
ar
X

iv
:1

70
3.

02
62

5v
1

 [
cs

.S
I]

 7
 M

ar
 2

01
7

On Sampling from Massive Graph Streams

Nesreen K. Ahmed Nick Duffield Theodore L. Willke Ryan A. Rossi
Intel Labs Texas A&M University Intel Labs Palo Alto Research Center

nesreen.k.ahmed@intel.com duffieldng@tamu.edu ted.willke@intel.com ryan.rossi@parc.com

ABSTRACT

We propose Graph Priority Sampling (GPS), a new paradigm for

order–based reservoir sampling from massive streams of graph edges.

GPS provides a general way to weight edge sampling according to

auxiliary and/or size variables so as to accomplish various estima-

tion goals of graph properties. In the context of subgraph count-

ing, we show how edge sampling weights can be chosen so as to

minimize the estimation variance of counts of specified sets of sub-

graphs. In distinction with many prior graph sampling schemes,

GPS separates the functions of edge sampling and subgraph esti-

mation. We propose two estimation frameworks: (1) Post-Stream

estimation, to allow GPS to construct a reference sample of edges

to support retrospective graph queries, and (2) In-Stream estima-

tion, to allow GPS to obtain lower variance estimates by incremen-

tally updating the subgraph count estimates during stream process-

ing. Unbiasedness of subgraph estimators is established through a

new Martingale formulation of graph stream order sampling, which

shows that subgraph estimators, written as a product of constituent

edge estimators are unbiased, even when computed at different

points in the stream. The separation of estimation and sampling

enables significant resource savings relative to previous work. We

illustrate our framework with applications to triangle and wedge

counting. We perform a large-scale experimental study on real-

world graphs from various domains and types. GPS achieves high

accuracy with < 1% error for triangle and wedge counting, while

storing a small fraction of the graph with average update times of a

few microseconds per edge. Notably, for a large Twitter graph with

more than 260M edges, GPS accurately estimates triangle counts

with < 1% error, while storing only 40K edges.

1. INTRODUCTION
The rapid growth of the Internet and the explosion in online so-

cial media has led to a data deluge. A growing set of online ap-

plications are continuously generating data at unprecedented rates

– these range from the Internet of things (e.g., connected devices,

routers), electronic communication (e.g., email, groups, IMs, SMS),

social media (e.g., blogs, web pages), to the vast collection of on-

line social networks and content sharing applications (e.g., Face-

book, Twitter, Youtube, Flickr). Graphs (networks) arise as a natu-

ral data representation in many of these application domains, where

the nodes represent individuals (or entities) and the edges represent

the interaction, communication, or connectivity among them.

These resulting interaction and activity networks carry a wealth

of behavioral, community, and relationship information. Model-

ing and analyzing these massive and dynamic interaction graphs

have become important in various domains. For example, detect-

ing computer/terrorist attacks and anomalous behavior in computer

networks and social media [8, 1], identifying the behavior and inter-

ests of users in online social networks (e.g., viral marketing, online

advertising) [25, 41], monitoring and detecting virus outbreaks in

human contact networks [26], among many others. But the volume

and velocity of these graphs outpaces practitioners’ ability to an-

alyze and extract knowledge from them. As a result, a common

practice is to analyze static windowed snapshots of these graphs

over time. However, this is costly and inefficient both in terms of

storage volumes, and management for future use.

To keep up with the growing pace of this data, we need efficient

methods to analyze dynamic interaction networks as the data ar-

rives in streams, rather than static snapshots of graphs. In various

application domains, graph mining is rapidly shifting from min-

ing static graph snapshots to mining an open-ended graph stream

of edges representing node interactions. We would like to have a

framework capable of operating continuously and efficiently, pro-

cessing edges/links as they arrive and providing timely answers for

various network analysis tasks. This motivates the streaming graph

model in which the graph is presented as a stream of edges/links in

any arbitrary order, where each edge can be processed only once,

and any computation uses a small memory footprint (i.e., often sub-

linear in the size of the input stream) [29, 28, 5].

While studying dynamic interaction networks is important, other

applications require efficient methods for the analysis of static graphs

that are too large to fit in memory [35, 29]. In these cases tradi-

tional graph methods are not appropriate as they require random

disk accesses that incur large I/O costs. This naturally leads to the

question: how can we process massive static graphs sequentially

(one edge at a time). The streaming graph model would provide

an ideal framework for both massive static and dynamic graphs. It

would also apply to the case of graph data that is stored as a list

of edges streaming from storage. Thus, any algorithm designed to

process graph streams is also applicable for static graphs [5].

Despite the recent advances in high-performance graph analysis

tools and the availability of computational resources on the cloud,

running brute-force graph analytics is usually too costly, too ineffi-

cient, and too slow in practical scenarios. In many cases, the cost of

performing the exact computation is often not worth the extra ac-

curacy. While an approximate answer to a query or an analysis task

1

http://arxiv.org/abs/1703.02625v1

is usually sufficient, in particular when the approximation is per-

formed with sufficient high-quality, unbiasedness, and confidence

guarantees.

Sampling provides an attractive approach to quickly and effi-

ciently find an approximate answer to a query, or more generally,

any analysis objective. While previous work on sampling from

graph streams focused on sampling schemes for the estimation of

certain graph properties (i.e., in particular triangles) [23, 30, 10], in

this paper however, we focus on an adaptive general purpose frame-

work for sampling from graph streams. From a high-volume stream

of edges, the proposed framework maintains a generic sample of

limited size that can be used at any time to accurately estimate the

total weight of arbitrary graph subsets (i.e., triangles, cliques, stars,

subgraph with particular attributes). In order to obtain an accu-

rate estimation of various graph properties, we need to maintain a

weight sensitive sample that can devote sampling resources to edges

that are informative for those properties.

In addition, we want a sampling scheme that is capable of uti-

lizing auxiliary information about the items in the stream. Most

of the previous work on stream sampling is either hard to adapt to

various estimation objectives, focused on specific graph properties,

or incapable of utilizing auxiliary information.

Contributions. The main contributions of this paper are as follows.

• Framework. We propose graph priority sampling (GPS), the

first adaptive, general purpose, weight sensitive, one-pass, fixed-

size without replacement sampling framework for massive graph

streams. GPS provides a general way to weight edge edge sam-

pling according to auxiliary/size variables to estimate various

graph properties (Sec 3). We discuss antecedents to our approach

in Sec 2.

• Theoretical Analysis. We provide a new Martingale formula-

tion for subgraph count estimation, and show how to compute

unbiased estimates of arbitrary subgraph counts from the sam-

ple at any point during the stream; we call this Post-Stream Es-

timation, which can be used to construct reference samples for

retrospective graph queries (Sec 3).

• In-Stream Estimation. We provide a second framework for

In-stream Estimation in which subgraph count estimates are in-

crementally updated during stream processing rather than com-

puted at a selected point, which can be used to obtain accurate

estimates with lower variance (Sec 5).

• Algorithms. We provide efficient/parallel algorithms for trian-

gle and wedge count estimation using GPS (Sec 4– 5).

• Accuracy. We test our framework on graphs from various do-

mains and types. Our estimates are accurate with ≤ 1% error.

Notably, for a large Twiiter graph with more than 260M edges,

GPS obtains an accurate estimate of triangle counts with < 1%
error, while storing only 40K edges (Sec 6).

• Real-time Tracking. The proposed framework can maintain

accurate real-time estimates while the stream is evolving (Sec 6).

We survey related work in Section 7 before concluding in Section 8.

Proofs of the Theorems are deferred to Section 9.

2. ANTECEDENTS TO OUR WORK
In this section, we highlight how our proposed framework gen-

eralizes many of the known sampling schemes. We discuss general

statistical sampling schemes (reservoir sampling, probability pro-

portional to size, order sampling), and highlight how graph priority

sampling exploits the properties of these schemes.

Reservoir Sampling. Reservoir sampling is a class of single-pass

sampling schemes to sample a fixed number n (possibly weighted)

items from a stream of N > n items [24, 38]. The sample set

is maintained incrementally over the stream, and can be used at

any point in the stream to estimate the stream properties up to that

point. In general, items have associated weight variables wi that

determine non-uniform item inclusion probabilities pi. Our graph

priority sampling uses the reservoir sampling framework, to collect

fixed-size weighted random sample from an input stream of edges

using a single pass over the stream.

Probability Proportional to Size Sampling. In many real-world

applications, an auxiliary variable (also known as a size or weight)

is observed for each data item. Auxiliary variables correlated with

the population variable under study can be used as weights for non-

uniform sampling. In probability proportional to size sampling

(PPS) the inclusion probability pi is proportional to the size (or

weight) wi. Variants of this scheme have been designed to fulfill

different estimation goals [37]. Inclusion Probability Proportional

to Size (IPPS) is variance minimizing for a given average sample

size. It has marginal inclusion probabilities pi = min{1, wi/τ},

so that all items of weight wi below the threshold τ are sampled

PPS, while larger items are always sampled [17]. Selected weights

are assigned a Horvitz-Thompson [22] inverse probability unbiased

estimator ŵi = wi/pi = max{wi, z} if wi is selected, and implic-

itly 0 otherwise. This property inspires the sampling weights used

in our edge sampling scheme, which minimize the incremental es-

timation variance in the graph properties under study.

Order Sampling. In order (or rank-based) sampling, selection de-

pends on random order variables generated for each item, a sample

of size m comprising the m items of highest order. The distribu-

tion of the order variables is chosen to fulfill different weighted

sampling objectives, including PPS sampling and Weighted Sam-

pling without Replacement [31, 19, 13]. Priority Sampling [18] is

a PPS scheme in which an item of weight wi is assigned a priority

wi/ui, where the ui are IID uniform on (0, 1]. A priority sample of

size n consists of the n items of highest priority, and each selected

item is assigned an unbiased estimator ŵi = max{wi, z} of wi,

where z is the (n + 1)st highest priority. Thus priority sampling

resembles IPPS sampling with a random threshold.

Most of the above methods are suitable mainly for sampling IID

data (e.g., streams of database transactions, IP network packets).

In this paper, however, we are dealing with graph data, that ex-

hibit both structure and attributes. A few of the methods discussed

above have been extended to graph streams, in particular uniform-

based reservoir sampling (see in Section 7). Graph priority sam-

pling generalizes most of the above sampling schemes, and obtains

an adaptive, weight sensitive, general purpose, fixed-size sample

in one-pass, while including auxiliary/size variables representing

topology information that we wish to estimate.

3. GRAPH PRIORITY SAMPLING
This section establishes a methodological framework for graph

stream priority sampling. Section 3.1 sets up our notation and states

our estimation goals. Section 3.2 specifies the Graph Priority Sam-

pling algorithm and states the properties that we will establish for

it. Section 3.3 established unbiasedness for our subgraph estima-

tors, while Section 3.4 gives unbiased estimates for the variance of

these estimators. Section 3.5 shows how to choose sampling weight

to minimize estimation variance for target subgraphs.

