
TASO: Optimizing Deep Learning Computation with
Automatic Generation of Graph Substitutions

Zhihao Jia
Stanford University

zhihao@cs.stanford.edu

Oded Padon
Stanford University

padon@cs.stanford.edu

James Thomas
Stanford University

jjthomas@stanford.edu

Todd Warszawski
Stanford University

twarszaw@stanford.edu

Matei Zaharia
Stanford University

matei@cs.stanford.edu

Alex Aiken
Stanford University

aiken@cs.stanford.edu

Abstract
Existing deep neural network (DNN) frameworks optimize
the computation graph of a DNN by applying graph transfor-
mationsmanually designed by human experts. This approach
misses possible graph optimizations and is difficult to scale,
as new DNN operators are introduced on a regular basis.
We propose TASO, the first DNN computation graph op-

timizer that automatically generates graph substitutions.
TASO takes as input a list of operator specifications and
generates candidate substitutions using the given operators
as basic building blocks. All generated substitutions are for-
mally verified against the operator specifications using an
automated theorem prover. To optimize a given DNN com-
putation graph, TASO performs a cost-based backtracking
search, applying the substitutions to find an optimized graph,
which can be directly used by existing DNN frameworks.

Our evaluation on five real-world DNN architectures shows
that TASO outperforms existing DNN frameworks by up to
2.8×, while requiring significantly less human effort. For ex-
ample, TensorFlow currently contains approximately 53,000
lines of manual optimization rules, while the operator speci-
fications needed by TASO are only 1,400 lines of code.

CCS Concepts • Computing methodologies→Neural
networks; • Computer systems organization → Neural

networks; • Software and its engineering→ Formal soft-

ware verification.

Keywords deep neural network, computation graph sub-
stitutions, superoptimization, formal verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6873-5/19/10. . . $15.00
https://doi.org/10.1145/3341301.3359630

ACM Reference Format:
Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei
Zaharia, and Alex Aiken. 2019. TASO: Optimizing Deep Learning
Computation with Automatic Generation of Graph Substitutions.
In ACM SIGOPS 27th Symposium on Operating Systems Principles

(SOSP ’19), October 27–30, 2019, Huntsville, ON, Canada. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3341301.3359630

1 Introduction
Deep neural network (DNN) frameworks represent a neural
architecture as a computation graph, where each node is a
mathematical tensor operator (e.g., matrix multiplication,
convolution, etc.). To improve the runtime performance of a
computation graph, the most common form of optimization
is graph substitutions that replace a subgraph matching a
specific pattern with a functionally equivalent subgraph with
improved performance.

Existing DNN frameworks optimize a computation graph
by applying graph substitutions that are manually designed
by domain experts, as depicted in Figure 1a. For example,
TensorFlow, PyTorch, TensorRT, and TVM use a greedy
rule-based optimization strategy and directly perform all
applicable substitutions (i.e., rules) on an input computation
graph [6, 8, 31, 36]. MetaFlow [21] allows substitutions that
may either increase or decrease performance to enable a
larger search space of equivalent computation graphs and
uses back-tracking search to explore this space, but it still
requires manually specified substitutions. Although manu-
ally designed substitutions improve the performance of DNN
computations, they fall short in several respects.

Maintainability. Hand-written graph substitutions require
significant engineering effort. For example, TensorFlow r1.14
includes 155 substitutions implemented in approximately
53K lines of C++ code. The maintenance problem is ag-
gravated by the fact that new operators are continuously
introduced; for example, recent work has proposed depth-
wise [19], grouped [38], and transposed convolutions [16]
for different image classification tasks. TensorFlow r1.14 cur-
rently includes 17 graph substitutions (written in 4K lines of
code) to optimize ordinary convolution (e.g., fusing it with
different types of operators). With the existing approach,

https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3341301.3359630

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Z. Jia et al.

Optimized Comp. Graph

Input
Comp. Graph

Manually Designed
Graph Substitutions

Graph Subst. Optimizer

Data Layout Optimizer

(a) Existing DNN frameworks.

Input Comp. Graph

Graph Subst. and
Data Layout

Joint Optimizer
(§5)

Graph Subst. Generator (§2)

Graph Subst. Verifier (§3)

Operator Specifications

Optimized Comp. Graph

Verified Graph Subst.

(b) TASO.

Figure 1. Comparing computation graph optimization in
existing DNN frameworks with TASO.

supporting each new convolution variant would require a
similar implementation effort, as each has slightly different
semantics and cannot be directly optimized using existing
substitutions.

Data layout. Tensor data can be stored in memory in vari-
ous layouts, and this choice has a high impact on runtime
performance. The best layout depends on both the operator
and the hardware. For example, on a P100 GPU, convolution
performs best with row-major layout (i.e., the inner-most di-
mension is contiguously stored), while matrix multiplication
performs best with column-major layout (i.e., the outer-most
dimension is contiguously stored). On a Tesla V100 GPU
with tensor cores [5] supporting 4×4 matrix operations, opti-
mal performance may require tiling tensors into 4×4 chunks.
However, considering layout transformations together with
graph substitutions adds another level of complexity. For ex-
ample, a graph substitution may only improve performance
if it is combined with a particular layout transformation (see
Section 7.5). Current frameworks avoid this complexity by

treating data layout and graph substitution as separate op-
timization problems and solve them sequentially [8, 27], as
shown in Figure 1a, but this separation misses many possible
optimization opportunities.

Correctness. Hand-written graph substitutions are error-
prone, and a bug in graph substitutions can lead to incorrect
computation graphs [2, 4]. The same issue arises in com-
piler optimization, where an incorrect optimization leads
to incorrect programs. In the compiler literature, signifi-
cant effort has been devoted to formally verifying optimiza-
tions [7, 11, 13, 23, 29, 30, 33, 35]. However, to the best of our
knowledge, such techniques have not been applied to graph
substitution optimizations performed by DNN frameworks.

1.1 Our Approach
In this paper, we present TASO (Tensor Algebra SuperOp-
timizer), the first DNN computation graph optimizer that
automatically generates graph substitutions. Figure 1b shows
an overview of TASO, which differs from existing frame-
works in three aspects. First, TASO only requires operator
definitions and specifications, and automatically generates
graph substitutions, reducing manual effort. Second, TASO
employs formal verification to ensure correctness of the gen-
erated graph substitutions. Finally, TASO jointly optimizes
graph substitution and data layout, achieving significantly
better runtime performance.

Generating substitutions. TASO’s graph substitution gen-

erator enumerates all possible computation graphs over a
given set of DNN operators (e.g., the cuDNN kernels [10]) up
to a fixed size, and executes them on a set of random input
tensors. Any pair of computation graphs that have identical
results on the random inputs are considered as a candidate
substitution. To efficiently find all such pairs, TASO con-
structs a hash table where computation graphs are stored
based on the hash of their outputs for the random inputs.

Formal verification. TASO’s graph substitution verifier is
used to ensure correctness of the generated graph substitu-
tions, relying on user provided operator properties. Operator
properties capture mathematical properties of operators, e.g.,
linearity of convolution. The full list of 43 operator proper-
ties we used appears in Table 2. As our evaluation shows, a
small set of properties for each operator suffices to prove the
correctness of complex substitutions.
Formally, we model tensor operators using a symbolic

representation based on first-order logic that is agnostic to
the size of the underlying tensors, and can succinctly express
operator properties. The verifier uses the specified properties
to check the correctness of all generated graph substitutions
using an automated theorem prover.

TASO SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

We also present a methodology for developing operator
properties, which assists the developer in two ways: (1) dis-
covery of required properties is guided by the graph substi-
tution generator, and (2) operator properties are subject to
further validation using symbolic execution on tensors of
small sizes. During the development process, we found that
the our verification methodology uncovered several bugs,
both in the operator specifications and in the implementation
of the graph substitution generator.

Joint optimization. TASO jointly optimizes graph substi-
tutions and data layout transformations by integrating them
into a common representation. TASO uses the cost-based
backtracking search algorithm of MetaFlow [21] and extends
its cost model to also capture performance differences that
arise from different data layouts. During the search, TASO
measures the performance of a proposed DNN operator with
a specific proposed data layout on the hardware. These indi-
vidual measurements are used to predict the performance of
an entire computation graph with specific data layouts.

Evaluation. We evaluate TASO on five real-world DNN ar-
chitectures. For widely used DNNs optimized by existing
frameworks, such as ResNet-50 [18], TASO matches the per-
formance of these frameworks with hand-written rules by
using operator definitions and specifications 1,400 lines long.

