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ABSTRACT
Many real-world machine learning problems are challenging to
tackle for two reasons: (i) they involve multiple sub-tasks at dif-
ferent levels of granularity; and (ii) they require large volumes
of labeled training data. We propose Snorkel MeTaL, an end-to-
end system for multi-task learning that leverages weak supervi-
sion provided at multiple levels of granularity by domain expert
users. In MeTaL, a user specifies a problem consisting of multiple,
hierarchically-related sub-tasks—for example, classifying a docu-
ment at multiple levels of granularity—and then provides labeling
functions for each sub-task as weak supervision. MeTaL learns a
re-weighted model of these labeling functions, and uses the com-
bined signal to train a hierarchical multi-task network which is
automatically compiled from the structure of the sub-tasks. Using
MeTaL on a radiology report triage task and a fine-grained news
classification task, we achieve average gains of 11.2 accuracy points
over a baseline supervised approach and 9.5 accuracy points over
the predictions of the user-provided labeling functions.
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1 INTRODUCTION
An increasing number of real-world systems today are not just
utilizing machine learning as a sub-component, but are in fact
wholesale transitioning to “Software 2.0”-style architectures [4]
where machine learning models are the principle deployed artifact.
Especially for complex tasks e.g. involving vision, speech, control,
and more, this approach has the advantages of better generalization
as well as a more homogeneous and modular form factor. However,
most real-world tasks in fact consist ofmultiple sub-tasks; and while
machine learning models may perform well on the individual tasks,
connecting them together leads to complex pipelines which lead to
cascading errors and break the clean, “Software 2.0”-style paradigm
of single model deployment.

In our experience building and interacting with users of Snorkel
[13], we found exactly this obstacle across a range of application
domains and settings. For example, when working with scientific

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEEM’18, June 15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5828-6/18/06. . . $15.00
https://doi.org/10.1145/3209889.3209898

�"#�"$

�"%

Hierarchical

Label Model

Multi-Task 

End Model

Labeling 

Functions

�$

�%

�#

def lf_0_1: …

def lf_1_1: …

def lf_2_1: …

1 2 3

Figure 1: In MeTaL domain expert users write labeling func-
tions (1) to provideweak supervision for a hierarchy of tasks.
This weak supervision is de-noised by a generative label
model (2), and then used to train a multi-task end model (3)
that is auto-compiled based on the structure of the tasks.

and government collaborators on information extraction tasks, the
need for multiple connected models—e.g. for candidate extraction,
classification, and entity linking—quickly became apparent. More
broadly, the sub-tasks were generally related both by constraints
on their output values and shared features of their input values.
Current multi-task and/or joint learning approaches do support
shared structure between tasks, but still require large volumes of
hand-labeled training data for each task—a prohibitive requirement
for most settings.

To handle this multi-task supervision challenge, we propose
Snorkel MeTaL, a prototype system at the confluence of two recent
technical trends: multi-task learning through shared structure in
deep neural networks, and weak supervision denoised using sta-
tistical methods. In multi-task learning [2], similar parameters are
shared between separate tasks, the idea being that the inductive
bias of multiple tasks will lead to better learned representations.
However, hand-labeling large volumes of training data for multiple
separate tasks is still a prohibitive burden. Thus, we propose to use
standard multi-task modeling techniques, but to supervise them in
a novel weaker way, extending the recently proposed paradigm of
data programming [12], wherein domain expert users write labeling
functions rather than hand-label training data. In MeTaL, we first
denoise the outputs of these labeling functions—now written for a
set of related tasks—using a generative model, and then use this as
weak supervision for an auto-compiled multi-task network.

In this initial work, we tackle the restricted but important case of
hierarchically related tasks, which characterizes many fine-grained
classification tasks that can be broken into a set of hierarchical
decisions, allowing users to provide weak supervision at multiple
levels of granularity. For example, suppose our goal is to train a
machine learning model to perform fine-grained classification of
financial news articles. By breaking this down into a hierarchy of
tasks—e.g., company vs. money market articles, then sub-classes for
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each—we potentially make it easier to use available weak supervi-
sion at various different levels of granularity. We may, for instance,
be able to use existing classifiers or other noisy labels for the ‘com-
pany vs. money market’ task, and then rely on pattern-matching
heuristics to provide labels for the finer-grained sub-tasks. This
collection of multi-task weak supervision signals can then be used
to train a multi-task end model that will generalize beyond the
weak supervision sources.

In the MeTaL pipeline (Figure 1), users first specify a hierarchical
task schema and a set of labeling functions (LFs) for each task, which
collectively encode weak supervision signals at various levels of
granularity. We then use a hierarchical generative label model to
learn the accuracies of these LFs, and use their re-weighted and
combined outputs as a set of probabilistic training labels for a multi-
task discriminative end model, which is dynamically compiled based
on the type of input and structure of sub-tasks.