3.1 Proposed Framework

Notation and Problem Definition. Let G = (V,K) be a graph

with no self loops, where V is the set of nodes, and K is the set

of edges. For any node v ∈ V , let Γ(v) be the set of neighbors

2

of node v and so deg(v) = |Γ(v)| is the degree of v. We call two

edges k, k′ ∈ K adjacent, k ∼ k′, if they join at some node,

i.e., k ∩ k′ 6= ∅ [3]. In this paper, we are principally concerned

with estimating the frequency of occurrence of certain subgraphs

of G. Our proposed graph stream model comprises an input graph

G = (V,K) whose edges arrive for sampling in any arbitrary or-

der [3]. We assume edges are unique and so we can identify each

edge in K with its arrival order in [|K|] = {1, 2, . . . , |K|}. Due to

the identity between edges and arrival order we will use the no-

tation J ⊂ K and J ⊂ [|K|] interchangeably. Thus, we can

uniquely identify a subgraph J ∈ J with the corresponding or-

dered subset of edges J ⊂ [|K|], written as an ordered subset,

J = (i1, i2, ..., iℓ) with i1 < i2 < ... < iℓ being the arrival order.

Thus, J ⊂ [t] if all the edges in J have arrived by time t.
We use the general notation J to denote the set of all subgraphs

of G whose count N(J) = |J | we wish to estimate. As special

cases, △ will denote the set of triangles and Λ the set of wedges

(paths of length 2) in G, Let α = 3 · N(△)/N(Λ) denote the

global clustering coefficient of G. For a set of subgraphs J we

shall use the notation Jt = {J ∈ J : J ⊂ [t]} to denote those

members J of J all of whose edges have arrived by time t, The

number of these is denoted Nt(J) = |Jt|
Algorithm and Intuition. The basic outline and intuition of the

proposed framework comprises of two steps. In the first step, we

select a small sample of edges K̂t ⊂ [t] from the set of all edges

arriving by time t, with m = |K̂t| is the reservoir capacity. The

second step allows us to estimate the count of general subgraphs

in G regardless of whether they were all sampled. We define the

subset indicator of a subset of edges J ⊂ [|K|] by the function,

SJ,t =

{
1, J ⊂ [t]
0, otherwise

(1)

Thus, SJ,t = 1 if and only if all the edges in J have arrived by time

t. In the above notation Sj,t = Nt({j}) and Nt(J) =
∑

J∈J SJ,t

is the count of all members of J (i.e., subgraphs J ∈ J) whose

edges have all arrived by time t. Our goal is to estimate Nt(J)

from a selected sample of edges K̂t ⊂ [t].

3.2 Algorithm Description & Properties
We formally state our main algorithm GPS(m) for Graph Pri-

ority Sampling into a reservoir K̂ of capacity m in Algorithm 1.

The main algorithm GPS(m) (see Algorithm 1) maintains a dy-

namic reservoir/sample K̂ of size m from a graph whose edges

are streaming over time. When a new edge k arrives (Line 3),

we call the procedure GPSUPDATE. We assume a weight function

W (k, K̂) that expresses the sampling weight for edge k as a func-

tion of both k and the topology of the reservoir K̂ (Line 8). For

example, W (k, K̂) could be set to the number of sampled edges

adjacent to k, or the number of triangles in K̂ completed by k. In

general, the function W (k, K̂) can be set to include topology, at-

tributes, and/or any auxiliary information in the graph. Once the

weight w(k) = W (k, K̂) is computed, we assign edge k a pri-

ority r(k) = w(k)/u(k) (Line 9), where u(k) is an independent

uniformly generated random number (Line 7). GPS maintains a pri-

ority queue where each edge in the reservoir K̂ is associated with

a priority (computed at arrival time) that defines its position in the

heap. When a new edge k arrives in the stream (and if the reservoir

is full, see Lines 11–14), its priority is computed and compared

with the lowest priority edge in the queue. If edge k has a lower

priority, then it is discarded. If edge k has a higher priority, then

the lowest priority edge is discarded and replaced by edge k.

Algorithm 1 Family of Graph Priority Sampling Algorithms

1 procedure GPS(m)

2 K̂ ← ∅; z∗ ← 0
3 while new edge k do

4 GPSUPDATE(k,m)

5 GPSNORMALIZE(K̂)

6 procedure GPSUPDATE(k,m)

7 Generate u(k) ∼ Uni(0, 1]
8 w(k)←W (k, K̂)
9 r(k)← w(k)/u(k) ⊲ Priority of edge k

10 K̂ ← K̂ ∪ {k} ⊲ Provisionally include edge k
11 if |K̂|> m then

12 k∗ ← argmin
k′∈K̂

r(k′) ⊲ Lowest priority edge

13 z∗ ← max{z∗, r(k∗)} ⊲ New threshold

14 K̂ ← K̂ \ {k∗} ⊲ Remove lowest priority edge

15 procedure GPSNORMALIZE(K̂)

16 for k′ ∈ K̂ do

17 p(k′)← min{1, w(k′)/z∗} ⊲ HT Renormalize

Implementation and data structure. We implement the priority

queue as a min-heap [14], where each edge has a priority less than

or equal to its children in the heap, and the root position points to

the edge with the lowest priority. Thus, access to the lowest pri-

ority edge is performed in O(1). If edge k has a higher priority

than the root, edge k is initially inserted at the root position, then

moved downward to its correct position in the heap in O(logm)
time (worst case). Note that if the sample size is less than the reser-

voir capacity, i.e., |K̂|< m, edge k is inserted in the next available

position in the heap, then moved upward to its correct position in

the heap in O(logm) time (worst case). The threshold z∗ is the

(m + 1)st highest priority (see Line 13). To simplify the analysis,

we provisionally admit a new edge k to the reservoir, then one of

the m+1 edges is discarded if it has the lowest priority. Finally, at

any time in the stream, we can call the procedure GPSNORMALIZE

to obtain the edge sampling probabilities. As shown in the proof of

Theorem 1, p(k′) = min{1, w(k′)/z∗} (see Lines 16–17) is the

conditional sampling probability for k′ given z∗; hence 1/p(k′)
forms the Horvitz-Thompson estimator for the indicator of k′. The

proposed framework GPS naturally leads to a family of sampling

algorithms that can be tuned for various graph sampling/analysis

objectives. For example, if we set W (k, K̂) = 1 for every k, Al-

gorithm 1 leads to uniform sampling as in the standard reservoir

sampling (see [38]).

Algorithm Properties. Graph Priority Sampling demonstrates the

following properties: (S1) Fixed Size Sample. As seen above, K̂t

is a reservoir sample of fixed size |K̂t|= m for all t ≥ m.

(S2) Unbiased Subgraph Estimation. In Section 3.3 we construct

unbiased subgraph estimators ŜJ,t of SJ,t for each subgraph J and

t > 0. The SJ,t is computable from the sample sets K̂t. Section 5

extends our construction to new classes of estimators
∏

i∈J Ŝi,ti

that are edge products over multiple times. These allow unbiased

estimation of subgraphs in new ways: as they arise in the sample, or

prior to discard, or on arrival of certain edges. These results follow

from a novel Martingale formulation of graph priority sampling.

(S3) Weighted Sampling and Variance Optimization. Graph pri-

ority sampling provides a mechanism to tune sampling weights to

the needs of applications. We accomplish this using edge weights

that express the role of an edge in the sampled graph. Examples in-

clude the number of edges in the currently sampled graph that are

3

adjacent to an arriving edge, and the number of subgraphs bearing

a given motif that would be created by inclusion of the edge in the

sample. Section 3.5 shows how to choose weights to minimize the

variance of estimated counts of specific target subgraphs. Weights

may also express intrinsic properties that do not depend explic-

itly on the graph structure. Examples include endpoint node/edge

identities, attributes, and other auxiliary variables, such as user age,

gender, interests, or relationship types in social networks, and bytes

associated with communication links in technological/IP networks.

(S4) Computational Feasibility. For each arriving edge k = (v1, v2),

the GPS framework calls GPSUPDATE to update reservoir K̂ of ca-

pacity m. The processing time for a new arrival comprises of the

cost to compute the weight (i.e., W (k, K̂) and the cost to update

the heap (if the new edge is inserted). We use a binary heap im-

plemented by storing the edges in a standard array and using their

relative positions within that array to represent heap (parent-child)

relationships. The worst case cost of binary heap insertion/deletion

is O(logm). The cost of W (k, K̂) is problem-specific and de-

pends on the sampling objective and the function that computes the

sampling weight for edge k. We use the number of triangles in K̂

completed by k, i.e., W (k, K̂) = |Γ̂(v1) ∩ Γ̂(v2)|. This can be

achieved in O(min{deg(v1), deg(v2)}), if a hash table or a bloom

filter is used for storing Γ̂(v1), Γ̂(v2) and looping over the sampled

neighborhood of the vertex with minimum degree and querying the

hash table of the other vertex. The space requirements of GPS is:

O(|V̂ |+m), where |V̂ | is the number of nodes in the reservoir, and

m is the reservoir capacity. In general, there is a trade-off between

space and time, and GPS could limit the space to O(m), however,

the cost update per edge would require a pass over the reservoir

(O(m) in the worst case). On the other hand, if we increase the

space to O(|V̂ |+m), then we can achieve a sub-linear time for

edge updates.

3.3 A Martingale for Subgraph Counting
We now axiomatize the dependence of w on k and K̂ and ana-

lyze the statistical properties of estimates based on the sample set.

We index edge arrivals by t ∈ N, and let K̂t ⊂ [t] denote the

set of indices in the sample after arrival t has been processed and

K̂′
t = K̂t−1 ∪ {t} denote the index set after t has been provision-

ally included in the sample. Let wt denote the weight assigned to

arrival t and ut be IID uniform on (0, 1]. The priority of arrival t

is then rt = wt/ut. An edge i ∈ K̂′
t is selected if it does not have

the smallest priority in K̂′
t, i.e., if

ri > zi,t = min
j∈K̂′

t\{i}
rj (2)

When i is selected from K̂′
t then ri,t is equal to the unrestricted

minimum priority zt = maxj∈K̂′
t
rj since the discarded edge takes

the minimum. For t < i, zi,t = zt since i has not yet appeared.

Defining Bi(x) = {ri > x}, we write the event that i is in the

sample at time t ≥ i as

{i ∈ K̂t} = ∩t
i=sBi(zi,s) (3)

We now construct for each edge i a sequence of Edge Estima-

tors Ŝi,t that are unbiased estimators of the corresponding edge in-

dicators. We prove unbiasedness by establishing that the sequence

is a Martingale [39]. A sequence of random variables {Xt : t ∈
N} is a Martingale with respect to a filtration F = {Ft : t ∈ N}
of increasing σ-algebra (these can be regarded as variables for con-

ditioning) if each Xt is measurable w.r.t. Ft (i.e. it is function of

the the corresponding variables) and obeys:

E[Xt|Ft−1] = Xt−1 (4)

Martingales provide a framework within which to express unbiased

estimation in nested sequences of random variables.

