3.2× 2698 701 3.8×
64 18 5.9 3.0× 515 158 3.3× 8817 1278 6.9× 4404 1489 3.0× 3406 969 3.6× 8982 2190 4.1×

8.1.3 Automated Frameworks

We compare against two automated frameworks that find
parallelization strategies in a limited search space.

ColocRL uses reinforcement learning to learn device place-
ment for model parallelism. We are not aware of any pub-
licly available implementation of ColocRL, so we compare
against the learned device placement for Inception-v3 and
NMT, as reported in the paper, and performed the experi-
ments on the same machine.

Figure 9a compares the training throughput of the strate-
gies found by FlexFlow and ColocRL for four K80 GPUs
on a single node. The parallelization strategies found by
FlexFlow achieve 3.4 - 3.8× speedup compared to ColocRL.
We attribute the performance improvement to the larger
search space explored by FlexFlow.

Besides improving training performance, FlexFlow has two
additional advantages over ColocRL. First, ColocRL re-
quires executing each strategy in the hardware environment
to get reward signals and takes 12-27 hours to find the best
placement, while FlexFlow finds efficient parallelization
strategies for these executions in 14-40 seconds. Second,
ColocRL uses up to 160 compute nodes (with 4 GPUs on
each node) to find the placement in time, while FlexFlow
uses a single compute node to run the execution optimizer.

OptCNN (Jia et al., 2018) uses dynamic programming to
parallelize linear DNNs. To evaluate OptCNN’s perfor-
mance on non-linear RNNs, we explicitly fuse all recurrent
nodes sharing the same parameters to a single operator.

We compare the performance of FlexFlow and OptCNN for
different DNNs on 16 P100 GPUs. FlexFlow and OptCNN
found the same parallelization strategies for AlexNet and
ResNet with linear operator graphs and found different
strategies for the other DNNs as shown in Figure 9b. For
these DNNs with non-linear operator graphs, FlexFlow
achieves 1.2-1.6× speedup compared to OptCNN by us-
ing parallelization strategies that exploit parallelism across
different operators. We show two examples in Section 8.4.

8.2 Execution Simulator

We evaluate the performance of the simulator using two
metrics: simulator accuracy and simulator execution time.

Simulator accuracy. We first compare the estimated exe-
cution time predicted by the execution simulator with the
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Figure 10. Comparison between the simulated and actual execution
time for different DNNs and device topologies.
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Figure 11. Search performance with the full and delta simulation
algorithms for the NMT model on 16 P100 GPUs (4 nodes).

real execution time measured by actual executions. Fig-
ure 10 shows the results for different DNNs and different
available devices. The dashed lines indicate a relative dif-
ference of 0% and 30%, respectively, which encompasses
the variance between actual and predicted execution time.
In addition, for different parallelization strategies with the
same operator graph and device topology (i.e., points of the
same shape in the figure), their simulated execution time
preserves actual execution time ordering, which shows that
simulated execution time is an appropriate metric to evaluate
the performance of different strategies.

Simulator execution time. Figure 11 shows the search
performance with different simulation algorithms for finding
a strategy for the NMT model on 16 P100 GPUs on 4 nodes.
The full and delta simulation algorithms terminate in 16
and 6 minutes, respectively. If the allowed time budget is
less than 8 minutes, the full simulation algorithm will find a
worse strategy than the delta simulation algorithm.

We compare the end-to-end search time of the execution
optimizer with different simulation algorithms. For a given
DNN model and device topology, we measure the average
execution time of the optimizer using 10 random initial
strategies. The results are shown in Table 5. The delta simu-
lation algorithm is 2.2-6.9× faster than the full simulation
algorithm. Moreover, the speedup over the full simulation
algorithm increases as we scale the number of devices.
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Figure 12. The best discovered strategy for parallelizing Inception-v3 on 4 P100 GPUs. For each operator, the vertical and horizontal
dimensions indicate parallelism in the sample and parameter dimension, respectively. Each GPU is denoted by a color.
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Figure 13. The best discovered strategy for parallelizing NMT on
4 P100 GPUs. For each operator, the vertical and horizontal dimen-
sions indicate parallelism in the sample and parameter dimension,
respectively. Each grey box denotes a layer, whose operators share
the same network parameters. Each GPU is denoted by a color.