We start by briefly reviewing related work in Section 2. Then, we
describe the two main components of the MeTaL pipeline: first, in
Section 3, the hierarchical label model used to learn the accuracies
of the user-defined labeling functions; and then, in Section 4, the
multi-task end model trained with the weak supervision. Finally,
Section 5 details the results of applying MeTaL to two fine-grained
classification problems—a financial news article classification task
and a radiology report triage task—where we report average gains
of 11.2 points of accuracy over a baseline approach and of 9.5 points
of accuracy over the weak supervision heuristics used.

2 RELATEDWORK
In multi-task learning (MTL) [2], separate machine learning models
for multiple tasks share subsets of their parameters, or are regular-
ized to have similar parameters, with the aim of sharing inductive
bias between tasks. A body of recent work has explored multi-task
learning for modern deep learning models [15]. In particular, when
hierarchy may be present amongst tasks, recent work has explored
sharing intermediate layers according to these hierarchies [5, 16].

Modern supervised learning models often have large numbers
of trainable parameters and thus require large labeled training sets;
the idea ofweak supervision approaches is to use higher-level and/or
noisier signals instead of hand-labeled data [7, 8, 17]. Recent ap-
proaches model the accuracies of weak sources without labeled
data [1, 12, 14], and propose end-to-end systems for weak supervi-
sion based on these techniques [13]. Other recent work considers
learning classifier accuracies over logically-related tasks without
labeled data [3, 11]. Here, we propose a system at the confluence of
both trends.

3 HIERARCHICAL WEAK SUPERVISION
In theMeTaL pipeline, users start by specifying a task schema, which
describes the hierarchical relationships between the set of tasks (and
which in future work could potentially be learned). Our ultimate
goal is to train a standard multi-task network–however we propose
to supervise it in a novel way. Rather than hand-labeling individual
data points, users provide two inputs for each task: unlabeled data,
and a set of LFs, which are simply functions that, given a data
point, either output a label or abstain [12]. For example, LFs could
encode pattern-based heuristics, distant supervision from existing
knowledge bases, crowdsourced labels, existing weak classifiers, or

y0

λ0,1 λ0,2 λ0,3y1

λ1,1 λ1,2 λ1,3

y2

λ2,1 λ2,2 λ2,3

Figure 2: An example hierarchical generative label model,
where a four-class classification problem is broken into
three hierarchical sub-tasks y0,y1,y2, each supervised by
three LFs. An assignment of task labels (y0 = 2,y1 = ∅,y2 = 1)
would correspond to an end label y = 3.

arbitrary domain heuristics [13]. LFs can have arbitrary, unknown
accuracies—but by looking at the matrix of their agreements, we
can estimate their accuracies without labeled data [12]. For MTL,
we want to leverage LFs at multiple levels of granularity, outputting
labels for different but hierarchically related tasks.

To handle this novel setting, we represent the outputs of the
labeling functions via a hierarchical generative model. To simplify
our exposition, we focus on the setting where the task schema
represents a fine-grained classification problem with end labels
y ∈ {1, . . . ,K }, which has been decomposed into a decision tree
over sub-tasks y0, . . . ,yT−1, each with task labels yt ∈ {1, . . . ,Kt }.
For non-root tasks, we also include a “null” task label ∅, indicating
that the task is not relevant for the data point.

Example 3.1. Suppose our task is to classify financial news ar-
ticles (see Section 5) with end labels y ∈ {Corporate Performance,
Corporate Funding,Money Markets,Commodity Markets}, which we
break down into three sub-tasks,
• y0 ∈ {Corporate,Markets}
• y1 ∈ {Performance, Funding, ∅}
• y2 ∈ {Money,Commodity, ∅},
related by a task schema {(0, 1), (0, 2)} indicating that tasks 1 and
2 are both children of task 0. Here, end label y = “Money Markets”
would correspond to y0 = “Markets”,y1 = ∅,y2 = “Money”.