We express GPS within this framework. For J ⊂ N let zJ,t =

minj∈K̂′
t\J

rj . Let F(0)
i,t denote the σ-algebra generated by the

variables {Bj(z{ij},s) : j 6= i, s ≤ t}, let Fi,t be the σ-algebra

generated by F(0)
i,t and the variables Zi,t = {zi,s : s ≤ t} and

{Bi(zi,t), i ≤ s ≤ t}, and let Fi be the filtration {Fi,t : t ≥
i− 1}.

Set z∗i,t = maxi≤s≤t zi,s and define

Ri,t = min{1, wi/z
∗
i,t} and Ŝi,t =

I(Bi(z
∗
i,t))

Ri,t
(5)

for t ≥ i and Ŝi,t = 0 for 0 ≤ t < i.

THEOREM 1 (EDGE ESTIMATION). Assume wi,t is Fi,t−1-

measurable. Then {Ŝi,t : t ≥ i} is a Martingale w.r.t. the filtration

Fi, and hence E[Ŝi,t] = Si,t for all t ≥ 0

The measurability condition on wi means that it is determined by

the previous arrivals, including the case that an edge weight de-

pends on the sampled topology that it encounters on arrival.

To compute Ŝi we observe that when i ∈ K̂t, then (i) ri > zi,t
and hence zi,t = zt; and (ii) zi,i > maxs≤i zi,s since otherwise

the minimizing j for zi,i could not have been selected. Hence for

t ≥ i with z∗t = maxs≤t zs:

Ŝi,t =
I(i ∈ K̂t)

min{1, wi/z∗t }
(6)

It is attractive to posit the product ŜJ =
∏

i∈J Ŝi as a subgraph

estimator J when J ⊂ [t]. While this estimator would be unbi-

ased for independent sampling, the constraint of fixed-size intro-

duces dependence between samples and hence bias of the prod-

uct. For example, VarOpt sampling [12] obeys only E[
∏

i∈J Ŝi] ≤∏
i∈J E[Ŝi]. We now show that the edge estimators for Graph Pri-

ority Sampling, while dependent, have zero correlation. This is a

consequence of the property, that we now establish, that the edge

product estimator is a Martingale.

Fix a subgraph as J ⊂ N, set Jt = J ∩ [t] and for k ∈ [t] ∩ Jc

define zJ,k,t = maxi∈K̂′
t\(Jt∪{k}) ri, i.e., the maximal rank in K̂′

t

apart from k and those in Jt. Let F(0)
J,t denote the conditioning w.r.t

{Bk(zJ,k,s) : k /∈ J, s ≤ t}, and let FJ,t denote conditioning w.r.t

F(0)
J,s , ZJ,t = {zJ,s : s ≤ t} and {Bi(zJ,s) : i ∈ J, s ≤ t} and let

FJ denote the corresponding filtration.

THEOREM 2 (SUBGRAPH ESTIMATION). (i) For J ⊂ N

define SJ,t =
∏

i∈J Ŝi,t. Then {ŜJ,t : t ≥ maxJ} is a

Martingale w.r.t. the filtration FJ and hence E[
∏

i∈J Ŝi,t] =
SJ,t for t ≥ 0.

(ii) For any set J of subgraphs of G, N̂t(J) =
∑

J∈J :J⊂Kt
ŜJ,t

is an unbiased estimator of Nt(J) = |Jt|=
∑

J∈J SJ,t,

and the sum can be restricted to those J ∈ J for which

J ⊂ K̂t, i.e., entirely within the sample set at t.

The proof of Theorem 2(i) mirrors that of Theorem 1, and fol-

lows from the fact that the expectation of
∏

j∈J Bj(zJ,t), condi-

tional on FJ,t−1, is a product over J ; we omit the details. Part (ii)

follows by linearity of expectation, and the restriction of the sum

follows since ŜJ,t = 0 unless J ⊂ K̂t.

4

3.4 Variance and Covariance Estimation
Theorem 2 also allows us to establish unbiased estimators for

the variance and covariance amongst subgraph estimators. Con-

sider two edge subsets J1, J2 ⊂ K̂t. We use the following as an

estimator of Cov(ŜJ1,t, ŜJ2,t):

ĈJ1,J2,t = ŜJ1,tŜJ2,t − ŜJ1\J2,tŜJ2\J1,tŜJ1∩J2,t

= ŜJ1\J2,tŜJ2\J1,tŜJ1∩J2,t

(
ŜJ1∩J2,t − 1

)

= ŜJ1∪J2,t

(
ŜJ1∩J2,t − 1

)
(7)

THEOREM 3 (COVARIANCE ESTIMATION). ĈJ1,J2,t is an es-

timator of Cov(ŜJ1,t, ŜJ2,t).

(i) ĈJ1,J2,t is an unbiased estimator of Cov(ŜJ1,t, ŜJ2,t).

(ii) ĈJ1,J2,t ≥ 0 and hence Cov(ŜJ1,t, ŜJ2,t) ≥ 0.

(iii) ŜJ,t(ŜJ,t − 1) is an unbiased estimator of Var(ŜJ,t).

(iv) ĈJ1,J2,t = 0 if and only if ŜJ1,t = 0 or ŜJ2,t = 0, or

J1 ∩ J2 = ∅, i.e., covariance estimators are computed only

from edge sets that have been sampled and their intersection

is non-empty.

We do not provide the proof since these results are a special case

of a more general result that we establish in Section 5 product form

graph estimators in which the edges are sampled at different times.

3.5 Optimizing Subgraph Variance
How should the ranks ri,t be distributed in order to minimize

the variance of the unbiased estimator N̂t(J) in Theorem 2 ? This

is difficult to formulate directly because the variances of the Ŝj,t

cannot be computed simply from the candidate edges. Instead, we

minimize the conditional variance of the increment in Nt(J) in-

curred by admitting the new edge to the sample:

To be precise:

1. For each arriving edge i find the marginal selection probability

for i that minimizes the conditional variance Var(N̂i(J)|Fi,i−1).

2. Edges are priority order sampled using weights that implement

the variance-minimizing selection probabilities.

Our approach is inspired by the cost minimization approach of

IPPS sampling [17]. When i ∈ K̂′
t we define N̂i,t(J) = #{J ∈

J : i ∈ J ∧ J ⊂ K̂′
t} i.e., the number of members J of J that are

subsets of the set of candidate edges K̂′
t and that contain i. Put an-

other way, N̂i,t(J) is the number of members of J that are created

by including i within K̂t. Suppose i is sampled with probability p,

conditional on Fi,i−1. The expected space cost of the sampled

is proportional to p, while the sampling variance associated with

Horvitz-Thompson estimation of the increment n = N̂i,t(J) is

n2(1/p − 1). Following [17], we form a composite cost

C(z) = z2p+ n2(1/p− 1) (8)

where z is a coefficient expressing the relative scaling of the two

components in the cost. C(z) is minimized by p = min{1, n/z},

corresponding to IPPS sampling with threshold z and weight n.

By comparison with the relation between threshold sampling and

priority sampling, this suggests using n = N̂i,t(J) as the weight

for graph stream order sampling. We also add a default weight for

each edge so that an arriving edge k that does not currently intersect

with the target class (i.e. k 6= J ⊂ N̂t(J)) can be sampled.

4. TRIANGLE & WEDGE COUNTING
In this section we apply the framework of Section 3 to triangle

and wedge counting, and detail the computations involved for the

unbiased subgraph count estimates and their variance estimates.

Unbiased Estimation of Triangle/Wedge Counts. From the nota-

tion in Sec. 3, let △t denote the set of triangles whose all edges have

arrived by time t, and △̂t ⊂△t be the subset of such triangles that

appear in the sample K̂t. Then, N̂t(△) is the Horvitz-Thompson

estimator of the count of members (i.e., triangles) in △t. We write

τ ∈△t as a subset (k1, k2, k3) ordered by edge arrival (i.e., k3 is

the last edge). Similarly, Λt denote the set of wedges whose all

edges have arrived by time t. So N̂t(Λ) is the Horvitz-Thompson

estimator of the count of wedges in Λt, and λ ∈ Λt is written as

an ordered subset (k1, k2) with k2 the last edge. The following are

direct corollaries of Theorem 2:

COROLLARY 1 (TRIANGLE COUNT). N̂t(△) =
∑

τ∈△t
Ŝτ,t

is an unbiased estimator of Nt(△).

COROLLARY 2 (WEDGE COUNT). N̂t(Λ) =
∑

λ∈Λt
Ŝλ,t is

an unbiased estimator of Nt(Λ).
Additionally, we use α̂t = 3N̂t(△)/N̂t(Λ) as an estimator for

the global clustering coefficient αt.

Variance Estimation of Triangle/Wedge Counts. Let Var[N̂t(△
)] denote the variance of the unbiased estimator of triangle count at

time t, and Var[N̂t(Λ)] the variance of the unbiased estimator of

wedge count at time t, given by Corollaries 1 and 2 respectively.

Expressions for unbiased estimates of these variances are direct

corollaries from Theorem 3, which itself follows from Theorem 5.

COROLLARY 3 (VARIANCE OF TRIANGLE COUNT). V̂t(△) is

an unbiased estimator of Var[N̂t(△)], where

V̂t(△) =
∑

τ∈△t

Ŝτ,t(Ŝτ,t − 1) + 2
∑

τ∈△t

∑

τ ′<τ
τ ′∈△t

Ĉτ,τ ′,t (9)

COROLLARY 4 (VARIANCE OF WEDGE COUNT). V̂t(Λ) is an

unbiased estimator of Var[N̂t(Λ)], where

V̂t(Λ) =
∑

λ∈Λt

Ŝλ,t(Ŝλ,t − 1) + 2
∑

λ∈Λt

∑

λ′<λ
λ′∈Λt

Ĉλ,λ′,t (10)

Variance Estimation for Global Clustering Coefficient. We use

α̂ = 3N̂t(△)/N̂t(Λ) as an estimate of the global clustering coef-

ficient α = 3N(△)/N(Λ). While this estimate is biased, asymp-

totic convergence to the true value for large graphs would follow

form the property for N̂t(△) and N̂t(Λ). This motivates using a

Taylor expansion of the estimator, using the asymptotic form of the

well-known delta-method [36] in order to approximate its variance;

see [3] for a similar approach for Graph Sample and Hold. The re-

sulting approximation is:

Var(N̂(△)/N̂(Λ)) ≈ Var(N̂(△))

N̂(Λ)2
+

N̂(△)2 Var(N̂(Λ))

N̂(Λ)4
(11)

−2
N̂(△) Cov(N̂(△), N̂(Λ))

N̂(Λ)3

Following Theorem 3, the covariance Cov(N̂(△), N̂(Λ)) is esti-

mated as
V̂ (△,Λ) =

∑

τ∈△̂,λ∈Λ̂
τ∩λ 6=∅

Ŝτ∪λ

(
Ŝτ∩λ − 1

)
(12)

Efficiency. The basic intuition of Algorithm 2 is that the subgraph

estimation problem is localized. Hence, all computations can be ef-

ficiently performed by exploring the local neighborhood of an edge

5

(or a node) [6]. In this section, we discuss how the estimators can

be adapted to make the computations more efficient and localized,

while still remaining unbiased.