8.3 Search Algorithm

We compare the best discovered strategies with the global
optimal strategies for small executions. To obtain a search
space of reasonable size, we limit the number of devices to 4
and consider the following two DNNs. LeNet (LeCun, 2015)
is a 6-layer CNN. The second DNN is a variant of RNNLM
where the number of unrolling steps for each recurrent layer
is restricted to 2. We use depth-first search to explore the
space and use A∗ (Cormen et al., 2009) to prune the search.
Finding the optimal strategies for LeNet and RNNLM took
0.8 and 18 hours, respectively. For both DNNs, FlexFlow
finds the same global optimal strategy in less than 1 second.

8.4 Case Studies

Inception-v3. Figure 12 shows the best discovered strategy
for parallelizing Inception-v3 on four P100 GPUs, which
exploits intra-operator parallelism for operators on the criti-
cal path and uses a combination of intra- and inter-operator
parallelism for operators on different branches. This results
in a well-balanced workload and reduces data transfers for
parameter synchronization. Compared to data parallelism,
this strategy reduces the parameter synchronization costs by
75% and the per-iteration execution time by 12%.

For parallelizing the same Inception-v3 model on four K80
GPUs with asymmetric connections between GPUs (see
Figure 5b), we observe that the best discovered strategy
tends to parallelize operators on adjacent GPUs with a direct
connection to reduce the communication costs.

NMT. Figure 13 shows the best discovered strategy for par-
allelizing NMT on four P100 GPUs. First, for a layer with a
large number of network parameters and little computation

(e.g., embed layers), it performs the computation on a single
GPU to eliminate parameter synchronization. Second, for
a layer with a large number of parameters and heavy com-
putation (e.g., softmax layers), FlexFlow uses parallelism
in the parameter dimension and assigns the computation for
a subset of parameters to each task. This reduces parame-
ter synchronization costs while maintaining load balance.
Third, for multiple recurrent layers (e.g., LSTM and atten-
tion layers), FlexFlow uses concurrency among different
layers as well as parallelism within each operator to reduce
parameter synchronization costs while balancing load.

9 Conclusion

This paper presents FlexFlow, a deep learning system that
automatically finds efficient parallelization strategies in the
SOAP search space for DNN training. FlexFlow uses a
guided randomized search procedure to explore the space
and includes an execution simulator that is an efficient
and accurate predictor of DNN performance. We evalu-
ate FlexFlow with six real-world DNN benchmarks on two
GPU clusters and show FlexFlow significantly outperforms
state-of-the-art parallelization approaches.
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A Full Simulation Algorithm

Algorithm 1 shows the pseudocode of the full simulation
algorithm. It first builds a task graph using the method
described in Section 5.1 and then sets the properties for each
task using a variant of Dijkstra’s shortest-path algorithm
(Section 24.3 of Cormen et al. (2009)). Tasks are enqueued
into a global priority queue when ready (i.e., all predecessor
tasks are completed) and are dequeued in increasing order
by their readyTime. Therefore, when a task t is dequeued,
all tasks with an earlier readyTime have been scheduled,
and we can set the properties for task t while maintaining
the FIFO scheduling order (assumption A3).

Algorithm 1 Full Simulation Algorithm.
1: Input: An operator graph G, a device topology D, and a

parallelization strategy S.
2: T = BUILDTASKGRAPH(G, D, S)
3: readyQueue = {} // a priority queue sorted by readyTime
4: for t ∈ TN do
5: t.state = NOTREADY
6: if I(t) = {} then
7: t.state = READY
8: readyQueue.enqueue(t)
9: while readyQueue 6= {} do

10: Task t = readyQueue.dequeue()
11: Device d = t.device
12: t.state = COMPLETE
13: t.startTime = max{t.readyTime, d.last.endTime}
14: t.endTime = t.startTime + t.exeTime
15: d.last = t
16: for n ∈ O(t) do
17: n.readyTime = max{n.readyTime, t.endTime}
18: if all tasks in I(n) are COMPLETE then
19: n.state = READY
20: readyQueue.enqueue(n)
21: return max{t.endTime | t ∈ TN}

B Delta Simulation Algorithm

Algorithm 2 shows the pseudocode of the full simulation
algorithm. It first updates tasks and dependencies from an
existing task graph and enqueues all modified tasks into a
global priority queue (line 4-5). Similar to the Bellman-
Ford shortest-path algorithm (Section 24.1 of Cormen et al.
(2009)), the delta simulation algorithm iteratively dequeues
updated tasks and propagates the updates to subsequent
tasks (line 6-14). The full and delta simulation algorithms
always produce the same timeline for a given task graph.

C Artifact Appendix

C.1 Abstract

This artifact appendix helps readers to reproduce the main
experimental results in this paper. In the artifact evaluation,
we compare the average training throughput of different
parallelization strategies in FlexFlow.