For new DNN architectures such as ResNeXt-50 [38], Nas-
RNN [39], NasNet-A [40], and BERT [15], TASO is up to
2.8× faster than state-of-the-art frameworks, by automati-
cally discovering novel graph substitutions to optimize these
architectures. Compared to sequentially optimizing graph
substitutions and data layout, we show that the joint opti-
mization can further improve performance by 1.2×. In all
experiments, TASO discovered an optimized graph in less
than ten minutes, making it feasible to use when optimizing
a DNN architecture before large-scale deployment.

2 Graph Substitution Generator
This section describes the TASO substitution generator that
automatically generates potential substitutions given a list
of primitive operators. The generation algorithm finds all
valid substitutions up to a certain size.

To find all potential substitutions, a straightforward ap-
proach is to test all pairs of graphs for equivalence, which
requires a quadratic number of tests between graphs. We
adopt an idea from compiler superoptimization [7] and com-
pute a fingerprint for each graph, which is a hash of the graph
outputs on some specific inputs. Two graphs are certainly
not equivalent if they have different fingerprints, and so by
only comparing graphs with the same fingerprint, TASO
significantly reduces the number of equivalence tests. In
the experiments, we observe that all graphs with the same
fingerprint are verified equivalent by TASO.

matmul

A B C

matmul

matmul

matmul

A B C

X X

source graph: A x (B x C) target graph: (A x B) x C

(a) Associativity of matrix multiplication.

matmul

A B C

matmul
concat

matmul

A B C

X splitY

X Y

target graphsource graph

(b) Fusing two matrix multiplications using concatenation and split.

Figure 2. Graph substitution examples.

2.1 Graph Substitution Definition
A graph substitution consists of three components: (1) a source
graph that is matched to subgraphs in a computation graph;
(2) a target graph1 that defines a functionally equivalent new
subgraph to replace thematched subgraph; and (3) amapping

relation between input/output tensors in the source and tar-
get graphs. Figure 2a shows an example graph substitution
using the associativity of matrix multiplication. Figure 2b
fuses two matrix multiplications into one using concatena-
tion and split along the row dimension. A, B, C , X , and Y
identify the mapping between input and output tensors in
the source and target graphs.

A graph substitution is specified independently of the con-
crete tensor shapes. For example, the substitutions of Figure 2
can be applied to tensors A,B, and C of any concrete shape.
Some operators also depend on configuration parameters to
determine the behavior of the operator. For example, the
parameters of convolution determine the strides, padding,
and activation (e.g., applying the relu function [28] as part
of convolution); and the parameters of split or concatenation
determine the axis along which to apply the operator.

Concatenation and split operators. Concatenation and
split operators are commonly used in fusing operators with
shared inputs, as illustrated in Figure 2b. A split operator
partitions a tensor into two disjoint sub-tensors along a

1In some of the superoptimization literature, what we call the source is
called the target, and what we call the target is called the rewrite.

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Z. Jia et al.

concat

matmul split

A

B

C

X

Y

{	SA

SB

[0, SA)

[0, SB)

[0, SA+SB)

[0, SA) [SA, SA+SB)
matmul

matmul

A

B

C

X

Y

[0, SA)

[0, SB)

[0, SA)

[0, SB)
[0, SA)

[0, SB)

[0, SA+SB)

[0, SA) [SA, SA+SB)

Figure 3. A graph substitution for fusing matrix multiplications with a shared input. The target graph has a concat and a
split operator, both of which are performed along the row dimension of a matrix. The split tree of the row dimension for
each tensor is shown in a gray box.

dimension determined by its parameter. This presents a com-
plication, as the split point cannot be inferred from the input
tensors or the parameter. To solve this problem, we observe
that a split operator always partitions a tensor at previous
concatenation points to “undo” the most recent concatena-
tion operator. We use this fact to define a suitable semantics
for the split operator.

Formally, we maintain a split tree for each dimension of a
tensor to track the concatenation history. Figure 3 shows the
split trees of the row dimension for all tensors in Figure 2b.
The split trees allow the substitution to recover the split
point without introducing any additional parameters. Our
approach also supports multi-way concatenation and split
by nesting of concatenation and split operators.

2.2 Generation Algorithm
For a given set of operator specifications, TASO generates
potential graph substitutions in two steps, as shown in Al-
gorithm 1.

Step 1: Enumerating potential graphs and collect-
ing their fingerprints. TASO first enumerates all potential
graphs up to a certain size by using a given set of operators.
To construct a graph, TASO iteratively adds an operator in
the current graph by enumerating the type of the operator
and the input tensors to the operator. The input tensors can
be initial input tensors to the graph (e.g., A, B, and C in Fig-
ure 2) or the output tensors of previous operators (e.g., the
output of the matmul and concat operators in Figure 2).
Algorithm 1 (line 7-18) shows a depth-first search algo-

rithm for constructing all acyclic computation graphs that do
not contain duplicated computation.We say a graph contains
duplicated computation if it has two operators performing
the same computation on the same input tensors. The gen-
erator ignores such graphs as they do not represent useful
computation graphs.

For each graph, we collect its fingerprint, which is a hash
of the output tensors obtained by evaluating the graph on

Algorithm 1 Graph substitution generation algorithm.
1: Input: A set of operators P, and a set of input tensors I.
2: Output: Candidate graph substitutions S.
3:
4: // Step 1: enumerating potential graphs.

5: D = {} //D is a graph hash table indexed by their fingerprints.
6: Build(1, ∅, I)
7: function Build(n, G, I)
8: if G contains duplicated computation then
9: return
10: D = D + (FingerPrint(G),G)
11: if n < threshold then
12: for op ∈ P do
13: for i ∈ I and i is a valid input to op do
14: Add operator op into graph G.
15: Add the output tensors of op into I.
16: Build(n + 1, G, I)
17: Remove operator op from G.
18: Remove the output tensors of op from I.
19:
20: // Step 2: testing graphs with identical fingerprint.

21: S = {}

22: for G1,G2 ∈ D with the same FingerPrint(·) do
23: if G1 and G2 are equivalent for all test cases then
24: S = S + (G1,G2)

25: return S

some input tensors. TASO uses both randomly initialized
tensors and a number of constants as inputs to allow finding
substitutions involving constant tensors, such as the identity
matrix (see examples in Section 7.3). To avoid floating-point
errors in computing a fingerprint, all tensors are represented
with integers, following the method introduced in [37].

Since a graph can have an arbitrary number of output
tensors, the hash function must ensure the fingerprint is
independent of any permutation of the output tensors. To
guarantee this property, TASO employs a two-step hash

TASO SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

function to compute fingerprints as follows.

FingerPrint(G) = hash2 ({hash1(ti) | i ∈ Outputs(G)})

where ti are the output tensors of graph G. hash1 computes
the states and content of an output tensor, including the size,
shape, and content of the tensor. hash2 is a symmetric hash
function applied to an unordered set of hash values.

Step 2: Testing graphs with identical fingerprint. For
graphs with the same fingerprint, TASO further examines
their equivalence on a set of test cases. Similar to collecting
fingerprints, each test case contains a set of randomized
input tensors, and two graphs pass if they produce equivalent
output tensors for all test cases. Unlike the fingerprints, these
tests use floating point numbers ranging between −1 and 1,
and classify two output tensors as equivalent if their outputs
differ by no more than a small threshold value, which is
10−5 in the evaluation. For this threshold, we observed no
discrepancy from the integer tests. However, it is possible
to use a smaller threshold to filter out substitutions that are
valid for real numbers but result in floating point errors.

Each pair of graphs passing the random testing becomes
the source and target graphs of a candidate graph substi-
tution, and the mapping relation between the input/output
tensors in the source and target graphs can be automatically
inferred from the test cases. All candidate graph substitutions
are then sent to the substitution verifier to check their cor-
rectness (Section 3), and later pruned to eliminate redundant
substitutions (Section 4).
The algorithm described so far is generic, in the sense

that it does not depend on the specific tensor operators used.
However, we observed that for DNN applications, there are
two operators that require special handling. The relu op-
erator [28], which is commonly used in DNN applications,
returns 0 for all negative inputs. As relu often returns 0,
it results in many superfluous substitutions being valid. To
prevent these substitutions from being generated, the gen-
erator replaces relu by an arbitrary non-linear function
(our implementation uses x 7→ x(x + 1) + 1). The enlarge
operator increases the size of a tensor by padding it with
zeros, which is useful for fusing convolutions with differ-
ent kernel sizes [21]. However, the presence of zeros also
results in many superfluous substitutions. To overcome this,
the generator only considers computation graphs in which
enlarge is applied to an input tensor, i.e., not to the output
of another operator. This restriction captures the intended
use of enlarge for fusing convolutions, while avoiding the
superfluous substitutions.

