
Journal of Machine Learning Research 13 (2012) 281-305 Submitted 3/11; Revised 9/11; Published 2/12

Random Search for Hyper-Parameter Optimization

James Bergstra JAMES.BERGSTRA@UMONTREAL.CA

Yoshua Bengio YOSHUA.BENGIO@UMONTREAL.CA

Département d’Informatique et de recherche opérationnelle
Universit́e de Montŕeal
Montréal, QC, H3C 3J7, Canada

Editor: Leon Bottou

Abstract

Grid search and manual search are the most widely used strategies for hyper-parameter optimiza-
tion. This paper shows empirically and theoretically that randomly chosen trials are more efficient
for hyper-parameter optimization than trials on a grid. Empirical evidence comes from a compar-
ison with a large previous study that used grid search and manual search to configure neural net-
works and deep belief networks. Compared with neural networks configured by a pure grid search,
we find that random search over the same domain is able to find models that are as good or better
within a small fraction of the computation time. Granting random search the same computational
budget, random search finds better models by effectively searching a larger, less promising con-
figuration space. Compared with deep belief networks configured by a thoughtful combination of
manual search and grid search, purely random search over thesame 32-dimensional configuration
space found statistically equal performance on four of seven data sets, and superior performance
on one of seven. A Gaussian process analysis of the function from hyper-parameters to validation
set performance reveals that for most data sets only a few of the hyper-parameters really matter,
but that different hyper-parameters are important on different data sets. This phenomenon makes
grid search a poor choice for configuring algorithms for new data sets. Our analysis casts some
light on why recent “High Throughput” methods achieve surprising success—they appear to search
through a large number of hyper-parameters because most hyper-parameters do not matter much.
We anticipate that growing interest in large hierarchical models will place an increasing burden on
techniques for hyper-parameter optimization; this work shows that random search is a natural base-
line against which to judge progress in the development of adaptive (sequential) hyper-parameter
optimization algorithms.

Keywords: global optimization, model selection, neural networks, deep learning, response surface
modeling

1. Introduction

The ultimate objective of a typical learning algorithmA is to find a functionf that minimizes some
expected lossL(x; f) over i.i.d. samplesx from a natural (grand truth) distributionGx. A learning
algorithmA is a functional that maps a data setX (train) (a finite set of samples fromGx) to a function
f . Very often a learning algorithm producesf through the optimization of a training criterion with
respect to a set ofparametersθ. However, the learning algorithm itself often has bells and whistles
called hyper-parametersλ, and the actual learning algorithm is the one obtained after choosing
λ, which can be denotedAλ, and f = Aλ(X

(train)) for a training setX (train). For example, with a

c©2012 James Bergstra and Yoshua Bengio.

BERGSTRA ANDBENGIO

Gaussian kernel SVM, one has to select a regularization penaltyC for the training criterion (which
controls the margin) and the bandwidthσ of the Gaussian kernel, that is,λ = (C,σ).

What we really need in practice is a way to chooseλ so as to minimize generalization error
Ex∼Gx[L(x;Aλ(X

(train)))]. Note that the computation performed byA itself often involves an inner
optimization problem, which is usually iterative and approximate. The problem ofidentifying a
good value for hyper-parametersλ is called the problem ofhyper-parameter optimization. This
paper takes a look at algorithms for this difficult outer-loop optimization problem, which is of great
practical importance in empirical machine learning work:

λ(∗) = argmin
λ∈Λ

Ex∼Gx[L
(

x;Aλ(X
(train))

)

]. (1)

In general, we do not have efficient algorithms for performing the optimization implied by Equa-
tion 1. Furthermore, we cannot even evaluate the expectation over the unknown natural distribution
Gx, the value we wish to optimize. Nevertheless, we must carry out this optimization as best we
can. With regards to the expectation overGx, we will employ the widely used technique ofcross-
validationto estimate it. Cross-validation is the technique of replacing the expectation with a mean
over avalidation setX (valid) whose elements are drawn i.i.dx ∼ Gx. Cross-validation is unbiased
as long asX (valid) is independent of any data used byAλ (see Bishop, 1995, pp. 32-33). We see in
Equations 2-4 the hyper-parameter optimization problem as it is addressed inpractice:

λ(∗) ≈ argmin
λ∈Λ

mean
x∈X (valid)

L
(

x;Aλ(X
(train))

)

. (2)

≡ argmin
λ∈Λ

Ψ(λ) (3)