For each task yt , we consider having mt labeling functions
λt,1, . . . , λt,mt , λt,i : X 7→ {0} ∪ {1, . . . ,kt }, where 0 represents an
abstention. Additionally, letM =

∑
t mt . We assume these labeling

functions are conditionally independent, i.e. λt,i ⊥ λt, j,i | yt . We
then define the generative label model distribution as:

pθ (λ,y) =
1
Zθ

exp
(
θTh(λ,y)

)
where Zθ =

∑
y′,λ′ exp

(
θTh(λ′,y′)

)
is the partition function and h

is a vector of sufficient statistics. For each task t and every labeling
function λt, j , we define two types of sufficient statistics,

hlabt, j (λ,y) = ⊮{yt , ∅}⊮{λt, j , 0}

hacct, j (λ,y) = hlabt, j (λ,y)
(
⊮{λt, j = yt } − ⊮{λt, j , yt }

)
with corresponding parameters θ labt, j and θacct, j , representing the
labeling propensity and accuracy (resp.) of λt, j when yt , ∅. Finally,
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we assume that the end labels 1, . . . ,K are mutually exclusive via
hard constraints. Our goal now is to learn a model θ̂ using only
unlabeled data,U = {x1, . . . ,xN }, which best explains the observed
labels. Intuitively, we can learn the parameters of the labeling func-
tions from observing their overlapping agreements and disagree-
ments. Concretely, weminimize the empirical negative log marginal
likelihood, given the observedM × N label matrix λ̄ (see [12]):

L(θ , λ̄) = −
∑
xi ∈U

log
∑
y

pθ (λ̄i ,y)

The gradient of our objective is:

∇θL(θ , λ̄) =
∑
xi ∈U

(
Eλ,y∼pθ [h(λ,y)] − Ey∼pθ ( · | λ̄i )

[
h(λ̄i ,y)

] )
We compute the gradient update in closed form, using belief prop-
agation for the second term on the RHS, which given our tree
structure gives the exact computation in one pass up and down the
tree. The predictions of the learned label model are then used as
probabilistic training labels in the next step.

4 WEAKLY-SUPERVISED MTL
Current state-of-the-art MTL models are painstakingly configured
by hand for each new configuration of tasks [5, 15, 16]. In MeTaL,
a multi-task deep neural network (the end model) is automatically
configured in PyTorch [10] based on the provided task schema,
using the following three configurable building blocks:
• Input Module: To support multiple types of input data, MeTaL’s
end model accepts a plug-in input module of arbitrary complexity
with parameters jointly learned at training time, which maps
from a raw data point x to a vector of dimension D0.
• Intermediate Module: Given a hierarchy of tasks with depth d ,
MeTaL constructs a corresponding hierarchy of d intermediate
modules. By default, we use linear layers (i.e. f intW ,b (x ) =Wx +b)
but these are easily replaced by other more complex modules.
• Task Heads: As is standard in modern MTL network designs, each
task yt has a separate layer attached to the shared layers. By
default, we use a linear layer for each task.

Once the network is constructed, it is then trained using the proba-
bilistic training labels output by the label model in Section 3.

In MeTaL, we consider a novel, dynamically-configured architec-
ture (HierMTL) whereby task heads are attached to intermediate
layers corresponding to their depth in the supervision hierarchy,
and then outputs of child task heads are passed up as additional
inputs to their parents (Figure 3). We also consider two simpler
architectures, both sharing the same input and intermediate layer
architecture: (i) a non-MTL network (SingleTask) where a final
layer simply predicts the end label y; and (ii) a simpler MTL net-
work (FlatMTL) where each of the same task heads is attached at
the same intermediate layer. We empirically evaluate the different
architectures in Section 5.

5 EXPERIMENTS
We now seek to empirically validate the design of Snorkel MeTaL
in the context of fine-grained classification problems. We assess
how end task predictive performance is affected by:
(1) Accepting weak supervision at multiple levels of granularity;
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Figure 3: The two multi-task network architectures, for an
example three-task problem with root task y0 and child
tasks y1,y2. Boxes are linear layers, and lines are nonlinear-
ity connections. In the left panel (FlatMTL), the task heads
are all connected to the topmost intermediate layer. In the
right panel (HierMTL), the task heads are connected to inter-
mediate layers corresponding to their hierarchical positions,
with child outputs passed as input to parent task heads.

(2) Using our weakly-supervised end model (i.e. the full MeTaL
pipeline), versus just using the predictions of the label model;

(3) Learning and modeling the accuracies of the labeling functions;
(4) Using the HierMTL end model versus FlatMTL or SingleTask.

Labeled Development Set. In our experiments, we assume access
to a small (50 data points) hand-labeled development set, which is
used as a guide during LF development, and is then used for label
model and end model cross-validation. We also use a randomly
sampled hand-labeled test set for evaluation, as is standard.

Datasets. To make these assessments, we perform a series of
experiments on two different classification tasks that have been
formulated in this hierarchical multi-task setting. The first is a news
classification task based on the Reuters Corpus Volume I (RCV1)
dataset [6], described in Example 3.1. For our experiments we used
an unlabeled training set of 1000 articles.