By linearity of expectation, we express the unbiased estimator

N̂t(△) (from Theorem 1) as N̂t(△) = 1/3
∑

k∈K̂t
N̂k,t(△) where

N̂k,t(△) is the conditional estimator of triangle counts for edge

k normalized by the number of edges in a triangle. Similarly,

we express the unbiased estimator N̂t(Λ) (from Theorem 2) as

N̂t(Λ) = 1/2
∑

k∈K̂t
N̂k,t(Λ) where N̂k,t(Λ) is the conditional

estimator of wedge counts for edge k normalized by the number of

edges in a wedge.

Consider any two distinct edge subsets J1, J2 ⊂ K̂t. From The-

orem 3, the covariance estimator ĈJ1,J2,t = 0 if J1 and J2 are

disjoint (i.e., |J1 ∩ J2|= 0). Otherwise, ĈJ1,J2,t > 0 if and only

if their intersection is non-empty (i.e., |J1 ∩ J2|> 1). If J1, J2

are triangles (or wedges), then |J1 ∩ J2|≤ 1, since any two dis-

tinct triangles (or wedges) could never overlap in more than one

edge. Thus, the unbiased variance estimators can also be computed

locally for each edge, as we show next.

By linearity of expectation, we re-write Equation 9 as follows:

V̂t(△) = 1/3
∑

k∈K̂t

∑

τ∈△t(k)

Ŝτ,t(Ŝτ,t − 1) (13)

+
∑

k∈K̂t

∑

τ∈△t(k)

∑

τ ′<τ
τ ′∈△t(k)

Ŝτ\τ ′,tŜτ ′\τ,tŜτ∩τ ′,t

(
Ŝτ∩τ ′,t − 1

)

Note that for any two distinct triangles τ, τ ′ ⊂ K̂t, we have

Ŝτ∩τ ′,t > 0 if and only if τ ∩ τ ′ = {k} for some edge k ∈ K̂t.

Similarly, we could re-write Equation 10 as follows:

V̂t(Λ) = 1/2
∑

k∈K̂t

∑

λ∈Λ(k)

Ŝλ,t(Ŝλ,t − 1) (14)

+
∑

k∈K̂t

∑

λ∈Λt(k)

∑

λ′<λ
λ′∈Λt(k)

Ŝλ\λ′,tŜλ′\λ,tŜλ∩λ′,t

(
Ŝλ∩λ′,t − 1

)

Algorithm Description. To simplify the presentation of Algo-

rithm 2, we drop the variable t that denote the arrival time in the

stream, however the algorithm is valid for any t ∈ N. We start by

calling Algorithm 1 to collect a weighted sample K̂ of capacity m

edges. For each edge k ∈ K̂, we use W (k, K̂) = 9 ∗ |△̂(k)|+1
where |△̂(k)| is the number of triangles completed by edge k and

whose edges in K̂ . Then, we call Algorithm 2 at any time t in

the stream to obtain unbiased estimates of triangle/wedge counts,

global clustering, and their unbiased variance.

For each edge k = (v1, v2) ∈ K̂, Alg. 2 searches the neigh-

borhood Γ̂(v1) of the node with minimum degree (i.e., deg(v1) ≤
deg(v2) for triangles (Line 5). Lines 9–15 compute the estimates

for each triangle (k1, k2, k) incident to edge k. Lines 17–20 com-

pute the estimates for each wedge (k1, k) incident to edge k (and

centered on node v1). Then, Lines 25–28 compute the estimates for

each wedge (k2, k) incident to edge k (and centered on node v2).

Finally, the individual edge estimators are summed in Lines 32–36,

and returned in Line 37.

We state two key observations in order: First, the estimators of

triangle/wedge counts can be computed locally for each sampled

edge k ∈ K̂ , while still remaining unbiased. Thus, Algorithm 2

is localized. Second, since the estimators of triangle/wedge counts

can be computed for each sampled edge k ∈ K̂ independently in

Algorithm 2 Unbiased Estimation of Triangle & Wedge Counts

1 procedure GPSESTIMATE(K̂)

2 Initialize all variables to zero

3 parallel for edge k = (v1, v2) ∈ K̂ do

4 q ← min{1, w(k)/z∗}
5 for each v3 ∈ Γ̂(v1) do ⊲ found wedge

6 k1 ← (v1, v3)
7 q1 ← min{1, w(k1)/z∗}

8 /*Compute triangle estimates*/

9 if v3 ∈ Γ̂(v2) then ⊲ found triangle

10 k2 ← (v2, v3)
11 q2 ← min{1,w(k2)/z∗}
12 N̂k(△) += (qq1q2)−1 ⊲ triangle count

13 V̂k(△) += (qq1q2)−1((qq1q2)−1 − 1) ⊲ tri. var.

14 Ĉk(△) += c△ ∗ (q1q2)−1 ⊲ triangle covariance

15 c△ = c△ + (q1q2)−1

16 /*Compute wedge estimates for wedges (v3, v1, v2)*/

17 N̂k(Λ) += (qq1)−1 ⊲ wedge count

18 V̂k(Λ) += (qq1)−1((qq1)−1 − 1) ⊲ wedge variance

19 Ĉk(Λ) += cΛ ∗ q
−1
1 ⊲ wedge covariance

20 cΛ = cΛ + q−1
1

21 /*Compute wedge estimates for wedges (v3, v2, v1)*/

22 for each v3 ∈ Γ̂(v2) do

23 k2 ← (v2, v3)
24 q2 ← min{1, w(k2)/z∗}
25 N̂k(Λ) += (qq2)−1 ⊲ wedge count

26 V̂k(Λ) += (qq2)−1((qq2)−1 − 1) ⊲ wedge variance

27 Ĉk(Λ) += cΛ ∗ q
−1
2 ⊲ wedge covariance

28 cΛ = cΛ + q−1
2

29 Ĉk(△) = Ĉk(△) ∗ 2 ∗ q
−1 ∗ (q−1 − 1)

30 Ĉk(Λ) = Ĉk(Λ) ∗ 2 ∗ q
−1 ∗ (q−1 − 1)

31 /*Compute total triangle/wedge estimates*/

32 N̂(△)← 1
3
∗
∑

k∈K̂
N̂k(△), N̂(Λ)← 1

2
∗
∑

k∈K̂
N̂k(Λ)

33 V̂ (△)← 1
3
∗
∑

k∈K̂
V̂k(△), V̂ (Λ)← 1

2
∗
∑

k∈K̂
V̂k(Λ)

34 Ĉ(△)←
∑

k∈K̂
Ĉk(△), Ĉ(Λ)←

∑
k∈K̂

Ĉk(Λ)

35 V̂ (△)← V̂ (△) + Ĉ(△)
36 V̂ (Λ)← V̂ (Λ) + Ĉ(Λ)
37 return N̂(△), N̂(Λ), V̂ (△), V̂ (Λ)

parallel, Algorithm 2 already has abundant parallelism.

Complexity. Algorithm 2 has a total runtime of O(m3/2). This is

achieved by
∑

(v1,v2)∈K̂ min{deg(v1), deg(v2)}) = O(a(K̂)m),

where a(K̂) is the arboricity of the reservoir graph. This com-

plexity can be tightly bounded by O(m3/2) since O(a(K̂)m) ≤
O(m3/2) for any sampled graph [11, 6].

5. INSTREAM ESTIMATION
The foregoing analysis enables retrospective subgraph queries:

after any number t of stream arrivals have taken place, we can com-

pute an unbiased estimator Ŝt(J) for any subgraph J . We term this

Post-Stream Estimation. We now describe a second estimation

framework that we call In-Stream Estimation. In this paradigm,

we can take “snapshots” of specific sampled subgraphs at arbitrary

times during the stream, and preserve them as unbiased estima-

tors. These can be used or combined to form desired estimators.

These snapshots are not subject to further sampling; their estimates

are not updated. However their original subgraphs remain in the

graph sample and are subject to sampling in the normal way. Thus

we do not change the evolution of the graph sample, we only ex-

6

tract information from it that does not change after extraction. The

snapshot times need not be deterministic. For example, each time a

subgraph that matches a specified motif appears (e.g. a triangle or

other clique) we take a snapshot of the subgraph estimator. If we

only need to estimate the number of such subgraphs, it suffices to

add the inverse probability of each matching subgraph to a counter.

Algorithm 3 In-Stream Estimation of Triangle & Wedge Counts

1 procedure INSTREAM GPS(K)

2 K̂ ← ∅; z∗ ← 0
3 while new edge k do

4 GPSESTIMATE(k)

5 GPSUPDATE(k,m)

6 return Ñ(△), Ñ(Λ), Ṽ (△), Ṽ (Λ), Ṽ (△,Λ)
7

8 procedure GPSESTIMATE(k)

9 parallel for Triangle (k1, k2, k) completed by k do

10 if (z∗ == 0) then q1 ← q2 ← 1
11 else

12 q1 ← min{1, w(k1)/z∗}
13 q2 ← min{1, w(k2)/z∗}

14 Ñ(△) += 1/(q1q2) ⊲ Triangle Count

15 Ṽ (△) += ((q1q2)−1 − 1)/(q1q2) ⊲ Triangle Var.

16 Ṽ (△) += 2(C̃k1
(△) + C̃k2

(△))/(q1q2)

17 Ṽ (△,Λ) += (C̃k1
(Λ)+ C̃k2

(Λ))/(q1q2)⊲ Tri.-Wedge Cov.