≈ argmin
λ∈{λ(1)...λ(S)}

Ψ(λ)≡ λ̂ (4)

Equation 3 expresses the hyper-parameter optimization problem in terms of ahyper-parameter
response function, Ψ. Hyper-parameter optimization is the minimization ofΨ(λ) overλ ∈ Λ. This
function is sometimes called theresponse surfacein the experiment design literature. Different data
sets, tasks, and learning algorithm families give rise to different setsΛ and functionsΨ. Knowing
in general very little about the response surfaceΨ or the search spaceΛ, the dominant strategy for
finding a goodλ is to choose some number (S) of trial points{λ(1)...λ(S)}, to evaluateΨ(λ) for each
one, and return theλ(i) that worked the best asλ̂. This strategy is made explicit by Equation 4.

The critical step in hyper-parameter optimization is to choose the set of trials{λ(1)...λ(S)}.
The most widely used strategy is a combination of grid search and manual search (e.g., LeCun
et al., 1998b; Larochelle et al., 2007; Hinton, 2010), as well as machine learning software packages
such as libsvm (Chang and Lin, 2001) and scikits.learn.1 If Λ is a set indexed byK configuration
variables (e.g., for neural networks it would be the learning rate, the number of hidden units, the
strength of weight regularization, etc.), then grid search requires that we choose a set of values for
each variable (L(1)...L(K)). In grid search the set of trials is formed by assembling every possible
combination of values, so the number of trials in a grid search isS= ∏K

k=1 |L
(k)| elements. This

product overK sets makes grid search suffer from thecurse of dimensionalitybecause the number
of joint values grows exponentially with the number of hyper-parameters (Bellman, 1961). Manual

1. scikits.learn : Machine Learning in Python can be found athttp://scikit-learn.sourceforge.net .

282

RANDOM SEARCH FORHYPER-PARAMETER OPTIMIZATION

search is used to identify regions inΛ that are promising and to develop the intuition necessary to
choose the setsL(k). A major drawback of manual search is the difficulty inreproducing results.
This is important both for the progress of scientific research in machine learning as well as for ease
of application of learning algorithms by non-expert users. On the other hand, grid search alone does
very poorly in practice (as discussed here). We propose random search as a substitute and baseline
that is both reasonably efficient (roughly equivalent to or better than combinining manual search
and grid search, in our experiments) and keeping the advantages of implementation simplicity and
reproducibility of pure grid search. Random search is actually more practical than grid search
because it can be applied even when using a cluster of computers that canfail, and allows the
experimenter to change the “resolution” on the fly: adding new trials to the setor ignoring failed
trials are both feasible because the trials are i.i.d., which is not the case for a grid search. Of course,
random search can probably be improved by automating what manual search does, i.e., a sequential
optimization, but this is left to future work.

There are several reasons why manual search and grid search prevail as the state of the art despite
decades of research into global optimization (e.g., Nelder and Mead, 1965;Kirkpatrick et al., 1983;
Powell, 1994; Weise, 2009) and the publishing of several hyper-parameter optimization algorithms
(e.g., Nareyek, 2003; Czogiel et al., 2005; Hutter, 2009):

• Manual optimization gives researchers some degree of insight intoΨ;

• There is no technical overhead or barrier to manual optimization;

• Grid search is simple to implement and parallelization is trivial;

• Grid search (with access to a compute cluster) typically finds a betterλ̂ than purely manual
sequential optimization (in the same amount of time);

• Grid search is reliable in low dimensional spaces (e.g., 1-d, 2-d).

We will come back to the use of global optimization algorithms for hyper-parameter selection
in our discussion of future work (Section 6). In this paper, we focus onrandom search, that is, inde-
pendent draws from a uniform density from the same configuration space as would be spanned by a
regular grid, as an alternative strategy for producing a trial set{λ(1)...λ(S)}. We show that random
search has all the practical advantages of grid search (conceptual simplicity, ease of implementation,
trivial parallelism) and trades a small reduction in efficiency in low-dimensional spaces for a large
improvement in efficiency in high-dimensional search spaces.

In this work we show that random search is more efficient than grid search in high-dimensional
spaces because functionsΨ of interest have alow effective dimensionality; essentially,Ψ of interest
are more sensitive to changes in some dimensions than others (Caflisch et al.,1997). In particular, if
a functionf of two variables could be approximated by another function of one variable(f (x1,x2)≈
g(x1)), we could say thatf has alow effective dimension. Figure 1 illustrates how point grids
and uniformly random point sets differ in how they cope with low effective dimensionality, as in
the above example withf . A grid of points gives even coverage in the original 2-d space, but
projections onto either thex1 or x2 subspace produces an inefficient coverage of the subspace. In
contrast, random points are slightly less evenly distributed in the original space, but far more evenly
distributed in the subspaces.