C.2 Artifact check-list (meta-information)

• Compilation: GCC 4.8 or above, CUDA 8.0 or above,
cuDNN 6.0 or above

• Run-time environment: Linux Ubuntu 16.04 or above

• Hardware: A compute node with multiple GPUs, such as
Amazon EC2 p2.x8large or p3.x8large instances. Note that
a single GPU is able to verify the functionality of FlexFlow
but cannot show FlexFlow’s performance improvement over
the baselines (e.g., data parallelism).

• Metrics: The primary metric of comparison is the average
training throughput.

http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://www.statmt.org/wmt16
http://www.statmt.org/wmt16
http://arxiv.org/abs/1409.2329
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Algorithm 2 Delta Simulation Algorithm.
1: Input: An operator graph G, a device topology D, an original

task graph T , and a new configuration c′i for operator oi.
2: updateQueue = {} // a priority queue sorted by readyTime
3: /*UPDATETASKGRAPH returns the updated task graph and a

list of tasks with new readyTime*/
4: T ,L = UPDATETASKGRAPH(T , G, D, ci, c′i)
5: updateQueue.enqueue(L)
6: while updateQueue 6= {} do
7: Task t = updateQueue.dequeue()
8: t.startTime = max{t.readyTime, t.preTask.endTime}
9: t.endTime = t.startTime + t.exeTime

10: for n ∈ O(t) do
11: if UPDATETASK(n) then
12: updateQueue.push(n)
13: if UPDATETASK(t.nextTask) then
14: updateQueue.push(t.nextTask)
15: return max{t.endTime | t ∈ TN}
16:
17: function UPDATETASK(t)
18: t.readyTime = max{p.endTime | p ∈ I(t)}
19: /*Swap t with other tasks on the device to maintain

FIFO.*/
20: t.startTime = max{t.readyTime, t.preTask.endTime}
21: if t’s readyTime or startTime is changed then
22: return True
23: else
24: return False

• How much disk space required (approximately)?: About
2 GB of disk storage should be sufficient for all experiments.

• How much time is needed to prepare workflow (approxi-
mately)?: About one hour to install all dependencies and
compile the FlexFlow runtime.

• How much time is needed to complete experiments (ap-
proximately)?: About 20 minutes for all experiments.

• Publicly available?: Yes

• Code licenses (if publicly available)?: Apache License,
Version 2.0.

• Archived (provide DOI)?:
https://doi.org/10.5281/zenodo.2564262

C.3 Description

C.3.1 Hardware dependencies

The experiments in the paper were performed on two GPU clusters,
as described in Figure 5. To reproduce the experiments, we suggest
to run this artifact evaluation on a compute node with multiple
GPUs, such as Amazon EC2 p2.x8large or p3.x8large instances.
This will be sufficient to demonstrate FlexFlow’s performance
improvement over the widely used data parallelism baseline.

C.3.2 Software dependencies

FlexFlow depends on the following software libraries:

• NVIDIA cuDNN and cuBLAS libraries are used to perform
DNN operations.

• Legion (Bauer et al., 2012) is the underlying runtime
FlexFlow built on.

• (Optional) GASNet † is used for distributed executions.

The following software versions were used in our experiments:
cuDNN 7.3, CUDA 9.0, Legion 18.02.0, and GASNet 1.28.0.

C.4 Installation

The README.md file includes detailed instructions on how to
install the FlexFlow runtime. The Legion and GASNet submodules
can be initialized by the following command lines:

git submodule init

git submodule update

The ffcompile.sh script compiles a DNN model in FlexFlow:

./ffcompile.sh dnn.cc

where dnn.cc defines the operators in the DNN model.

C.5 Experiment workflow

The run experiments.sh script automatically builds and
evalautes two example DNN models (i.e., AlexNet (Krizhevsky
et al., 2012) and ResNet (He et al., 2016)) in FlexFlow. All experi-
ments were run with synthetic data in GPU memory to remove the
side effects of data transfers between CPU and GPU.

For each DNN model, we compare the training throughputs of data
parallelism and FlexFlow’s optimized parallelization strategies on
1, 2, and 4 GPUs on a compute node.

C.6 Evaluation and expected result

The run experiments.sh script prints the training through-
puts of different parallelization strategies. By running the script on
a multi-GPU node, you should observe that FlexFlow’s optimized
strategies consistently outperform the data parallelism baseline.

C.7 Experiment customization

FlexFlow can be used to optimize parallelization for arbitrary DNN
models. We refer users to the README.md file in this artifact
evaluation for detailed instructions on how to use FlexFlow for
other DNN models.

†http://gasnet.lbl.gov/
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