It is worth noting that prior work [7] reported false posi-
tives in using random testing to examine code transforma-
tions in compiler superoptimization. They observed that a
number of incorrect code transformations passed a set of
test cases. We have not observed any false positive cases in
all the experiments. We use a single test case to examine all
graph pairs with the same fingerprint, and all substitutions

Table 1. Tensor operators and constant tensors included
in TASO. Similar to existing DNN frameworks [6, 31], pool-
ing and convolution operators support different strides and
padding modes (i.e., Psame and Pvalid); convolution supports
different activation functions (i.e., Anone and Arelu). Section 6
provides more details on the usage of the constants.

Name Description Parameters
Tensor Operators

ewadd Element-wise addition
ewmul Element-wise multiplication
smul Scalar multiplication
transpose Transpose
matmul Batch matrix multiplication#
conv Grouped convolution% stride, padding, activation
enlarge Pad conv. kernel with zeros† kernel size
relu Relu operator
poolavg Average pooling kernel size, stride, padding
poolmax Max pooling kernel size, stride, padding
concat Concatenation of two tensors concatenation axis
split{0,1} Split into two tensors split axis

Constant Tensors
Cpool Average pooling constant kernel size
Iconv Convolution id. kernel kernel size
Imatmul Matrix multiplication id.
Iewmul Tensor with 1 entries
Normal matrix multiplication is considered as batch size equals 1.
% Normal and depth-wise conv. are special cases of grouped conv.
† Increase the size of a conv. kernel, restricted to operate on input tensors.

passing the test case are correct and verified by the substitu-
tion verifier. This is likely due to the high arithmetic density
of DNN operators and the lack of branching (if statements)
in computation graphs. As a reference, [17] shows that for
programs with only linear operators, the probability that
two nonequivalent programs produce identical output on a
random input is at most 1

d , where d is the number of possible
values for a variable (i.e., d = 232 in TASO).

3 Graph Substitution Verifier
The key idea behind our approach to formally verifying sub-
stitutions is to use a small set of operator properties expressed
in first-order logic. These properties are manually written
and reviewed, and are further validated by symbolically ex-
ecuting operators on tensors of small sizes and confirming
that the operator properties are satisfied for these tensor
sizes. Development of operator properties is guided by the
substitutions discovered by the substitution generator.

For purposes of verification, we model tensor operators us-
ing first-order logic, where operators are represented using
functions of both their parameters and their input tensors.
For example conv(s,p, c,x ,y) represents the convolution op-
erator applied to tensors x and y, where the parameter s
determines the stride, p determines padding mode, and c
determines the activation mode, e.g., applying a relu acti-
vation function as part of the convolution operator kernel.
For example, the fact that convolution without activation

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Z. Jia et al.

Table 2. Operator properties used for verification. The operators are defined in Table 1, and the properties are grouped by the
operators they involve. Logical variablesw,x ,y, and z are of type tensor, and variables a, c,k,p, and s are of type parameter.
The variable a is used for the axis of concatenation and split, c for the activation mode of convolution, k for the kernel shape
of pooling, p for the padding mode of convolution and pooling, and s for the strides of convolution and pooling.

Operator Property Comment
∀x ,y, z. ewadd(x , ewadd(y, z)) = ewadd(ewadd(x ,y), z) ewadd is associative
∀x ,y. ewadd(x ,y) = ewadd(y,x) ewadd is commutative
∀x ,y, z. ewmul(x , ewmul(y, z)) = ewmul(ewmul(x ,y), z) ewmul is associative
∀x ,y. ewmul(x ,y) = ewmul(y,x) ewmul is commutative
∀x ,y, z. ewmul(ewadd(x ,y), z) = ewadd(ewmul(x , z), ewmul(y, z)) distributivity
∀x ,y,w . smul(smul(x ,y),w) = smul(x , smul(y,w)) smul is associative
∀x ,y,w . smul(ewadd(x ,y),w) = ewadd(smul(x ,w), smul(y,w)) distributivity
∀x ,y,w . smul(ewmul(x ,y),w) = ewmul(x , smul(y,w)) operator commutativity
∀x . transpose(transpose(x)) = x transpose is its own inverse
∀x ,y. transpose(ewadd(x ,y)) = ewadd(transpose(x), transpose(y)) operator commutativity
∀x ,y. transpose(ewmul(x ,y)) = ewmul(transpose(x), transpose(y)) operator commutativity
∀x ,w . smul(transpose(x),w) = transpose(smul(x ,w)) operator commutativity
∀x ,y, z. matmul(x , matmul(y, z)) = matmul(matmul(x ,y), z) matmul is associative
∀x ,y,w . smul(matmul(x ,y),w) = matmul(x , smul(y,w)) matmul is linear
∀x ,y, z. matmul(x , ewadd(y, z)) = ewadd(matmul(x ,y), matmul(x , z)) matmul is linear
∀x ,y. transpose(matmul(x ,y)) = matmul(transpose(y), transpose(x)) matmul and transpose

∀s,p, c,x ,y,w . conv(s,p, c, smul(x ,w),y) = conv(s,p, c,x , smul(y,w)) conv is bilinear
∀s,p,x ,y,w . smul(conv(s,p, Anone,x ,y),w) = conv(s,p, Anone, smul(x ,w),y) conv is bilinear
∀s,p,x ,y, z. conv(s,p, Anone,x , ewadd(y, z)) = ewadd(conv(s,p, Anone,x ,y), conv(s,p, Anone,x , z)) conv is bilinear
∀s,p,x ,y, z. conv(s,p, Anone, ewadd(x ,y), z) = ewadd(conv(s,p, Anone,x , z), conv(s,p, Anone,y, z)) conv is bilinear
∀s, c,k,x ,y. conv(s, Psame, c,x ,y) = conv(s, Psame, c,x , enlarge(k,y)), enlarge convolution kernel
∀s,p,x ,y. conv(s,p, Arelu,x ,y) = relu(conv(s,p, Anone,x ,y)) conv with Arelu applies relu
∀x . relu(transpose(x)) = transpose(relu(x)) operator commutativity
∀s,p,x ,k . conv(s,p, Anone,x , Cpool(k)) = poolavg(k, s,p,x) pooling by conv. with Cpool
∀k,x . conv(1, Psame, Anone,x , Iconv(k)) = x identity kernel
∀x . matmul(x , Imatmul) = x identity matrix
∀x . ewmul(x , Iewmul) = x ewmul identity
∀a,x ,y. split0(a, concat(a,x ,y)) = x split definition
∀a,x ,y. split1(a, concat(a,x ,y)) = y split definition
∀x ,y, z,w . concat(0, concat(1,x ,y), concat(1, z,w)) = concat(1, concat(0,x , z), concat(0,y,w)) geometry of concatenation
∀a,x ,y,w . concat(a, smul(x ,w), smul(y,w)) = smul(concat(a,x ,y),w) operator commutativity
∀a,x ,y, z,w . concat(a, ewadd(x ,y), ewadd(z,w)) = ewadd(concat(a,x , z), concat(a,y,w)) operator commutativity
∀a,x ,y, z,w . concat(a, ewmul(x ,y), ewmul(z,w)) = ewmul(concat(a,x , z), concat(a,y,w)) operator commutativity
∀a,x ,y. concat(a, relu(x), relu(y)) = relu(concat(a,x ,y)) operator commutativity
∀x ,y. concat(1, transpose(x), transpose(y)) = transpose(concat(0,x ,y)) concatenation and transpose
∀x ,y, z. concat(1, matmul(x ,y), matmul(x , z)) = matmul(x , concat(1,y, z)) concatenation and matrix mul.
∀x ,y, z,w . matmul(concat(1,x , z), concat(0,y,w)) = ewadd(matmul(x ,y), matmul(z,w)) concatenation and matrix mul.
∀s,p, c,x ,y, z. concat(0, conv(s,p, c,x , z), conv(s,p, c,y, z)) = conv(s,p, c, concat(0,x ,y), z) concatenation and conv.
∀s,p, c,x ,y, z. concat(1, conv(s,p, c,x ,y), conv(s,p, c,x , z)) = conv(s,p, c,x , concat(0,y, z)) concatenation and conv.
∀s,p,x ,y, z,w . conv(s,p, Anone,concat(1,x , z), concat(1,y,w)) =

ewadd(conv(s,p, Anone,x ,y), conv(s,p, Anone, z,w))
concatenation and conv.