If the researcher could know ahead of time which subspaces would be important, then he or she
could design an appropriate grid. However, we show the failings of this strategy in Section 2. For a

283

BERGSTRA ANDBENGIO

Grid Layout Random Layout

U
n
im

p
o
rt

a
n
t

p
a
ra

m
et

er

Important parameter

U
n
im

p
o
rt

a
n
t

p
a
ra

m
et

er

Important parameter

Figure 1: Grid and random search of nine trials for optimizing a functionf (x,y) = g(x)+h(y) ≈
g(x) with low effective dimensionality. Above each squareg(x) is shown in green, and
left of each squareh(y) is shown in yellow. With grid search, nine trials only testg(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

given learning algorithm, looking at several relatively similar data sets (from different distributions)
reveals that on different data sets, different subspaces are important, and to different degrees. A grid
with sufficient granularity to optimizing hyper-parameters for all data sets must consequently be
inefficient for each individual data set because of the curse of dimensionality: the number of wasted
grid search trials is exponential in the number of search dimensions that turnout to be irrelevant for
a particular data set. In contrast, random search thrives on low effective dimensionality. Random
search has the same efficiency in the relevant subspace as if it had beenused to search only the
relevant dimensions.

This paper is organized as follows. Section 2 looks at the efficiency of random search in practice
vs. grid search as a method for optimizing neural network hyper-parameters. We take the grid search
experiments of Larochelle et al. (2007) as a point of comparison, and repeat similar experiments
using random search. Section 3 uses Gaussian process regression (GPR) to analyze the results of
the neural network trials. The GPR lets us characterize whatΨ looks like for various data sets,
and establish an empirical link between the low effective dimensionality ofΨ and the efficiency
of random search. Section 4 compares random search and grid search with more sophisticated
point sets developed for Quasi Monte-Carlo numerical integration, and argues that in the regime of
interest for hyper-parameter selection grid search is inappropriate andmore sophisticated methods
bring little advantage over random search. Section 5 compares random search with the expert-
guided manual sequential optimization employed in Larochelle et al. (2007) to optimize Deep Belief
Networks. Section 6 comments on the role of global optimization algorithms in futurework. We
conclude in Section 7 that random search is generally superior to grid search for optimizing hyper-
parameters.

284

RANDOM SEARCH FORHYPER-PARAMETER OPTIMIZATION

2. Random vs. Grid for Optimizing Neural Networks

In this section we take a second look at several of the experiments of Larochelle et al. (2007) us-
ing random search, to compare with the grid searches done in that work. We begin with a look
at hyper-parameter optimization in neural networks, and then move on to hyper-parameter opti-
mization in Deep Belief Networks (DBNs). To characterize the efficiency ofrandom search, we
present two techniques in preliminary sections: Section 2.1 explains how we estimate the general-
ization performance of thebestmodel from a set of candidates, taking into account our uncertainty
in which model is actually best; Section 2.2 explains the random experiment efficiency curve that
we use to characterize the performance of random search experiments.With these preliminaries
out of the way, Section 2.3 describes the data sets from Larochelle et al. (2007) that we use in our
work. Section 2.4 presents our results optimizing neural networks, and Section 5 presents our results
optimizing DBNs.

2.1 Estimating Generalization

Because of finite data sets, test error is not monotone in validation error, and depending on the set
of particular hyper-parameter valuesλ evaluated, the test error of the best-validation error configu-
ration may vary. When reporting performance of learning algorithms, it canbe useful to take into
account the uncertainty due to the choice of hyper-parameters values. This section describes our
procedure for estimating test set accuracy, which takes into account any uncertainty in the choice
of which trial is actually the best-performing one. To explain this procedure, we must distinguish
between estimates of performanceΨ(valid) = Ψ and Ψ(test) based on the validation and test sets
respectively:

Ψ(valid)(λ) = meanx∈X (valid) L
(

x;Aλ(X
(train))

)

,

Ψ(test)(λ) = meanx∈X (test) L
(

x;Aλ(X
(train))

)

.