18 C̃k1
(△) += (q−1

1 − 1)/q2 ⊲ Triangle Covariance

19 C̃k2
(△) += (q−1

2 − 1)/q1

20 parallel for Wedge j ∈ K̂ adjacent to k do

21 if (z∗ == 0) then q ← 1
22 else q ← min{1, w(j)/z∗}

23 Ñ(Λ) += q−1 ⊲ Wedge Count

24 Ṽ (Λ) += q−1(q−1 − 1) ⊲ Wedge Variance

25 Ṽ (Λ) += 2C̃j(Λ)/q

26 Ṽ (△,Λ) += C̃j(△)/q

27 C̃j(Λ) += 1/q − 1 ⊲ Wedge Covariance
28

29 procedure GPSUPDATE(k,m)

30 Generate u(k) uniformly on (0, 1]
31 w(k)←W (k, K̂)
32 r(k)← w(k)/u(k) ⊲ Priority of edge k
33 K̂ ← K̂ ∪ {k} ⊲ Provisionally include edge k
34 C̃k(△)← C̃k(Λ)← 0
35 if |K̂|> m then

36 k∗ ← argmin
k′∈K̂

r(k′) ⊲ Lowest priority edge

37 z∗ ← max{z∗, r(k∗)} ⊲ New threshold

38 K̂ ← K̂ \ {k∗} ⊲ Remove lowest priority edge

39 C̃(△)← C̃(△) \ C̃k∗ (△) ⊲ Remove covariances of k∗

40 C̃(Λ)← C̃(Λ) \ C̃k∗ (Λ)

5.1 Unbiased Estimation with Snapshots
In-stream estimation can be described within the framework of

stopped Martingales [39]. Return for the moment to our general

description in Section 3 of a Martingale {Xt : t ∈ N} with respect

to a filtration F = {Ft : t ∈ N}. A random time T is called a

stopping time w.r.t F if the event T ≤ t is Ft-measurable, i.e.,

we can decide at time t whether the event has occurred yet. The

corresponding stopped Martingale is

XT = {XT
t : t ∈ N} where XT

t = Xmin{T,t} (15)

Thus, the value of Xt is frozen at T .

We define a snapshot as an edge subset J ⊂ N and a family

T = {Tj : j ∈ J} for FJ -measurable stopping times, giving rise

to the product stopped process

ŜT
J,t =

∏

j∈J

Ŝ
Tj

j,t =
∏

j∈J

Ŝj,min{Tj ,t} (16)

Although in-steam estimates use snapshots whose edges have the

same stopping time, variance estimation involves products of snap-

shots with distinct stopping times. Unbiasedness then follows from

the following result that applies to any snapshot of the form (16).

THEOREM 4. (i) {ŜT
J,t : t ≥ maxJ} is Martingale with

respect to FJ and hence E[ŜT
J,t] = SJ,t.

(ii) For any set J of subgraphs of G, each J ⊂ J equipped

with an FJ -measurable stoppong time TJ , then
∑

J∈Tj
ŜTJ
J,t

is an unbiased estimator of |Jt|.

5.2 Variance Estimation for Snapshots
In this section we show how the variance and covariances of

snapshots can be estimated as sums of other snapshots involving the

stopping times of both constituents. The Martingale formulation is

a powerful tool to establish the unbiasedness of the estimates, since

the otherwise statistical properties of the product of correlated edge

estimators drawn at different times are not evident.

Consider two edge sets J1 and J2 each equipped with families

stopping times T (i) = {T (i)
j : j ∈ Ji}, with i = 1, 2, for the

purpose of snapshots. Thus each j ∈ J1 ∩ J2 is equipped with

two generally distinct stopping times T
(1)
j and T

(2)
j , according to

its occurence in the snapshots ŜT (1)

J1,t
and ŜT (2)

J2,t
. As an estimator of

Cov(ST (1)

J1,t , S
T (2)

J2,t) we will use:

ĈT (1),T (2)

J1,J2,t
= ŜT (1)

J1,t Ŝ
T (2)

J2,t − ŜT (1)

J1\J2,tŜ
T (2)

J2\J1,tŜ
T (1)∨T (2)

J1∩J2,t (17)

where T (1) ∨ T (2) = {max{T (1)
j , T

(2)
j } : j ∈ J1 ∩ J2}, i.e., we

use the earlier stopping time for edges common to both subsets.

THEOREM 5. (i) ĈT (1),T (2)

J1,J2,t
is an unbiased estimator of

Cov(ŜT (1)

J1,t
, ŜT (2)

J2,t
).

(ii) ĈT (1),T (2)

J1,J2,t
≥ 0 and hence Cov(ŜT (1)

J1,t
, ŜT (2)

J2,t
) ≥ 0.

(iii) ŜT
J,t(Ŝ

T
J,t − 1) is an unbiased estimator of Var(ŜT

J,t).

(iv) ĈT (1),T (2)

J1,J2,t
= 0 if and only if ŜT (1)

J1,t
= 0 or ŜT (2)

J2,t
= 0,

i.e., covariance estimators are computed only from snapshots

that have been sampled.

Covariance Estimation for Post-Stream Sampling. Post-stream

sampling is a special case of in-stream sampling with all Tj = ∞.

We recover the corresponding Thm 3 concerning covariances from

Theorem 5 by omitting all stopping times Tj from the notation.

5.3 InStream Triangle & Wedge Counts
We now describe an application of In-Stream Estimation to Tri-

angle Sampling and Counting. We sample from the stream based

on the previous triangle count weighting, but the triangle counting

is performed entirely in-stream. The full process is described in Al-

gorithm 3. In this section we state and prove the form of estimators

for triangle count and its variance, and describe the corresponding

steps in the algorithm. Space limitations preclude giving a similar

level of detail for wedge counting and triangle-wedge covariance.

Unbiased In-Stream Estimation of Triangle Count. Using our

previous notation △t to denote the set of triangles all of whose

7

edges have arrived by t, we write each such triangle in the form

(k1, k2, k3) with k3 the last edge to arrive. If k1 and k2 are present

in the sample K̂ when k3 arrives, we take a snapshot of the wedge

(k1, k2) prior to the sampling step for k3. Formally, we let Tk3

denote the slot immediately prior the arrival of k3 and form the

snapshot Ŝ
Tk3
{k1,k2}

. Note Tk3 is a stopping time because the edge

arrival process is deterministic.

THEOREM 6. Ñt(△) =
∑

(k1,k2,k3)∈△t
Ŝ

Tk3
{k1,k2},t

is an unbi-

ased estimator of Nt(△).

Estimation of Triangle Count Variance. We add some further

notation in preparation for estimating the variance of Ñt(△). Let

K̂[t] = ∪t>0K̂t denote the set of edges that are sampled at any time

up to t. Let △̂t = {(k1, k2, k3) ∈△t: Ŝ
Tk3
{k1,k2}

> 0} denote the

(random) subset of all triangles in △t that have positive snapshot.

Let K̂
(2)
[t] (k) denote the set of pairs (j′, k′) of edges in K̂[t] such

that each of the edge pairs (k, j′) and (k, k′) are the first two edges

in distinct triangles in △̂t, and with (j′, k′) ordered by their stop-

ping time of the third edges in these triangles, i.e., Tk,j′ < Tk,k′ .

THEOREM 7. Var(Ñt(△)) has unbiased estimator

Ṽt(△) =
∑

(k1,k2,k3)∈△̂t

1

pk1,Tk3
pk2,Tk3

(
1

pk1,Tk3
pk2,Tk3

− 1

)
(18)

+2
∑

k∈K̂[t]

∑

(j′,k′)∈

K̂
(2)
[t]

(k)

1

pk′,Tk,k′ pj′,Tk,j′
pk,Tk,k′

(
1

pk,Tk,j′

− 1

)

Description of Algorithm 3. We now describe the portions of Al-

gorithm 3 relating the in-stream estimator Ñ(△) and Ṽ (△). When

an edge k arrives, an update is performed for each triangle that k
completes (line 9). These updates can be performed in parallel

because each such triangle must have distinct edges other than k.

Triangle count Ñ(△) is updated with the current inverse probabil-

ities of its first two edges k1 and k2 (line 14). The variance Ṽ (△)
is updated first with the variance term for the current triangle (line

15) then secondly with its cumulative contributions Ĉk1(△) and

Ĉk1(△) to the covariances with all previous triangles whose first

two edges include k1 or k2 (line 16). These cumulative terms are

then updated by the current triangle (lines 18 and 19). Wedge

count variables are updated in a similar manner in lines 20–27. The

edge-wedge covariance Ṽ (△,Λ) used for estimation of the global

clustering coefficient α is updated using the cumulative triangle and

wedge covariances in lines 17 and 26.

6. EXPERIMENTS AND RESULTS
We test the performance of graph priority sampling on a large

set of 50 graphs with hundreds of millions of nodes/edges, selected

from a variety of domains and types, such as social, web, among

others. All graph data sets are available for download 1 [33, 34].

For all graph datasets, we consider an undirected, unweighted, sim-

plified graph without self loops. We generate the graph stream by

randomly permuting the set of edges in each graph. For each graph,

we perform ten different experiments with sample sizes in the range

of 10K–1M edges. We test GPS as well as baseline methods using a

single pass over the edge stream (such that each edge is processed

1
www.networkrepository.com

0.994 0.996 0.998 1 1.002 1.004 1.006
0.994

0.996

0.998

1

1.002

1.004

1.006

ca-hollywood-2009

com-amazon

higgs-social-network

soc-flickr

soc-youtube-snap

socfb-Indiana69

socfb-Penn94

socfb-Texas84

socfb-U
F21

tech-as-skitter

web-BerkStan

web-google

Figure 1: Comparing x̂/x of triangles and wedges. The closer

the points are to the intersection of the red lines (actual) the

better. Points are colored by graph type. Results are from the

in-stream estimation method at 100K.

once): both GPS post and in-stream estimation randomly select the

same set of edges with the same random seeds. Thus, the two meth-

ods only differ in the estimation procedure. For these experiments,

we used a server with two Intel Xeon E5-2687W 3.1GHz CPUs.

Each processor has 8 cores with 20MB of L3 cache and 256KB of

L2 cache. The experimental setup is executed independently for

each sample size as follows:

1. For each sample size m, Alg 1 collects an edge sample K̂ ⊂ K.

2. We use Alg 2 for post stream estimation, where the estimates are

obtained only from the sample. We use Alg 3 for in-stream estima-

tion, where the estimates are updated incrementally in a single pass

during the sampling process. Thus, both GPS post and in-stream

estimation use the same sample.

3. Given a sample K̂ ⊂ K, we use the absolute relative error

(ARE) |E[X̂] − X|/X to measure the deviation between the ex-

pected value of the estimates X̂ and the actual statistics X . We use

X to refer to triangle, wedge counts, or global clustering.

4. We compute the 95% confidence bounds as X̂±1.96

√
Var[X̂].

Error Analysis and Confidence Bounds. Table 1 summarizes the

main graph properties and provides a comparison between GPS post

stream and in-stream estimation for a variety of graphs at sample

size m = 200K edges. First, we observe that GPS in-stream esti-

mation has on average < 1% relative error across most graphs. In

addition, GPS post stream estimation has on average ≤ 2%. Thus,

both methods provide accurate estimates for large graphs with a

small sample size. Table 1 also shows that the upper and lower

bounds of GPS in-stream estimation are smaller than those obtained

using GPS post stream estimation. We note that both methods are

using the same sample. However, a key advantage for GPS in-

stream estimation versus GPS post stream estimation is its ability

to minimize the variance of the estimators. Thus, GPS in-stream

estimates are not only accurate but also have a small variance and

tight confidence bounds.