∀k, s,p,x ,y. concat(1, poolavg(k, s,p,x), poolavg(k, s,p,y)) = poolavg(k, s,p, concat(1,x ,y)) concatenation and pooling
∀k, s,p,x ,y. concat(0, poolmax(k, s,p,x), poolmax(k, s,p,y)) = poolmax(k, s,p, concat(0,x ,y)) concatenation and pooling
∀k, s,p,x ,y. concat(1, poolmax(k, s,p,x), poolmax(k, s,p,y)) = poolmax(k, s,p, concat(1,x ,y)) concatenation and pooling

(denoted by Anone) is linear in its first argument is captured
by the following operator property (where ewadd represents
element-wise tensor addition):

∀s,p,x ,y, z. conv(s,p, Anone, ewadd(x ,y), z) =
ewadd(conv(s,p, Anone,x , z), conv(s,p, Anone,y, z))

Table 1 lists all operators and tensor constants used in our
evaluation, and Table 2 shows the full list of operator prop-
erties used in our evaluation to verify graph substitutions.
Given the operator properties, we use a first-order theo-

rem prover—our implementation uses Z3 [14]—to verify all

TASO SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

generated substitutions. This verification amounts to entail-
ment checking in first-order logic, checking that the operator
properties entail functional equivalence of the source and
target graphs of each generated substitution.
Modeling the operators using first-order logic involves

a degree of abstraction (e.g., the shapes of tensors are not
modeled). We found this level of abstraction to be suitable
for verifying graph substitutions. We also note that the data
layout is abstracted for verification purposes—layout does
not affect operator semantics, and the optimizer (Section 5)
ensures that layouts are used consistently.

Methodology for developing operator properties. We de-
veloped operator properties as needed to determine the cor-
rectness of generated graph substitutions using an iterative
process. During the development process, we ran the sub-
stitution generator and tried to verify all discovered substi-
tutions. If a substitution could not be verified and appeared
correct, we added an appropriate property (or properties). To
safeguard against mistakes in operator properties, we used
further validation steps.
To validate operator properties, TASO verifies the opera-

tor properties themselves for all combinations of parameter
values and tensor sizes up to a small bound—in our evalu-
ation the bound was 4×4×4×4. For this, TASO requires a
basic symbolic implementation of each tensor operator in
Python. TASO symbolically executes this implementation
for tensors of small size, effectively elaborating the tensor
operations into symbolic real arithmetic expressions, where
activation functions (e.g., relu) are modeled using uninter-
preted functions. TASO then uses Z3, here as an SMT solver
for the theory of real arithmetic, to verify the operator prop-
erties. For example, if a user would try to add the (wrong)
property stating the convolution operator is linear for all
activation modes (including relu activation), then this check
would show that this property is not satisfied by the actual
operators.
As an additional validation step that assists the develop-

ment process, TASO checks that the set of operator prop-
erties is consistent and does not contain redundancies (i.e.,
a property entailed by other properties), which amounts to
first-order entailment checks. These checks are also useful
for discovering erroneous properties, and are cheaper to
perform than the verification for small tensor sizes.

During our development process, the verification method-
ology revealed several subtle bugs. Some bugs in the graph
substitution generator were found when it generated substi-
tutions that could not be verified, and the validation steps
described above revealed several bugs in candidate operator
properties. In our experience, a new operator can be sup-
ported with a small amount of effort, usually a few hours
of work by an expert. Typically a few properties must be
written for each operator. In our evaluation, we were able to

matmul

A B

matmul

matmul

matmul

A B

source graph: A x (B x A) target graph: (A x B) x A

X X

(a) A redundant substitution that is equivalent to Figure 2a by renaming
input tensor C with A.

matmul

A B C

add

matmul

add

B C A
source graph: A + (B x C) target graph: (B x C) + A

X X

(b) A redundant substitution with a common subgraph.

add

matmul

B A C

add

matmul

A B C

source graph: (A + B) x C target graph: (B + A) x C

X X

(c) A redundant substitution with a common subgraph.

Figure 4. Example redundant substitutions pruned by TASO.
Matmul and Add refer to matrix multiplication and element-
wise addition, respectively. For each subgraph, A, B, and C
refer to its input tensors, while X refers to the output tensor.

verify all 743 generated graph substitutions using 43 operator
properties (see Table 2).

4 Pruning Redundant Substitutions
A graph substitution is redundant if it is subsumed by a
more general valid substitution. This section describes the
pruning techniques used by TASO to eliminate redundant
graph substitutions. All pruning steps preserve all optimiza-
tion opportunities: if graph G can be transformed into graph
G′ using a sequence of substitutions, then G can always be
transformed into G′ after pruning (possibly using a different
set of transformations).

Input tensor renaming. TASO eliminates graph substitu-
tions identical to other substitutions modulo input tensor

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Z. Jia et al.

Table 3. The number of remaining graph substitutions after
applying the pruning techniques in order.

Pruning Remaining Reduction
Techniques Substitutions v.s. Initial
Initial 28744 1×
Input tensor renaming 17346 1.7×
Common subgraph 743 39×

renaming. For example, Figure 4a shows a redundant substi-
tution equivalent to Figure 2a by renaming input tensor C
with A. For substitutions that are equivalent through input
tensor renaming, TASO prunes all but a single most general
substitution.

Common subgraph. TASO also tries to eliminate substi-
tutions whose source and target graphs have a common
subgraph. TASO identifies two forms of common subgraphs
that can lead to pruning.
The first form of common subgraph is illustrated in Fig-

ure 4b. Here, the source and target graphs both contain a
common operator with the same input tensors (highlighted
in gray boxes). The common subgraph represents an input to
other operators in both the source and target graphs. There-
fore, we can obtain a more general substitution by replacing
the common subgraph with a fresh input tensor. If this more
general substitution is indeed valid, then TASO prunes the
less general substitution.

The second form of common subgraph is demonstrated in
Figure 4c. Here, the common subgraph (highlighted in gray
boxes) includes all the outputs in both the source and target
graphs. In this case, a more general substitution can be ob-
tained by completely removing the common subgraph, mak-
ing its inputs new outputs of the source and target graphs.
TASO prunes the less general substitution if the more general
one is valid.

Table 3 shows the effect of the TASO pruning techniques
on the number of substitutions. We observe that both prun-
ing techniques play an important role in eliminating redun-
dant substitutions and their combination reduces the number
of substitutions TASO must consider by 39×.

5 Joint Optimizer
We now describe the TASO optimizer for jointly optimiz-
ing data layout and graph substitution. The optimizer uses
the MetaFlow [21] cost-based backtracking search algorithm
to search for an optimized computation graph by applying
verified substitutions. TASO extends MetaFlow’s search al-
gorithm to also consider possible layout optimization oppor-
tunities when performing substitutions.
When applying a substitution on a matched subgraph,

based on the data layouts of tensors in the source graph and
the layouts supported by the operators, TASO enumerates
possible layouts for tensors in the target graph. As a result,

transpose

B A

source graph: (A x B)T target graph: (BT x AT)

matmul

A B

transpose

transpose

(C) (C)

(C)

(C) (C)

(C/R) (C/R)

(C)(C)
X X

matmul

Figure 5. A graph substitution using the transpose of ma-
trix multiplication. matmul and transpose indicate matrix
multiplication and transpose, respectively. The parentheses
show the potential layouts for each tensor in the source and
target graphs, where C and R indicate the column-major and
row-major layouts of a tensor.

Algorithm 2 Cost-Based Backtracking Search
1: Input: an input graph G

in
, verified substitutions S, a cost

model Cost(·), and a hyper parameter α .
2: Output: an optimized graph.
3:
4: P = {G

in
} // P is a priority queue sorted by Cost.

5: while P , {} do
6: G = P.dequeue()
7: for substitution s ∈ S do
8: // Layout(G, s) returns possible layouts applying s on G.