Likewise, we must define the estimated varianceV about these means on the validation and test sets,
for example, for the zero-one loss (Bernoulli variance):

V
(valid)(λ) =

Ψ(valid)(λ)
(

1−Ψ(valid)(λ)
)

|X (valid)|−1
, and

V
(test)(λ) =

Ψ(test)(λ)
(

1−Ψ(test)(λ)
)

|X (test)|−1
.

With other loss functions the estimator of variance will generally be different.
The standard practice for evaluating a model found by cross-validation isto reportΨ(test)(λ(s))

for the λ(s) that minimizesΨ(valid)(λ(s)). However, when different trials have nearly optimal val-
idation means, then it is not clear which test score to report, and a slightly different choice ofλ
could have yielded a different test error. To resolve the difficulty of choosing a winner, we report a
weighted average of all the test set scores, in which each one is weightedby the probability that its
particularλ(s) is in fact the best. In this view, the uncertainty arising fromX (valid) being a finite sam-
ple ofGx makes the test-set score of the best model amongλ(1), ...,λ(S) a random variable,z. This
scorez is modeled by a Gaussian mixture model whoseScomponents have meansµs= Ψ(test)(λ(s)),

285

BERGSTRA ANDBENGIO

variancesσ2
s = V

(test)(λ(s)), and weightsws defined by

ws = P
(

Z(s) < Z(s′), ∀s′ 6= s
)

, where

Z(i) ∼N
(

Ψ(valid)(λ(i)),V(valid)(λ(i))
)

.

To summarize, the performancez of the best model in an experiment ofS trials has meanµz and
standard errorσ2

z,

µz =
S

∑
s=1

wsµs, and (5)

σ2
z =

S

∑
s=1

ws
(

µ2
s +σ2

s

)

−µ2
z. (6)

It is simple and practical to estimate weightsws by simulation. The procedure for doing so is to
repeatedly draw hypothetical validation scoresZ(s) from Normal distributions whose means are the
Ψ(valid)(λ(s)) and whose variances are the squared standard errorsV

(valid)(λ(s)), and to count how
often each trial generates a winning score. Since the test scores of the best validation scores are
typically relatively close,ws need not be estimated very precisely and a few tens of hypothetical
draws suffice.

In expectation, this technique for estimating generalization gives a higher estimate than the
traditional technique of reporting the test set error of the best model in validation. The difference is
related to the varianceΨ(valid) and the density of validation set scoresΨ(λ(i)) near the best value. To
the extent thatΨ(valid) casts doubt on which model was best, this technique averages the performance
of the best model together with the performance of models which were not thebest. The next section
(Random Experiment Efficieny Curve) illustrates this phenomenon and discusses it in more detail.

2.2 Random Experiment Efficiency Curve

Figure 2 illustrates the results of a random experiment: an experiment of 256trials training neural
networks to classify the rectangles data set. Since the trials of a random experiment are indepen-
dently identically distributed (i.i.d.), a random search experiment involvingS i.i.d. trials can also
be interpreted asN independent experiments ofs trials, as long assN≤ S. This interpretation al-
lows us to estimate statistics such as the minimum, maximum, median, and quantiles of any random
experiment of sizes, wheres is a divisor ofS.

There are two general trends in random experiment efficiency curves, such as the one in Figure 2:
a sharp upward slope of the lower extremes as experiments grow, and a gentle downward slope of
the upper extremes. The sharp upward slope occurs because when wetake the maximum over
larger subsets of theS trials, trials with poor performance are rarely the best within their subset. It
is natural that larger experiments find trials with better scores. The shape of this curve indicates
the frequency of good models under random search, and quantifies therelative volumes (in search
space) of the various levels of performance.

The gentle downward slope occurs because as we take the maximum over larger subsets of trials
(in Equation 6), we are less sure about which trial is actually the best. Large experiments average
together good validation trials with unusually high test scores with other good validation trials with
unusually low test scores to arrive at a more accurate estimate of generalization. For example,