Second, we observe that the GPS framework provides high qual-

ity general samples to accurately estimate various properties simul-

taneously. For example, Table 1 shows consistent performance

across all graphs for the estimation of triangle/wedge counts and

global clustering with the same sample. Similarly, in Figure 1,

we observe that GPS accurately estimates both triangle and wedge

counts simultaneously with a single sample, with a relative error of

0.6% for for both triangle and wedge counts.

Finally, we investigate the properties of the sampling distribution

8

Table 1: Estimates of expected value and relative error using 200K edges for a representative set of 11 graphs. The graphlet statistic

for the full graph is shown in the third column. LB and UB are 95% confidence lower and upper bounds, respectively.

ACTUAL GPS IN-STREAM GPS POST STREAM

graph |K| |K̂|
|K| X X̂

|X−X̂|
X

LB UB X̂
|X−X̂|

X
LB UB

T
R

IA
N

G
L

E
S

ca-hollywood-2009 56.3M 0.0036 4.9B 4.9B 0.0009 4.8B 5B 4.8B 0.0036 4.6B 5.1B

com-amazon 925.8K 0.216 667.1K 667.2K 0.0001 658.5K 675.8K 666.8K 0.0004 653.6K 680K

higgs-social-network 12.5M 0.016 83M 82.6M 0.0043 80.8M 84.4M 83.2M 0.0031 79.5M 87M

soc-livejournal 27.9M 0.0072 83.5M 83.1M 0.0043 80.6M 85.7M 81.5M 0.0244 72M 91M

soc-orkut 117.1M 0.0017 627.5M 625.8M 0.0028 601.4M 650.1M 614.8M 0.0203 396M 833.7M

soc-twitter-2010 265M 0.0008 17.2B 17.3B 0.0009 16.8B 17.7B 17.3B 0.0027 13.3B 21.3B

soc-youtube-snap 2.9M 0.0669 3M 3M 0.0004 2.9M 3.1M 3M 0.0003 2.9M 3.1M

socfb-Penn94 1.3M 0.1468 7.2M 7.1M 0.0063 7M 7.2M 7.1M 0.0044 6.8M 7.5M

socfb-Texas84 1.5M 0.1257 11.1M 11.1M 0.0011 10.9M 11.3M 11.1M 0.0013 10.4M 11.9M

tech-as-skitter 11M 0.018 28.7M 28.5M 0.0081 27.7M 29.3M 28.3M 0.0141 26.5M 30.1M

web-google 4.3M 0.0463 13.3M 13.4M 0.0034 13.2M 13.6M 13.4M 0.0078 13.1M 13.8M

W
E

D
G

E
S

ca-hollywood-2009 56.3M 0.0036 47.6B 47.5B 0.0011 47.3B 47.8B 47.5B 0.0026 46.9B 48.1B

com-amazon 925.8K 0.216 9.7M 9.7M 0.0002 9.7M 9.8M 9.7M 0.0021 9.6M 9.9M

higgs-social-network 12.5M 0.016 28.7B 28.7B 0.001 28.5B 28.9B 28.7B 0.0008 28.1B 29.3B

soc-livejournal 27.9M 0.0072 1.7B 1.7B 0.0005 1.7B 1.8B 1.8B 0.0008 1.7B 1.8B

soc-orkut 117.1M 0.0017 45.6B 45.5B 0.0016 45B 46B 45.5B 0.0009 44.3B 46.8B

soc-twitter-2010 265M 0.0008 1.8T 1.8T 0.0002 1.8T 1.8T 1.8T 0.0016 1.7T 1.8T

soc-youtube-snap 2.9M 0.0669 1.4B 1.4B 0.0035 1.4B 1.4B 1.4B 0.0084 1.4B 1.5B

socfb-Penn94 1.3M 0.1468 220.1M 219.9M 0.001 217.7M 222.1M 219M 0.0051 211.7M 226.3M

socfb-Texas84 1.5M 0.1257 335.7M 334.9M 0.0022 331.4M 338.5M 335.1M 0.0017 323M 347.2M

tech-as-skitter 11M 0.018 16B 16B 0.0005 15.8B 16.1B 15.9B 0.0016 15.6B 16.3B

web-google 4.3M 0.0463 727.4M 728.8M 0.002 721M 736.7M 732.2M 0.0066 711.8M 752.5M

C
L

U
S

T
E

R
IN

G
C

O
E

F
F
.

(C
C

) ca-hollywood-2009 56.3M 0.0036 0.31 0.31 0.002 0.306 0.315 0.309 0.0009 0.295 0.323

com-amazon 925.8K 0.216 0.205 0.205 <10−4 0.203 0.208 0.205 0.0025 0.201 0.209

higgs-social-network 12.5M 0.016 0.009 0.009 0.0034 0.008 0.009 0.009 0.0039 0.008 0.009

soc-livejournal 27.9M 0.0072 0.139 0.139 0.0039 0.135 0.143 0.136 0.0252 0.12 0.151

soc-orkut 117.1M 0.0017 0.041 0.041 0.0012 0.04 0.043 0.04 0.0193 0.026 0.055

soc-twitter-2010 265M 0.0008 0.028 0.028 0.0012 0.028 0.029 0.028 0.0004 0.022 0.035

soc-youtube-snap 2.9M 0.0669 0.006 0.006 0.0032 0.006 0.006 0.006 0.0088 0.006 0.007

socfb-Penn94 1.3M 0.1468 0.098 0.098 0.0053 0.096 0.099 0.098 0.0008 0.093 0.104

socfb-Texas84 1.5M 0.1257 0.1 0.1 0.0012 0.098 0.102 0.1 0.0031 0.093 0.107

tech-as-skitter 11M 0.018 0.005 0.005 0.0076 0.005 0.006 0.005 0.0124 0.005 0.006

web-google 4.3M 0.0463 0.055 0.055 0.0014 0.054 0.056 0.055 0.0013 0.053 0.057

Table 2: Baseline Comparison at sample size ≈100K

NSAMP TRIEST MASCOT GPS POST

Absolute Relative Error (ARE)

cit-Patents 0.192 0.401 0.65 0.008

higgs-soc-net 0.079 0.174 0.209 0.011

infra-roadNet-CA 0.165 0.301 0.39 0.013

Average Time (µs /edge)

cit-Patents 34.2 3.01 2.02 0.63

higgs-soc-net 26.08 4.40 2.02 11.74

infra-roadNet-CA 28.72 2.81 2.05 0.831

and the convergence of the estimates as the sample size increases

between 10K–1M edges (See Figure 2). We used graphs from var-

ious domains and types. We observe that the confidence intervals

of triangle counts are small in the range 0.90–1.10 for most graphs

at 40K sample size. Notably, for a large Twitter graph with more

than 260M edges (soc-twitter-10), GPS in-stream estimation accu-

rately estimates the triangle count with < 1% error, while storing

40K edges, which is only a fraction of 0.00015 of the total number

of edges in the graph. Due to space limitations, we removed the

confidence plots for wedges and clustering coefficient. However,

we observe that the confidence interval are very small in the range

of 0.98–1.02 for wedges, and 0.90–1.10 for global clustering co-

efficient.

Baseline Study. The state-of-the-art algorithms for triangle count

estimation in adjacency graph streams are due to the neighborhood

sampling (NSAMP) in [30] and the triangle sampling (TRIEST)

in [16]. We discuss their performance in turn compared with GPS

post stream estimation. We also compare with MASCOT [27].

Table 2 summarizes the results of the comparison. Our implemen-

tation of the NSAMP [30] algorithm follows the description in the

paper, which achieves a near-linear total time if and only if running

in bulk-processing. Otherwise the algorithm is too slow and not

practical even for medium size graphs with a total time of O(|K|r).
Overall, GPS post stream estimation achieves 98%–99% accuracy,

while NSAMP achieves only 80%–84% accuracy for most graphs

and 92% accuracy for higgs-soc-net graph. Our implementation of

the TRIEST [16] algorithm follows the main approach in the pa-

per. TRIEST was unable to produce a reasonable estimate show-

ing only 60%–82% accuracy. Similarly, MASCOT achieves only

35%–79% accuracy. Thus, GPS post stream estimation outperforms

the three baseline methods. Table 2 also shows the average update

time per edge (in microseconds). We note that GPS post stream esti-

mation achieves an average update time that is 35x–56x faster than

NSAMP with bulk-processing (for cit-Patents and infra-roadNet-

CA graphs and at least 2x faster for higgs-soc-net). TRIEST and

MASCOT use an average of 3 and 2 microseconds/edge respec-

tively. Note that we have also compared to other methods in [23]

and [10] (results omitted for brevity). Even though the method in

[10] is fast, it fails to find a triangle most of the time, producing low

quality estimates (mostly zero estimates). On the other hand, the

method of [23] is too slow for extensive experiments with O(m)
update complexity per edge (where m is the reservoir size). GPS

post stream estimation achieves at least 10x accuracy improvement

compared to their method. For this comparison, we first run MAS-

COT with approximately 100K edges, then we observe the actual

sample size used by MASCOT and run all other methods with the

observed sample size.

9

10
4

10
5

10
6

0.85

0.9

0.95

1

1.05

1.1

socfb-Texas84

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.85

0.9

0.95

1

1.05

1.1

socfb-Texas84

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.9

0.95

1

1.05

1.1

socfb-Penn94

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.9

0.95

1

1.05

1.1

socfb-Penn94

Sample Size |K̂|

x̂
/
x

10
4

10
5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

soc-twitter-2010

Sample Size |K̂|

x̂
/
x

10
4

10
5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

soc-twitter-2010

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

soc-youtube-snap

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

soc-youtube-snap

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

soc-orkut

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

soc-orkut

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

soc-livejournal

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

soc-livejournal

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.8

0.9

1

1.1

1.2

1.3

higgs-social-network

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.8

0.9

1

1.1

1.2

1.3

higgs-social-network

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

cit-Patents

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

cit-Patents

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.7

0.8

0.9

1

1.1

1.2

1.3

web-BerkStan

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.7

0.8

0.9

1

1.1

1.2

1.3

web-BerkStan

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

com-amazon

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

com-amazon

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.6

0.8

1

1.2

1.4

1.6

tech-as-skitter

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.6

0.8

1

1.2

1.4

1.6

tech-as-skitter

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

web-google

Sample Size |K̂|

x̂
/
x

10
4

10
5

10
6

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

web-google

Sample Size |K̂|

x̂
/
x

Figure 2: Confidence bounds for Graph Priority Sampling with instream estimation of triangle counts. We used graphs from a

variety of domains and types. The properties of the sampling distribution and convergence of the estimates are investigated as the

sample size increases. The circle () represents X̂/X (y-axis) whereas N and H are LB/X and UB/X, respectively. Dashed vertical line

(grey) refers to the sample at 40K edges. Notably, the proposed framework has excellent accuracy even at this small sample size.