9: for layout l ∈ Layout(G, s) do
10: // Apply(G, s, l) applies s on G with layout l .
11: G′ = Apply(G, s, l)
12: if G′ is valid then
13: if Cost(G′) < Cost(Gopt) then
14: Gopt = G′

15: if Cost(G′) < α × Cost(Gopt) then
16: P.enqueue(G′)

17: return Gopt

applying a substitution on a matched computation graph
may result in multiple graphs with identical graph structure
but different data layouts.
For example, Figure 5 shows the potential computation

graphs that can be derived by applying the transpose of ma-
trix multiplication on a source graph with a default column-
major layout (shown as C). Both thematrixmultiplication and
transpose operators also support an alternative row-major
layout (shown as R). The data layouts for all mapped tensors
in the target graph (i.e., A, B, and X) must match the layouts
in the source graph. The two intermediate tensors in the
target graph can have either a row-major or a column-major
layout, therefore TASO considers four different computation
graphs (i.e., CC, CR, RC, and RR for the two intermediate ten-
sors) when applying this substitution. This allows TASO to

TASO SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

matmul

A B

matmul
concat

matmul

A B

splitX

X

(a) before substitution (b) after substitution

relu

relu

Figure 6. A graph substitution example that introduces a cy-
cle into a computation graph, where A,B are the inputs, and
X is the output. The original graph computesA×relu(A×B),
and the new graph is the result of applying the substitution
shown in Figure 2b that fuses the two matrix multiplications
using concatenation and split. The source and target graphs
of the substitution are shown in the dotted boxes. Both the
original graph and the substitution are acyclic. However, the
resulting graph contains a cycle (highlighted in red).

capture potential layout transformation opportunities when
performing graph substitutions.
Algorithm 2 shows our cost-based backtracking search al-

gorithm for jointly optimizing substitution and data layout.
The cost model is motivated by the fact that DNN operators
perform dense linear algebra with no branches, and there-
fore their performance on hardware is highly consistent and
predictable given the same data layouts and configuration
parameters (e.g., the strides and padding of a convolution).
Similar to MetaFlow [21], TASOmeasures the execution time
of a DNN operator once for each configuration and data lay-
out, and estimates the performance of a graph by summing
up the measured execution time of its operators.
To search for an optimized graph, all candidate graphs

are maintained in a priority queue P and are dequeued in
increasing order of cost. For each dequeued graph G, TASO
considers each verified substitution and possible layouts
applicable to the substitution, and applies them to obtain
functionally equivalent new graphs G′.

A non-obvious property of graph substitutions is that ap-
plying them can introduce cycles into a graph. Figure 6 shows
one example where applying a valid substitution results in
a cyclic graph. Since computation graphs must be acyclic,
TASO checks the acyclicity of G′ (line 12 of Algorithm 2)
before enqueuing it in P.

Finally, the best discovered graph Gopt is returned by the
search algorithm. The search space is pruned by a hyper
parameter α , which directly eliminates all graphs whose
cost is α times worse than the best discovered graph. The
parameter α trades off between the search time and the
best discovered graph. Setting α = 1 reduces the search

to a simple greedy algorithm without backtracking, and a
high value for α makes the search explore more possible
candidates and causes more backtracking. We observe that
α = 1.05 achieves good performance in our evaluation.

6 Implementation
TASO is designed and implemented as a generic and extensi-
ble computation graph optimizer for tensor computations,
such that new tensor operators can be easily added. Table 1
lists the tensor operators included in the current implemen-
tation of TASO. Some operators also depend on additional
parameters to determine the behavior of the operator, such as
the strides, padding, and activation of a convolution. In addi-
tion to operators, TASO also includes four types of constant
tensors that are useful in substitutions. In particular, Iewmul,
Imatmul, and Iconv are identity tensors for element-wise mul-
tiplication, matrix multiplication, and convolution, respec-
tively. Cpool allows converting an average pooling operator
to a depth-wise convolution (see examples in Section 7.3).
As explained in Section 3, TASO uses operator proper-

ties specified by the user to verify the generated graph sub-
stitutions. Table 2 lists the 43 properties used to verify all
substitutions in our evaluation.

TASO can easily be extended to include new tensor oper-
ators. For each operator, TASO requires two forms of input:
(1) reference implementations for the operator, and (2) spec-
ifications of operator properties. (1) consists of a concrete
implementation (in C++) used by the substitution generator
and a symbolic implementation (in Python) used to validate
the operator specifications. In our experience, adding a new
operator requires a few hours of work by an expert.
For a new operator whose specifications are currently

missing, TASO treats it as an opaque operator and can still
optimize the rest of the graph using verified substitutions.
TASO is implemented on top of MetaFlow, and reuses

the MetaFlow cost-based backtracking search [21]. Overall,
our implementation of TASO contains around 8,000 lines
of code for the core components (i.e., the substitution gen-
erator, verifier, and optimizer), and 1,400 lines of code for
the operator reference implementations, including the 43
operator properties.
TASO is framework-agnostic and can be plugged in to

existing DNN frameworks such as TensorRT and TVM by
simply emitting the optimized graph in the target frame-
work’s input format. In the evaluation, we demonstrate this
portability on TensorRT and TVM, and show that they can
directly use TASO’s optimizations to improve performance.

7 Evaluation
In this section we aim to evaluate the following points:

• Can TASO automatically generate and verify graph
substitutions in acceptable run time?

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Z. Jia et al.

• Can TASO improve the end-to-end performance of
real-world DNN architectures, especially for emerging
architectures with recently introduced operators?

• Can TASO’s joint optimization of computation graphs
and data layouts achieve better performance than sep-
arate optimizations?

7.1 Experimental Setup
DNNs.We use five real-world DNN architectures to evaluate
TASO. ResNet-50 [18] is a widely used convolutional neu-
ral network for image classification and achieved the best
classification performance in the ILSVRC [32] competition.
ResNeXt-50 [38] improves the model accuracy and runtime
efficiency of ResNet-50 by introducing a new grouped con-
volution operator. NasNet-A [40] and NasRNN [39] are two
DNN architectures automatically discovered by machines
through neural architecture search. NasNet-A and NasRNN
exceed the best human-designed DNN architectures for im-
age classification and language modeling tasks, respectively.
Finally, BERT [15] is a new language representation archi-
tecture that obtained the state-of-the-art model accuracy on
a spectrum of language tasks.

All experiments were performed on an Amazon p3.2xlarge
instance [1] with an 8-core Intel E5-2600 CPU, 64 GB DRAM,
and one NVIDIA Tesla V100 GPU.

To generate candidate graph substitutions, TASO enumer-
ates all potential graphs with up to four operators by using
all DNN operators listed in Table 1. TASO generated 743
candidate substitutions in around 5 minutes.

In the cost-based backtracking search for optimized DNN
graphs, we set the hyperparameter α to be 1.05, which is
identical to the value used in MetaFlow [21]. In all experi-
ments, the end-to-end search time to discover an optimized
computation graph is less than ten minutes.

7.2 End-to-End Evaluation
Wefirst compare the end-to-end inference performance among
TensorFlow [6], TensorFlowXLA [3], TensorRT [36], TVM [8],
MetaFlow [21], and TASO on a V100 GPU. Figure 7 shows
the results. TensorFlow, TensorFlow XLA, TensorRT, and
MetaFlow use the highly-engineered cuDNN and cuBLAS
libraries [10, 12] to perform DNN operators on GPUs, while
TVM generates customized GPU kernels for the DNN opera-
tors. To eliminate the impact of different operator libraries,
we evaluate the performance of TASO on both backends.

To generate GPU kernels in TVM, we allow the auto
tuner [9] to run 2000 trials and use the best discovered config-
uration for each DNN operator. It takes 2 hours on average to
tune a GPU kernel for each DNN operator. The TASO graph
optimizer needs to query the execution time of hundreds of
DNN operators for its cost model, therefore, for the TVM
backend, we reuse the best discovered computation graph
for the cuDNN backend, assuming the cost of an operator in
cuDNN is a reasonable estimate for its cost in TVM.

Among the five DNN architectures, ResNet-50 has been
commonly used and heavily optimized by existing DNN
frameworks. TASO achieves on-par performance for ResNet-
50 with existing frameworks, showing that TASO is able
to automatically discover graph substitutions manually de-
signed by domain experts. For the remaining four DNN ar-
chitectures with new operators and graph structures, TASO
outperforms existing DNN frameworks with speedups rang-
ing from 1.3× to 2.8× on the cuDNN backend and 1.1× to
1.8× on the TVM backend. The speedup is achieved by (1)
automatically discovering optimizing substitutions for the
new operators and (2) jointly optimizing graph substitution
and data layout. We analyze the substitutions discovered by
TASO in Sections 7.3 and 7.4, and the joint optimization of
substitution and data layout in Section 7.5.

7.3 Substitution Case Study
To understand how the substitutions generated and verified
by TASO improve runtime performance, we study a few
graph substitution examples in detail.