The second task is triaging radiology reports from the OpenI
biomedical image repository (OpenI) [9] as one of four end labels,
y ∈ {Normal,Non-urgent,Urgent,Emergent}, as determined by an
expert radiologist, broken into a hierarchy of three sub-tasks: y0 ∈
{Acute,Non-acute} (root task),y1 ∈ {Urgent,Emergent} (acute leaf
task), y2 ∈ {Normal,Non-urgent} (non-acute leaf task). For our
experiments we used an unlabeled training set of 2630 reports.

Protocol. All experiments reported here use a simple word count
featurizer, an identity input layer, and intermediate fully-connected
linear layers with respective sizes of 250 and 50 and ReLU nonlin-
earities (see Figure 3). All reported numbers are averaged over 20
trials with identical settings other than random seeds.

Initial Results: Multi-Level Weak Supervision. We first confirm
a basic premise motivating our system design: that using weak
supervision (i.e. labeling functions) at multiple levels of granularity
indeed provides a boost in accuracy. Since both of our experiments
have two levels, this amounts to testing whether adding the root
node weak supervision helps. Indeed, we observe an average in-
crease in accuracy of 16.3 points by utilizing this signal. For the
rest of the experiments, we assume all levels of weak supervision
are used.
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Dev. Labels Label Model End Model

RCV1 75.4 ± 0.59 60.5 ± 0.02 78.4 ± 1.39
OpenI 54.6 ± 6.28 72.9 ± 0.01 74.0 ± 0.46

Average 65.0 66.7 76.2

Table 1: Accuracy of the end label predictions for the end
model (i.e. full MeTaL pipeline), label model, and a simple
baseline using the the development set labels as supervision.

Main Results: Full Pipeline Performance. Next, we consider three
basic evaluations (Table 1):
(1) Dev. Labels: As a simple baseline, we consider training the end

model (HierMTL) using the 50 hand-labeled data points in the
development set

(2) Label Model:We use the probabilistic labels (i.e. the predictions)
of the trained label model as our final predictions.

(3) End Model: The full MeTaL pipeline- we use the probabilistic
labels from the label model to train the end MTL model (Hi-
erMTL), and evaluate its predictions
We see first of all that the endmodel—i.e., the fullMeTaL pipeline—

improves over the label model by an average 9.5 points of accuracy,
showing its ability to effectively generalize beyond the labeling
functions. Second, we see that the end model also outperforms the
simple baseline (Dev. Labels) by an average 11.2 points in accuracy.
We note, however, that RCV1 is fairly simple task, and therefore the
performance gain over the tiny labeled development set is smaller
than we might expect; in future work we plan to evaluate MeTaL
on more challenging tasks, with more complex model architectures
and parameter spaces that require far larger training sets.

Hard MV Soft MV Trained Label Model

RCV1 56.4 ± 0.02 59.7 ± 0.02 60.5 ± 0.02
OpenI 70.8 ± 0.06 72.3 ± 0.05 72.9 ± 0.01

Average 63.6 66.0 66.7

Table 2: Label model ablation results, using hard majority
vote, soft majority vote, and the full trained label model.

Label Model Ablation. In Table 2, we investigate the effect of
learning and modeling the labeling function accuracies (Section 3).
We consider three approaches, in order of increasing sophistication:
(1) Hard MV: Starting at the root task, we take the majority vote of

the labeling functions at that task, and then proceed down the
tree, breaking ties randomly;

(2) Soft MV: We use the predictions of the label model in Section 3,
with all labeling function weights set at a fixed initial value (i.e.
without training the model);

(3) Trained Label Model:We use the trained label model of Section 3.
End Model Ablation. In Table 3, we compare the results of the

configurations of the end model described in Section 4. Note that
we observe the best performance on each task in the HierMTL
configuration. These results suggest that performance gains from
multi-task learning can be driven not only by the usual separation
of task representations, but also by ensuring that these separate
task representations are connected in an alignment that directly
mirrors the structure of the supervision input.

SingleTask FlatMTL HierMTL

RCV1 76.3 ± 0.87 76.1 ± 1.75 78.4 ± 1.39
OpenI 72.6 ± 0.57 73.1 ± 0.76 74.0 ± 0.46

Average 74.5 74.6 76.2

Table 3: End model ablation results.

6 CONCLUSION
In this paper, we envision an extension of current “Software 2.0”
trends in which multi-task pipelines are deployed as a single ma-
chine learning model. To support this, we propose Snorkel MeTaL,
a prototype end-to-end system for weakly supervising multi-task
networks compiled user task schemas and labeling functions. Empir-
ical results show preliminary evidence that our approach provides
performance gains. In future work, we plan to apply Snorkel MeTaL
to more complex tasks and network architectures, to explore task
schema structures beyond hierarchies, to better provide theoretical
support, and to explore learned task schemas.
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