Unbiased Estimation Vs. Time. We now track the estimates as

the graph stream progresses one edge at a time, starting from an

empty graph. Figure 3 shows GPS estimates for triangle counts and

clustering coefficient as the stream is evolving overtime. Notably,

the estimates are indistinguishable from the actual values. Figure 3

also shows the 95% confidence upper and lower bounds. These

results are for a sample of 80K edges (a small fraction ≤ 1% of the

size of soc-orkut and tech-as-skitter graphs) using GPS in-stream

Given the slow execution of NSAMP, we compare against TRI-

EST and its improved estimation procedure (TRIEST-IMPR). Note

that TRIEST and TRIEST-IMPR are both using the same sam-

ple and random seeds. The two approaches are based on reser-

voir sampling [38]. We used graphs from a variety of domains

and types for this comparison, and all methods are using the same

sample size. We measure the error using the Mean Absolute Rel-

ative Error (MARE) 1
T

∑T
t=1

|X̂t−Xt|
Xt

, where T is the number of

time-stamps. We also report the maximum error maxT
t=1

|X̂t−Xt|
Xt

.

Table 3 summarizes the comparison results. For all graphs, GPS

with in-stream estimation outperforms both TRIEST and its im-

proved estimation procedure TRIEST-IMPR. We note that indeed

TRIEST-IMPR significantly improves the quality of the estimation

of TRIEST. However, in comparison with GPS we observe that

GPS with post stream estimation is orders of magnitude better than

TRIEST, which shows that the quality of the sample collected by

GPS is much better than TRIEST (regardless the estimation proce-

dure used, whether it is post or in-stream estimation).

0 2 4 6 8 10 12

x 10
7

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

x 10
8

Stream Size at t ime t (|K t|)

T
ri
a
n
g
le
s
a
t
ti
m
e
t
(x̂

t)

soc-orkut

Actual

Estimate

Upper Bound

Lower Bound

0 2 4 6 8 10 12

x 10
7

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

x 10
8

Stream Size at t ime t (|K t|)

T
ri
a
n
g
le
s
a
t
ti
m
e
t
(x̂

t)

soc-orkut

0 2 4 6 8 10 12

x 10
7

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Stream Size at t ime t (|K t|)

C
lu
st
er
in
g
C
o
eff

.
a
t
ti
m
e
t
(x̂

t)

soc-orkut

Actual

Estimate

Upper Bound

Lower Bound

0 2 4 6 8 10 12

x 10
7

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Stream Size at t ime t (|K t|)

C
lu
st
er
in
g
C
o
eff

.
a
t
ti
m
e
t
(x̂

t)

soc-orkut

0 2 4 6 8 10 12

x 10
6

0.5

1

1.5

2

2.5

x 10
7

Stream Size at t ime t (|K t|)

T
ri
a
n
g
le
s
a
t
ti
m
e
t
(x̂

t)

tech-as-skitter

Actual

Estimate

Upper Bound

Lower Bound

0 2 4 6 8 10 12

x 10
6

0.5

1

1.5

2

2.5

x 10
7

Stream Size at t ime t (|K t|)

T
ri
a
n
g
le
s
a
t
ti
m
e
t
(x̂

t)

tech-as-skitter

0 2 4 6 8 10 12

x 10
6

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

-3

Stream Size at t ime t (|K t|)

C
lu
st
er
in
g
C
o
eff

.
a
t
ti
m
e
t
(x̂

t)

tech-as-skitter

Actual

Estimate

Upper Bound

Lower Bound

0 2 4 6 8 10 12

x 10
6

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

-3

Stream Size at t ime t (|K t|)

C
lu
st
er
in
g
C
o
eff

.
a
t
ti
m
e
t
(x̂

t)

tech-as-skitter

Figure 3: Graph Priority Sampling with in-stream estimation

versus time. Results for social and tech networks at sample

size 80K edges for triangle counts and global clustering with

95% confidence lower and upper bounds. Notably, the pro-

posed framework accurately estimates the statistics while the

stream is progressing.

10

Table 3: Mean absolute relative error for estimates of triangle

counts vs. time (sample size = 80K).

graph Algorithm Max. ARE MARE

ca-hollywood-2009

TRIEST 0.492 0.211

TRIEST-IMPR 0.066 0.018

GPS POST 0.049 0.020

GPS IN-STREAM 0.016 0.003

tech-as-skitter

TRIEST 0.628 0.249

TRIEST-IMPR 0.134 0.048

GPS POST 0.087 0.035

GPS IN-STREAM 0.032 0.014

infra-roadNet-CA

TRIEST 0.98 0.47

TRIEST-IMPR 0.33 0.09

GPS POST 0.15 0.05

GPS IN-STREAM 0.058 0.02

soc-youtube-snap

TRIEST 0.362 0.119

TRIEST-IMPR 0.049 0.016

GPS POST 0.022 0.009

GPS IN-STREAM 0.020 0.008

Scalability and Runtime. Our Algorithm 2 for post steam esti-

mation uses a scalable parallel approach from [6, 7] with strong

scaling properties; we omit the scalability results for brevity.

7. RELATED WORK
The research related to this paper can be grouped into: (a) Sam-

pling from graph streams, (b) Sampling/Estimation of subgraphs.

Sampling from graph streams. Recently, there has been consid-

erable interest in designing algorithms for mining massive and dy-

namic graphs from data streams, motivated by applications. Many

were based on sampling and approximation techniques. An early

such work [21] concerned problems of following paths and connec-

tivity in directed graphs. Much of the earlier work on graph streams

focused on graph problems in the semi-streaming model [29, 20],

where the algorithm is allowed to use O(npolylog n) space to

solve graph problems that are provably intractable in sub-linear

space. More recent work focused on graph mining problems such

as finding common neighbors [9], estimation of pagerank [35],

clustering and outlier detection [1], characterizing degree sequences

in multigraph streams [15], link prediction [41], community detec-

tion [40], among others [28, 32, 2, 4]. See [5] for further details.

Sampling and Estimation of Subgraphs. Subgraph counting (in

particular triangle counting) has gained significant attention due to

its applications in social, information, and web networks. Early

work in this direction [10] provides a space-bounded algorithm for

the estimation of triangle counts and clustering coefficient in the

incidence graph stream model. However, it has been shown that

these guarantees will no longer hold in the case of the adjacency

stream model, where the edges arrive in arbitrary order. A single

pass streaming algorithm incurring O(m∆/T)-space, where ∆ is

the maximum degree is proposed in [30]. However, this algorithm

requires both large storage and update overhead to provide accurate

results. For example, their algorithm needs at least 128 estima-

tors (i.e., storing more than 128K edges) and uses large batch sizes

(e.g., a million edges) to obtain accurate/efficient results. A single-

pass O(m/
√
T)-space streaming algorithm was proposed in [23]

specifically for transitivity estimation with arbitrary additive error

guarantees. This algorithm maintains two reservoirs, the first to se-

lect a uniform sample of edges from the stream, and the second to

select a uniform sample of wedges created by the edge reservoir.

Other approaches focused on maintaining a set of edges sampled

randomly from the graph stream. graph sample-and-hold [3] is a

framework for unbiased an accurate estimation of subgraph counts

(e.g., edges, triangles, wedges). A similar approach was recently

proposed for local (node/edge) triangle count estimation in graph

streams [27]. Other methods extend reservoir sampling to graph

streams. For example, reservoir sampling has been used for de-

tecting outliers in graph streams [1], estimating the distribution of

various graph properties (e.g., path length, clustering) [5], and es-

timating triangle counts in dynamic graph streams with insertions

and deletions [16].

8. CONCLUSION
In this paper, we presented graph priority sampling, a new frame-

work for order-based reservoir sampling from massive graph streams.

GPS provides a general way to weight edge sampling according to

auxiliary variables to estimate various graph properties. We showed

how edge sampling weights can be chosen so as to minimize the

estimation variance of counts of subgraphs, such as triangles and

wedges. Unlike previous graph sampling algorithms, GPS differ-

entiates between the functions of sampling and estimation. We

proposed two estimation approaches: (1) Post-stream estimation,

to allow GPS to construct a reference sample of edges to support

retrospective graph queries, and (2) In-stream estimation, to allow

GPS to obtain lower variance estimates by incrementally updating

the count estimates during stream processing. We provided a novel

Martingale formulation for subgraph count estimation. We per-

formed a large-scale experimental analysis. The results show that

GPS achieves high accuracy with < 1% error on large real-world

graphs from a variety of domains and types, while storing a small

fraction of the graph and average update times of a few microsec-

onds per edge. In future work, we aim to extend the proposed ap-

proach to adaptive-weight sampling schemes and its applications in

massive streaming analytics.

9. PROOFS OF THEOREMS

LEMMA 5. For each t, the events {{j ∈ Kt} : j ≤ t} are mea-

surable w.r.t Fi,t .

PROOF OF LEMMA 5. The proof is by induction. It is trivially

true fot t = i. Assume true for t− 1, then membership of Kt−1 is

Fi,t−1 measurable, and hence so is membership of K′
t−1. Selec-

tion of i is clearly Fi,t-measurable, and if i is selected, the remain-

ing selections are F(0)
i,t -measurable since then z{ij},t = zj,t.

PROOF OF THEOREM 1. Lemma 5 established measurability.

For t ≥ i, since Ri,t is Zi,t-measurable, conditioning first on zi,t:

E[Ŝi,t|zi,t,Fi,t−1] =
1

Ri,t
E[I(Bi(z

∗
i,t))|zi,t,Fi,t−1] (19)

Since Bi(z
∗
i,t) = Bi(zi,t)∩Bi(z

∗
i,t−1) and I(Bi(z

∗
t−1)) isFi,t−1-

measurable, then for any event on which the conditional expecta-

tion (19) is positive, we have

E[I(Bi(z
∗
i,t))|zi,t,Fi,t−1] = P[Bi(zi,t)|Bi(z

∗
i,t−1),Zi,t,F(0)

i,t−1]

= P[Bi(z
∗
i,t)|Zi,t, wi]/P[Bi(z

∗
i,t−1)|Zi,t, wi]

= P[wi/ui > z∗i,t|Zi,t, wi]/P[wi/ui > z∗i,t−1|Zi,t, wi]

= Ri,t/Ri,t−1 (20)

where we have used the fact that once we have conditioned on

Bi(z
∗
i,t−1) and Zi,t, then F(0)

i,t−1 conditions only through the de-

pendence of wi on the sample set Ki−1. Thus we have established

that E[Ŝi,t|zi,t,Fi,t−1] = Ŝi,t−1 regardless of zi,t, and hence

E[Ŝi,t|Fi,t−1] = Ŝi,t−1.