NasNet-A is the best discovered CNN architecture for the
CIFAR-10 dataset, obtained by neural architecture search.
Figure 8a shows a convolutional cell in NasNet-A. Unlike
human-designed architectures, NasNet-A contains uncon-
ventional graph structures, making it hard to optimize with
manual substitutions designed for more standard DNN archi-
tectures. To illustrate how TASO optimizes this architecture,
we show two example substitutions discovered by TASO;
neither is present in any existing DNN framework.
Figure 8b shows graph substitutions that transform two

average pooling operators followed by element-wise addi-
tion to a single depth-wise convolution, by using a constant
tensor Cpool defined in Table 1. The mathematical formula
for average pooling is:

o(n, c,x ,y) =
1

KX × KY

∑
kx

∑
ky

i(n, c,x + kx ,y + ky)

where, KX and KY are the height and width of the pooling
filter. Similarly, the formula for depth-wise convolution is:

o(n, c,x ,y) =
∑
kx

∑
ky

i(n, c,x + kx ,y + ky) ×w(c,kx ,ky)

which produces mathematically equivalent result as an av-
erage pooling if we have w(c,kx ,ky) = 1/(KX × KY). In
addition, TASO also fuses the two depth-wise convolutions
into one using its linearity.
A second new sequence of substitutions for NasNet-A is

shown in Figure 8c, which fuses two depth-wise convolutions
and two convolutions followed by addition to a depth-wise
convolution followed by a standard convolution. This sub-
stitution increases the operator granularity and reduces the
operator launch overhead by using larger operators.

For inferenceworkloads, theweights in DNN architectures
(e.g.,Wi and Cpool in Figure 8) are fixed and independent of

TASO SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

A B C D E F G
ResNet-50

0.0

0.5

1.0

1.5

2.0

2.5

1.0x
1.1x

A B C D E F G
NasNet-A

0

2

4

6

8

10

1.3x
1.3x

A B C D E F G
ResNeXt-50

0

5

10

15

20

25

30

2.8x 1.8x

A B C D E F G
NasRNN

0

2

4

6

8

10

12

1.4x
1.3x

A B C D E F G
BERT

0.0

0.5

1.0

1.5

2.0

1.4x
1.1x

In
fe

re
nc

e
Ti

m
e

(m
s)

(A) TensorFlow
(B) TensorFlow XLA

(C) TensorRT
(D) MetaFlow

(E) TASO w/ cuDNN (F) TVM (G) TASO w/ TVM

Figure 7. End-to-end inference performance comparison among existing DNN frameworks and TASO. The experiments were
performed using a single inference sample, and all numbers were measured by averaging 1,000 runs on a NVIDIA V100 GPU.
We evaluated the TASO’s performance with both the cuDNN and TVM backends. For each DNN architecture, the numbers
above the TASO bars show the speedup over the best existing approach with the same backend.

DWC
3x3

Input1

add

conv
1x1

conv
1x1

add

avg
3x3

avg
3x3

avg
3x3

concat

add add add

DWC
5x5

DWC
3x3

conv
1x1

conv
1x1

DWC
5x5

DWC
3x3

conv
1x1

Input2

(a) NasNet-A Architecture.

X

add

avg
3x3

avg
3x3

DWC
3x3

Y Y

add

DWC
3x3

DWC
3x3

Y

X

add

XCp(3x3) Cp(3x3)

(b) Example substitutions discovered by TASO.

add

DWC
3x3

conv
1x1

conv
1x1

DWC
5x5

X2X1

W1

W3

W2

W4

conv
1x1

concat

DWC
5x5

concat

concat

X2X1

W3 W4

W2

DWC
3x3

DWC
5x5

X2X1

W1 W2

concat

W3 W4

concat

conv
1x1

DWC
5x5

DWC
5x5

X2
X1 W1

W2

concat

W3 W4

concat

conv
1x1

enlarge
5x5

W1

enlarge
5x5

Y Y Y Y

(c) A sequence of substitutions discovered by TASO.

Figure 8. The NasNet-A architecture [40] and substitutions discovered by TASO to optimize NasNet-A. Figure 8a shows the
architecture, where avg, conv, and DWC refer to average pooling, convolution, and depth-wise convolution, respectively. The
weight tensors are eliminated for simplicity. Figures 8b and 8c shows two sequences of substitutions discovered by TASO that
are used to optimize subgraphs marked in the black and red boxes in Figure 8a. In Figures 8b and 8c, each arrow refers to a
substitution, and the subgraphs in the same color are the source and target graphs of the substitution. Cpool(3 × 3) in Figure 8b
is a constant matrix whose entries are 1/9, as defined in Table 1. The enlarge operator in Figure 8c increases a convolution’s
kernel size by padding the weight (i.e.,W1) with extra 0’s. For inference workloads, operators in the gray areas in Figures 8b
and 8c only depend on pre-trained weights (i.e.,Wi), and therefore can be pre-computed.

the inputs. TASO preprocesses operators whose inputs are
all pre-trained weights (e.g., the gray areas in Figure 8) to
further reduce the inference time.

ResNeXt-50 replaces large convolutions in ResNet-50
with multiple branches of much smaller convolutions to im-
prove both model accuracy and runtime efficiency, as shown

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Z. Jia et al.

Input

concat

split

conv3x3 conv3x3
total

32 convs
......

Output

(a) Multi-branch
convolution.

Input

conv3x3
group=32

Output

(b) Grouped
convolution.

conv3x3
group=8

Input

concat

split

conv3x3
group=8

total 4
grouped
convs

Output

(c)Multi-branch grouped
convolution.

1 2 4 8 16 32
Num. Convolutions Per Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ex
ec

ut
io

n
Ti

m
e

(m
s)

TensorFlow
TensorFlow XLA

TensorRT
MetaFlow

TASO

(d) Performance comparison.

Figure 9. Different approaches to perform multi-batch con-
volutions in ResNeXt-50 and their performance comparison.
TensorFlow and TensorFlow XLA launch the 32 convolu-
tions separately (Figure 9a). TensorRT and MetaFlow launch
a single grouped convolution kernel that computes all 32
convolutions in parallel (Figure 9b). The best graph discov-
ered by TASO uses 4 grouped convolutions, each of which
computes 8 convolutions (Figure 9c).

in Figure 9a. However, directly launching these small con-
volutions incurs high kernel launch overhead. The cuDNN
library has recently introduced grouped convolution kernels
that perform multiple convolutions in parallel using a single
CUDA kernel [10]. TensorFlow and TensorFlow XLA (r1.14
as of August 2019) currently do not support grouped convo-
lution, so the fastest available ResNeXt-50 implementation
in TensorFlow launches convolutions in multiple branches
separately with the resulting high kernel launch overhead.
TensorRT and MetaFlow use a single grouped convolution
kernel that computes a group of 32 convolutions in parallel.
While grouped convolution enables additional parallelism
and reduces kernel launch overhead, it also requires a larger
cache to save intermediate states for all convolutions, which
results in decreased runtime performance when too many
convolutions are aggregated in a single kernel. Figure 9d
gives the time to run all 32 convolutions using different
group sizes (i.e., the number of convolutions in a group),
showing that neither launching individual convolutions nor
grouping all 32 convolutions is the best option.

Existing frameworks either launch 32 individual convolu-
tions or a single grouped convolution, both of which result in
suboptimal performance. For ResNeXt-50, TASO uses a mix-
ture of previous approaches and launches multiple grouped
convolutions, as shown in Figure 9c. TASO discovered this
mixture automatically, resulting in a speedup of 2.8× com-
pared to the best existing approach.

7.4 Analysis of Used Substitutions
We now present a detailed analysis of how the graph sub-
stitutions discovered by TASO impact the performance of
the optimized graphs. Figure 10 shows a heat map of the
substitutions used to optimize each of the five DNN architec-
tures. Each DNN uses 4-10 different substitutions to achieve
optimized performance, and different DNNs require different
sets of substitutions. This shows the difficulty of manually
designing a few core substitutions to optimize today’s DNN
architectures with increasingly high diversity. TASO is bet-
ter positioned for optimizing new DNNs by automatically
discovering performance critical substitutions.

Additionally, we evaluate the scalability of TASO by con-
sidering substitutions with different size limitations, and
measuring the runtime performance of the optimized graphs.
Figure 11 shows the results. For all three DNN architectures,
performance improvement is consistently achieved by using
larger substitutions up to size 3. ResNeXt-50 and BERT do
not obtain additional speedups by using substitutions with
4 operators, while NasNet-A achieves 1.2× by considering
larger substitutions. Our current implementation of TASO
does not scale to generate all substitutions with 5 or more op-
erators, since the generator is limited by the memory needed
to hold the fingerprints of all potential graphs, which scales
exponentially with graph size. A distributed fingerprint gen-
erator could potentially handle graphs of size 5 and even
more, which we leave as future work.

7.5 Joint Optimization of Graph Substitutions and
Data Layout

To evaluate the performance of the joint optimization in
TASO, we compare the joint optimization with three baseline
strategies: (1) performing only graph substitution optimiza-
tions; (2) performing only data layout optimizations; and (3)
performing the two optimizations sequentially.
Figure 12 shows the comparison results among the four

strategies on BERT. TASO outperforms the three baseline
strategies by 1.2-1.3×.We observe that the speedup is achieved
by using graph substitutions that transform both graph struc-
ture and data layout. One example is depicted in Figure 5.
The most time consuming operation in BERT is matrix mul-
tiplicationA×B, whereA is 64 by 1024 and B is 1024 by 4096.
In cuBLAS, the transposed version of this matrix multiplica-
tion (i.e., (BT ×AT)T) achieves 1.5× speedup when BT andAT
are in the column-major and row-major layout, respectively.

TASO SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25 s26 s27

ResNet50

NasNet-A

ResNeXt-50

NasRNN

BERT

29 6 29 6 1 5 5

3 41 41 14 32 3 15 19 19 9 10

25 5 25 1 23 3 7 5 7

10 40 20 20 10

24 24 12 36

0

10

20

30

40

Figure 10.Aheatmap of how often the verified substitutions are used to optimize the five DNN architectures. Only substitutions
used in at least one DNN are listed. For each architecture, the number indicates how many times a substitution is used by
TASO to obtain the optimized graph.

0 1 2 3 4
Maxmum Graph Substitution Size

1

1.5

2

2.5

3

Re
la

ti
ve

 S
pe

ed
up

NasNet-A
ResNeXt-50
BERT

Figure 11. Performance comparison by using graph substi-
tutions with different size limitations. The y-axis shows the
relative speedups over the input computation graphs.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Execution Time (ms)

Graph Opt.

Layout Opt.

Sequential

Joint Opt.
(TASO) 2.77

3.15

3.27

3.67

Figure 12. End-to-end inference performance comparison
on BERT using different strategies to optimize graph substi-
tution and data layout.

This graph optimization can only be captured when graph
substitution and data layout are jointly considered.

7.6 Graph Substitution Verifier
We evaluate the performance of the graph substitution veri-
fier for its two key tasks: verifying generated substitutions
against operator specifications, and validating the operator
specifications themselves to aid in the development process

(Section 3). Our implementation uses Z3 [14] to automati-
cally discharge all proof obligations, and our experiments
were performed with Z3 version 4.8.5.

Generating the 743 graph substitutions takes around five
minutes, and verifying them against the 43 specified oper-
ator properties takes less than 10 minutes. When checking
the specification for redundancies we use Z3 to search for a
proof of an invalid formula (stating that a specified property
is entailed by the rest of the specification). This search can
continue indefinitely, and in our evaluation we used a time-
out of 10 seconds per query, resulting in a run time of less
than 10 minutes (for 43 axioms). During the development
process, when we had some redundant specifications they
were discovered in a few seconds.

The validation check that verifies the operator specifi-
cation for all combinations of parameter values and tensor
sizes up to 4×4×4×4 is more computationally expensive, with
roughly one million proof obligations. We parallelized it us-
ing 128 CPU cores, which resulted in a run time of roughly
one hour. During the development process, we also found it
useful to verify the operators for more restricted combina-
tions. For example, verifying the specification for tensors of
size exactly 4×4×4×4 (rather than all tensors up to that size)
takes under 10 minutes using a single CPU core.

8 Related Work
Manually designed graph substitutions are used in ex-
isting DNN frameworks to optimize DNN architectures. For
example, TensorFlow, TensorRT, and TVM use a rule-based
strategy and directly perform all applicable substitutions on
an input graph [6, 8, 36]. MetaFlow [21] allows users to de-
fine performance-decreasing substitutions to obtain a larger
space of potential graphs. The key difference between TASO
and these frameworks is that TASO can automatically gener-
ate candidate substitutions, and also provides semi-automatic
support for verifying their correctness. In the evaluation, we
also show that existing frameworks can directly use TASO’s
optimized graphs to improve performance.

Automated DNN code generation. Recent work has
proposed various approaches to generate hardware-specific

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Z. Jia et al.

code for DNN operators. For example, TVM [8, 9] uses a
learning-based approach and automatically generates low-
level optimized code for a diverse set of hardware backends.
Astra [34] optimizes DNN computation by exploring the opti-
mization space of multi-version complication during training.
Compared to these approaches, TASO aims at optimizing
DNN computation at a higher graph level, and therefore
TASO’s optimizations are orthogonal and can be combined
with code generation techniques. It still remains an open
problem of how to jointly optimize DNN computation at
both graph-level and operator-level.

Automated DNN parallelization. ColocRL [26] uses re-
inforcement learning to automatically discover an efficient
device placement for parallelizing DNN training across mul-
tiple GPUs. FlexFlow [20, 22] introduces a comprehensive
search space of parallelization strategies for DNN training,
and uses a randomized search algorithm to find efficient
strategies in the search space. These frameworks optimize
distributed DNN training assuming a fixed computation
graph. We believe it is possible to combine TASO’s graph
optimizations with training parallelization techniques.

Superoptimization is a compiler optimization technique
that was originally designed to find the optimal code for a
sequence of instructions [25]. TASO’s approach to identify-
ing potential substitutions via enumeration of graphs and
fingerprinting is similar to work in automatically generating
peephole optimizers using superoptimization techniques [7].
TASO’s approach to verification, however, is significantly
different. Verification in superoptimization typically relies
on “bit blasting”, that is, modeling every bit in a computation
explicitly in a logical formula (e.g., as a boolean variable).
This approach is possible only when all aspects of a pro-
gram transformation, including the computation and the
data, can be expressed using a known number of bits. For
TASO, where the input tensor sizes for graph substitutions
are unknown, we must take a different approach. While not
fully automatic like verification via bit blasting, our method-
ology based on writing operator specifications is much more
flexible in being able to model future operators with almost
arbitrary semantics, in addition to smoothly handling the
issue of unknown tensor dimensions and split points.

Data layout optimizations. Existing DNN frameworks
that support data layout optimizations treat data layouts
and graph transformations as separate optimization prob-
lems [8, 24, 27]. TASO formulates the problem of performing
graph substitutions and deciding the data layout of each
DNN operator as a joint optimization problem and consid-
ers layout conversions as a part of graph substitutions. As
a result, TASO can automatically generate graph substitu-
tions that optimize both graph structures and data layouts,
and our evaluation shows that jointly optimizing the two
tasks can significantly improve the end-to-end performance,
compared to optimizing the them separately.

9 Limitations and Future Work
One limitation of TASO is the reliance on user provided
operator properties. While our experience has been that the
required effort is manageable, it would be better to eliminate
it altogether. One possible approach is to automatically verify
substitutions directly against the implementations of the
operators, e.g., cuDNN kernels.

Another limitation of TASO is the scalability of the genera-
tor, which requires saving the fingerprints of all computation
graphs up to a fixed size. This approach currently does not
scale beyond graphs of size 4. One possible approach to scale
to larger graphs is to implement a distributed generator. A
second possibility is to replace the brute-force enumeration
with more efficient algorithms or heuristics.

An additional avenue for future research is combining
graph-level and operator-level optimizations. This joint op-
timization is challenging as both problems involve large and
complex search spaces, and optimizations at one level affect
the search space of the other.

10 Conclusion
TASO is the first DNN computation graph optimizer that
automatically generates graph substitutions. TASO formally
verifies the substitutions, and considers graph substitutions
and layout transformations together as a joint optimization
problem, exploiting more optimization opportunities. TASO
matches the performance of existing frameworks on DNNs
for which these frameworks have been heavily optimized
such as ResNet-50, and outperforms existing frameworks
by up to 2.8× on other DNNs, finding novel optimizations
not present in the hundreds of optimization rules in existing
frameworks. TASO achieves these results with dramatically
less human effort than existing frameworks, and provides a
higher level of correctness guarantees.

Acknowledgments
We thank Nikolaj Bjørner, Mingyu Gao, Vinod Grover, Sina
Lin, Feng Ruan, Xi Wang, the anonymous SOSP reviewers,
and our shepherd, Joey Gonzalez, for their helpful feedback.
This work was supported by NSF grant CCF-1409813, the
Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and
the National Nuclear Security Administration, and is based
on research sponsored by DARPA under agreement num-
ber FA84750-14-2-0006. This research was supported in part
by affiliate members and other supporters of the Stanford
DAWN project—Ant Financial, Facebook, Google, Infosys,
Intel, Microsoft, NEC, SAP, Teradata, and VMware—as well
as Cisco and the NSF under CAREER grant CNS-1651570.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the NSF.