PROOF OF THEOREM 4. (ii) follows from (i) by linearity of ex-

pectation. For (i), observe that Ŝ
Tj

j,t = S
Tj

j,t−1 + I(T ≥ t)(Ŝj,t −

11

Ŝj,t−1); one checks that this reproduces Ŝj,min{t,Tj}. Thus

ŜT
J,t =

∏

j∈J

Ŝ
Tj

j,t−1+
∑

L(J

∏

ℓ∈L

STℓ
j,ℓ−1

∏

j∈J\L

I(Tj ≥ t)(Ŝj,t−Ŝj,t−1)

Observe that I(Tj ≥ t) = 1 − I(Tj ≤ t − 1) is in fact FJ,t−1-

measurable. Hence taking expectations w.r.t. FJ,t−1 then the prod-

uct form from Theorem 2 tells us that for any L (J

E[
∏

j∈J\L

I(Tj ≥ t)(Ŝj,t − Ŝj,t−1)|FJ,t−1]

=
∏

j∈J\L

I(Tj ≥ t)E[Ŝj,t − Ŝj,t−1|FJ,t−1] = 0 (21)

and hence E[ŜT
J,t|FJ,t−1] =

∏
j∈J Ŝ

Tj

j,t−1 = ŜT
J,t−1

PROOF OF THEOREM 5. (i)

Cov(ŜT (1)

J1,t , Ŝ
T (2)

J2,t) = E[ŜT (1)

J1,t Ŝ
T (2)

J2,t]− E[ŜT (1)

J1,t]E[Ŝ
T (2)

J2,t]

= E[ŜT (1)

J1,t S
T (2)

J2,t]− 1 (22)

Hence the results follows because

E[ŜT (1)

J1\J2,t
ŜT (2)

J2\J1,t
ŜT (1)∨T (2)

J1∩J2,t] = 1 (23)

from Theorem 4 since J1 \ J2, J2 \ J1 and J1 ∩ J2 are disjoint.

(ii)ĈT (1),T (2)

J1,J2,t
= ŜT (1)

J1\J2,t
ŜT (2)

J2\J1,t
(ŜT (1)

J1∩J2
ŜT (2)

J1∩J2
−ŜT (1)∨T (2)

J1∩J2,t
).

which is nonnegative since each j ∈ J1 ∩ J2 brings a factor of the

form 1/(p(1)p(2)) to ŜT (1)

J1∩J2
ŜT (2)

J1∩J2
, where p(i) = p

j,max{t,T
(i)
j

}
.

This exceeds the matching term in ŜT (1)∨T (2)

J1∩J2,t
, i.e., 1/min{p1, p2}.

(iii) Follows from (i) upon setting J1 = J2 = J .

(iv) The equivalence clearly applies to the first monomial in (17).

For the second monomial, note that (ŜT (1)

J1,t
= 0) ∧ (ŜT (2)

J2,t
= 0)

if and only if ŜT (1)

j,t = 0 for some j ∈ J1 or ŜT (2)

j,t = 0 for some

j ∈ J2. If this condition holds for some j ∈ J1∆J2 we are done.

Otherwise, we require Ŝ
T

(i)
j

j,t = 0 for some j ∈ J1 ∩ J2 and some

i ∈ {1, 2}. But for j ∈ J1∩J2, Ŝ
T

(i)
j

j,t = Ŝ
j,min{T

(i)
j

,t}
= 0 means

that j has not survived until min{T (i)
j , t} and hence it also not

present at the later or equal time min{max{T (1)
j T

(2)
j }, t}. Hence

Ŝ
max{T

(1)
j

,T
(2)
j

}

j,t = 0 and we are done

PROOF OF THEOREM 6. Ŝ
Tk3
{k1,k2},t

> 0 only if (k1, k2, k3) ∈
∆t, and by Theorem 4 has unit expectation.

PROOF OF THEOREM 7. Distributing the covariance over the

sum Ñt(△) in Theorem 6, Var(Ñt(△)) has unbiased estimator

∑

(k1,k2,k3)∈△t

Ŝ
Tk3
{k1,k2},t

(Ŝ
Tk3
{k1,k2},t

−1)+2
∑

(k1 ,k2,k3)≺

(k′
1,k′

2,k′
3)

C
Tk3

,T
k′
3

{k1,k2},{k
′
1,k

′
2},t

(24)

Where ≺ denotes k3 < k′
3 in arrival order. Each variance term is

of the form 1/q(1/q − 1) for q = pk1,T3pk2,T3 . Each covariance

term is zero unless {k1, k2} ∩ {k′
1, k

′
2} 6= ∅. (The sets cannot be

equal for then k3 = k′
3 if both form triangles). The stated form the

follows by rewriting the sum of covariance terms in (24) as a sum

over edges k ∈ K̃t of the covariances of all pairs snapshots that

contain k as a sampled edge.

10. REFERENCES

[1] C. Aggarwal, Y. Zhao, and P. Yu. Outlier detection in graph

streams. In ICDE, pages 399–409, 2011.

[2] N. K. Ahmed, F. Berchmans, J. Neville, and R. Kompella.

Time-based sampling of social network activity graphs. In

MLG, pages 1–9, 2010.

[3] N. K. Ahmed, N. Duffield, J. Neville, and R. Kompella.

Graph sample and hold: A framework for big-graph

analytics. In SIGKDD, 2014.

[4] N. K. Ahmed, J. Neville, and R. Kompella. Network

sampling designs for relational classification. In ICWSM,

pages 1–4, 2012.

[5] N. K. Ahmed, J. Neville, and R. Kompella. Network

sampling: From static to streaming graphs. In TKDD,

8(2):1–56, 2014.

[6] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield.

Efficient graphlet counting for large networks. In In ICDM.

[7] N. K. Ahmed, J. Neville, R. A. Rossi, N. Duffield, and T. L.

Willke. Graphlet decomposition: framework, algorithms, and

applications. In KAIS, pages 1–32, 2016.

[8] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient

semi-streaming algorithms for local triangle counting in

massive graphs. In Proc. of KDD, pages 16–24, 2008.

[9] A. Buchsbaum, R. Giancarlo, and J. Westbrook. On finding

common neighborhoods in massive graphs. Theoretical

Computer Science, 299(1):707–718, 2003.

[10] L. Buriol, G. Frahling, S. Leonardi,

A. Marchetti-Spaccamela, and C. Sohler. Counting triangles

in data streams. In PODS.

[11] N. Chiba and T. Nishizeki. Arboricity and subgraph listing

algorithms. SIAM J. on Computing, 14(1):210–223, 1985.

[12] E. Cohen, N. Duffield, H. Kaplan, C. Lund, and M. Thorup.

Efficient stream sampling for variance-optimal estimation of

subset sums. SIAM J. Comput., 40(5):1402–1431, Sept. 2011.

[13] E. Cohen and H. Kaplan. Summarizing data using bottom-k

sketches. In PODC, 2007.

[14] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.

Introduction to Algorithms. 2nd edition, 2001.

[15] G. Cormode and S. Muthukrishnan. Space efficient mining

of multigraph streams. In PODS, pages 271–282, 2005.

[16] L. De Stefani, A. Epasto, M. Riondato, and E. Upfal. Tri\est:

Counting local and global triangles in fully-dynamic streams

with fixed memory size. In KDD, 2016.

[17] N. Duffield, C. Lund, and M. Thorup. Learn more, sample

less, control of volume and variance in network

measurement. IEEE Trans. in Information Theory,

51(5):1756–1775, 2005.

[18] N. Duffield, C. Lund, and M. Thorup. Priority sampling for

estimation of arbitrary subset sums. JACM, 54(6):32, 2007.

[19] P. S. Efraimidis and P. G. Spirakis. Weighted random

sampling with a reservoir. IPL, 97(5):181–185, 2006.

[20] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and

J. Zhang. On graph problems in a semi-streaming model.

Theoretical Computer Science, 348(2):207–216, 2005.

[21] M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing

on data streams. In External Memory Algorithms: Dimacs

Workshop External Memory and Visualization, volume 50,

page 107, 1999.

[22] D. G. Horvitz and D. J. Thompson. A generalization of

sampling without replacement from a finite universe. J. of the

American Stat. Assoc., 47(260):663–685, 1952.

[23] M. Jha, C. Seshadhri, and A. Pinar. A space efficient

streaming algorithm for triangle counting using the birthday

paradox. In In ACM SIGKDD, pages 589–597, 2013.

12

[24] D. E. Knuth. The Art of Computer Programming, Vol. 2:

Seminumerical Algorithms. Addison-Wesley, 1997.

[25] J. Leskovec, L. A. Adamic, and B. A. Huberman. The

dynamics of viral marketing. In TWEB, 1(1):5, 2007.

[26] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,

J. VanBriesen, and N. Glance. Cost-effective outbreak

detection in networks. In KDD, pages 420–429, 2007.

[27] Y. Lim and U. Kang. Mascot: Memory-efficient and accurate

sampling for counting local triangles in graph streams. In

Proc. of SIGKDD, pages 685–694. ACM, 2015.

[28] A. McGregor. Graph mining on streams. Encyclopedia of

Database Systems, pages 1271–1275, 2009.

[29] S. Muthukrishnan. Data streams: Algorithms and

applications. Now Publishers Inc, 2005.

[30] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu.

Counting and sampling triangles from a graph stream. Proc.

of VLDB, 6(14):1870–1881, 2013.

[31] B. Rosén. Asymptotic theory for successive sampling with

varying probabilities without replacement, I. The Annals of

Mathematical Statistics, 43(2):373–397, 1972.

[32] R. Rossi and N. Ahmed. Role discovery in networks. TKDE,

2015.

[33] R. A. Rossi and N. K. Ahmed. The network data repository

with interactive graph analytics and visualization. In AAAI,

2015.

[34] R. A. Rossi and N. K. Ahmed. An interactive data repository

with visual analytics. SIGKDD Explor., 17(2):37–41, 2016.

[35] A. D. Sarma, S. Gollapudi, and R. Panigrahy. Estimating

PageRank on Graph Streams. In PODS, pages 69–78, 2008.

[36] M. J. Schervish. Theory of Statistics. Springer, 1995.

[37] Y. Tillé. Sampling Algorithms. Springer-Verlag.

[38] J. S. Vitter. Random sampling with a reservoir. ACM

Transactions on Mathematical Software, 11:37–57, 1985.

[39] D. Williams. Probability with Martingales. Cambridge

University Press, 1991.

[40] A. Zakrzewska and D. A. Bader. Tracking local communities

in streaming graphs with a dynamic algorithm. SNAM,

6(1):65, 2016.

[41] P. Zhao, C. Aggarwal, and G. He. Link prediction in graph

streams. In ICDE, pages 553–564, 2016.

13

	1 Introduction
	2 Antecedents to Our Work
	3 Graph Priority Sampling
	3.1 Proposed Framework
	3.2 Algorithm Description & Properties
	3.3 A Martingale for Subgraph Counting
	3.4 Variance and Covariance Estimation
	3.5 Optimizing Subgraph Variance

	4 Triangle & Wedge Counting
	5 In-Stream Estimation
	5.1 Unbiased Estimation with Snapshots
	5.2 Variance Estimation for Snapshots
	5.3 In-Stream Triangle & Wedge Counts

	6 Experiments and Results
	7 Related Work
	8 Conclusion
	9 Proofs of Theorems
	10 References