TASO SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

References
[1] 2017. Amazon EC2 P3 Instances. https://aws.amazon.com/ec2/

instance-types/p3/.
[2] 2017. Tensorflow graph transform creates corrupted graph. https:

//github.com/tensorflow/tensorflow/issues/7523.
[3] 2017. XLA: Optimizing Compiler for TensorFlow. https://www.

tensorflow.org/xla.
[4] 2018. Graph transform: fold constant with invalid graph. https://

github.com/tensorflow/tensorflow/issues/16545.
[5] 2018. Tensor Cores in NVIDIA Volta Architecture. https://www.nvidia.

com/en-us/data-center/tensorcore/.
[6] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasude-
van, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A System for Large-Scale Machine Learning.. In Proceed-

ings of the 12th USENIX Conference on Operating Systems Design and

Implementation (OSDI).
[7] Sorav Bansal and Alex Aiken. 2006. Automatic Generation of Peephole

Superoptimizers. In Proceedings of the 12th International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS XII).
[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q.

Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. 2018. TVM: End-to-End Optimization Stack for Deep
Learning. CoRR abs/1802.04799 (2018). http://arxiv.org/abs/1802.04799

[9] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, ThierryMoreau,
Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning
to Optimize Tensor Programs. In Advances in Neural Information

Processing Systems 31.
[10] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-

hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN:
Efficient Primitives for Deep Learning. CoRR abs/1410.0759 (2014).
http://arxiv.org/abs/1410.0759

[11] Berkeley R. Churchill, Oded Padon, Rahul Sharma, and Alex Aiken.
2019. Semantic Program Alignment for Equivalence Checking. In
Proceedings of the 2019 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), Phoenix, AZ, USA, June

22-26, 2019. https://doi.org/10.1145/3314221.3314596

[12] cuBLAS 2016. Dense Linear Algebra on GPUs. https://developer.nvidia.
com/cublas.

[13] Manjeet Dahiya and Sorav Bansal. 2017. Black-Box Equivalence Check-
ing Across Compiler Optimizations. In Programming Languages and

Systems, Bor-Yuh Evan Chang (Ed.). Springer International Publishing,
Cham.

[14] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of Software, 14th Inter-

national Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS’08/ETAPS’08).
[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

2018. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. CoRR abs/1810.04805 (2018).

[16] Vincent Dumoulin and Francesco Visin. 2016. A guide to convolution
arithmetic for deep learning. CoRR (2016).

[17] Sumit Gulwani and George C. Necula. 2003. Discovering Affine Equal-
ities Using Random Interpretation. In Proceedings of the 30th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL ’03). ACM.
[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

residual learning for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).
[19] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,

Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.

2017. MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications. CoRR abs/1704.04861 (2017).

[20] Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. 2018. Exploring
Hidden Dimensions in Accelerating Convolutional Neural Networks.
In Proceedings of the 35th International Conference on Machine Learning

(Proceedings of Machine Learning Research), Vol. 80. PMLR.
[21] Zhihao Jia, James Thomas, Todd Warzawski, Mingyu Gao, Matei Za-

haria, and Alex Aiken. 2019. Optimizing DNN Computation with
Relaxed Graph Substitutions. In Proceedings of the 2nd Conference on

Systems and Machine Learning (SysML’19).
[22] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond Data and

Model Parallelism for Deep Neural Networks. In Proceedings of the 2nd

Conference on Systems and Machine Learning (SysML’19).
[23] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler val-

idation via equivalence modulo inputs. In ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation, PLDI ’14,

Edinburgh, United Kingdom - June 09 - 11, 2014. 216–226. https:

//doi.org/10.1145/2594291.2594334

[24] Chao Li, Yi Yang, Min Feng, Srimat Chakradhar, and Huiyang Zhou.
2016. Optimizing memory efficiency for deep convolutional neural
networks on GPUs. In SC’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE.

[25] Henry Massalin. 1987. Superoptimizer: a look at the smallest program.
In ACM SIGARCH Computer Architecture News, Vol. 15.

[26] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus
Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy
Bengio, and Jeff Dean. 2017. Device Placement Optimization with
Reinforcement Learning. (2017).

[27] MKLDNN 2016. Intel Math Kernel Library for Deep Neural Networks.
https://01.org/mkl-dnn.

[28] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Im-
prove Restricted Boltzmann Machines. In Proceedings of the 27th Inter-

national Conference on International Conference on Machine Learning

(ICML’10). Omnipress, USA, 807–814. http://dl.acm.org/citation.cfm?

id=3104322.3104425

[29] George C. Necula. 2000. Translation validation for an optimiz-
ing compiler. In Proceedings of the 2000 ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI), Van-

couver, Britith Columbia, Canada, June 18-21, 2000. 83–94. https:

//doi.org/10.1145/349299.349314

[30] Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation
Validation. In Tools and Algorithms for Construction and Analysis of

Systems, 4th International Conference, TACAS ’98, Held as Part of the

European Joint Conferences on the Theory and Practice of Software,

ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings. 151–
166. https://doi.org/10.1007/BFb0054170

[31] PyTorch 2017. Tensors and Dynamic neural networks in Python with
strong GPU acceleration. https://pytorch.org.

[32] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet
Large Scale Visual Recognition Challenge. International Journal of

Computer Vision (IJCV) 115, 3 (2015), 211–252. https://doi.org/10.1007/

s11263-015-0816-y

[33] Rahul Sharma, Eric Schkufza, Berkeley R. Churchill, and Alex Aiken.
2013. Data-driven equivalence checking. In Proceedings of the 2013

ACM SIGPLAN International Conference on Object Oriented Program-

ming Systems Languages & Applications, OOPSLA 2013, part of SPLASH

2013, Indianapolis, IN, USA, October 26-31, 2013. 391–406. https:

//doi.org/10.1145/2509136.2509509

[34] Muthian Sivathanu, Tapan Chugh, Sanjay S. Singapuram, and Lidong
Zhou. 2019. Astra: Exploiting Predictability to Optimize Deep Learning.

https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://github.com/tensorflow/tensorflow/issues/7523
https://github.com/tensorflow/tensorflow/issues/7523
https://www.tensorflow.org/xla
https://www.tensorflow.org/xla
https://github.com/tensorflow/tensorflow/issues/16545
https://github.com/tensorflow/tensorflow/issues/16545
https://www.nvidia.com/en-us/data-center/tensorcore/
https://www.nvidia.com/en-us/data-center/tensorcore/
http://arxiv.org/abs/1802.04799
http://arxiv.org/abs/1410.0759
https://doi.org/10.1145/3314221.3314596
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
https://01.org/mkl-dnn
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://dl.acm.org/citation.cfm?id=3104322.3104425
https://doi.org/10.1145/349299.349314
https://doi.org/10.1145/349299.349314
https://doi.org/10.1007/BFb0054170
https://pytorch.org
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1145/2509136.2509509
https://doi.org/10.1145/2509136.2509509

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Z. Jia et al.

In Proceedings of the Twenty-Fourth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(ASPLOS ’19). ACM, New York, NY, USA.
[35] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2011.

Equality Saturation: ANewApproach toOptimization. LogicalMethods

in Computer Science 7, 1 (2011). https://doi.org/10.2168/LMCS-7(1:

10)2011

[36] TensorRT 2017. NVIDIA TensorRT: Programmable Inference Acceler-
ator. https://developer.nvidia.com/tensorrt.

[37] Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. 2018. Training
and Inference with Integers in Deep Neural Networks. In International

Conference on Learning Representations.
[38] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming

He. 2016. Aggregated Residual Transformations for Deep Neural
Networks. CoRR abs/1611.05431 (2016).

[39] Barret Zoph and Quoc V. Le. 2016. Neural Architecture Search with
Reinforcement Learning. CoRR abs/1611.01578 (2016).

[40] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018.
Learning transferable architectures for scalable image recognition.
In Proceedings of the IEEE conference on computer vision and pattern

recognition.

https://doi.org/10.2168/LMCS-7(1:10)2011
https://doi.org/10.2168/LMCS-7(1:10)2011
https://developer.nvidia.com/tensorrt

	Abstract
	1 Introduction
	1.1 Our Approach

	2 Graph Substitution Generator
	2.1 Graph Substitution Definition
	2.2 Generation Algorithm

	3 Graph Substitution Verifier
	4 Pruning Redundant Substitutions
	5 Joint Optimizer
	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 End-to-End Evaluation
	7.3 Substitution Case Study
	7.4 Analysis of Used Substitutions
	7.5 Joint Optimization of Graph Substitutions and Data Layout
	7.6 Graph Substitution Verifier

	8 Related Work
	9 Limitations and Future Work
	10 Conclusion
	References