286

RANDOM SEARCH FORHYPER-PARAMETER OPTIMIZATION

1 2 4 8 16 32 64 128

experiment size (# trials)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

ac
cu

ra
cy

rectangles images

Figure 2: A random experiment efficiency curve. The trials of a randomexperiment are i.i.d, so
an experiment of many trials (here, 256 trials optimizing a neural network to classify the
rectangles basicdata set, Section 2.3) can be interpreted as several independent smaller
experiments. For example, at horizontal axis position 8, we consider our 256 trials to
be 32 experiments of 8 trials each. The vertical axis shows the test accuracy of the best
trial(s) from experiments of a given size, as determined by Equation 5. When there are
sufficiently many experiments of a given size (i.e., 10), the distribution of performance
is illustrated by a box plot whose boxed section spans the lower and upper quartiles and
includes a line at the median. The whiskers above and below each boxed section show
the position of the most extreme data point within 1.5 times the inter-quartile range ofthe
nearest quartile. Data points beyond the whiskers are plotted with ’+’ symbols. When
there are not enough experiments to support a box plot, as occurs herefor experiments of
32 trials or more, the best generalization score of each experiment is shown by a scatter
plot. The two thin black lines across the top of the figure mark the upper and lower
boundaries of a 95% confidence interval on the generalization of the best trial overall
(Equation 6).

consider what Figure 2 would look like if the experiment had includedlucky trial whose validation
score were around 77% as usual, but whose test score were 80%. Inthe bar plot for trials of size
1, we would see the top performer scoring 80%. In larger experiments, wewould average that 80%
performance together with other test set performances because 77% is not clearly the best validation
score; this averaging would make the upper envelope of the efficiency curve slope downward from
80% to a point very close to the current test set estimate of 76%.

Figure 2 characterizes the range of performance that is to be expected from experiments of vari-
ous sizes, which is valuable information to anyone trying to reproduce theseresults. For example, if
we try to repeat the experiment and our first four random trials fail to finda score better than 70%,
then the problem is likely not in hyper-parameter selection.

287

BERGSTRA ANDBENGIO

Figure 3: From top to bottom, samples from themnist rotated, mnist background random, mnist
background images, mnist rotated background imagesdata sets. In all data sets the
task is to identify the digit (0 - 9) and ignore the various distracting factors ofvariation.

2.3 Data Sets

Following the work of Larochelle et al. (2007) and Vincent et al. (2008), we use a variety of classi-
fication data sets that include many factors of variation.2

Themnist basicdata set is a subset of the well-known MNIST handwritten digit data set (LeCun
et al., 1998a). This data set has 28x28 pixel grey-scale images of digits,each belonging to one of ten
classes. We chose a different train/test/validation splitting in order to have faster experiments and see
learning performance differences more clearly. We shuffled the original splits randomly, and used
10 000 training examples, 2000 validation examples, and 50 000 testing examples. These images
are presented as white (1.0-valued) foreground digits against a black (0.0-valued) background.

Themnist background imagesdata set is a variation onmnist basic in which the white fore-
ground digit has been composited on top of a 28x28 natural image patch. Technically this was done
by taking the maximum of the original MNIST image and the patch. Natural image patches with
very low pixel variance were rejected. As withmnist basic there are 10 classes, 10 000 training
examples, 2000 validation examples, and 50 000 test examples.

The mnist background random data set is a similar variation onmnist basic in which the
white foreground digit has been composited on top of random uniform (0,1) pixel values. As with
mnist basic there are 10 classes, 10 000 training examples, 2000 validation examples, and 50 000
test examples.

Themnist rotated data set is a variation onmnist basic in which the images have been rotated
by an amount chosen randomly between 0 and 2π radians. This data set included 10000 training
examples, 2000 validation examples, 50 000 test examples.

2. Data sets can be found athttp://www.iro.umontreal.ca/ ˜ lisa/twiki/bin/view.cgi/Public/
DeepVsShallowComparisonICML2007 .

288

RANDOM SEARCH FORHYPER-PARAMETER OPTIMIZATION

Figure 4: Top: Samples from therectanglesdata set.Middle: Samples from therectangles images
data set.Bottom:Samples from theconvexdata set. In rectangles data sets, the image is
formed by overlaying a small rectangle on a background. The task is to label the small
rectangle as being either tall or wide. Inconvex, the task is to identify whether the set of
white pixels is convex (images 1 and 4) or not convex (images 2 and 3).

Themnist rotated background imagesdata set is a variation onmnist rotated in which the
images have been rotated by an amount chosen randomly between 0 and 2π radians, and then sub-
sequently composited onto natural image patch backgrounds. This data setincluded 10000 training
examples, 2000 validation examples, 50 000 test examples.

The rectanglesdata set (Figure 4, top) is a simple synthetic data set of outlines of rectangles.
The images are 28x28, the outlines are white (1-valued) and the backgrounds are black (0-valued).
The height and width of the rectangles were sampled uniformly, but when their difference was
smaller than 3 pixels the samples were rejected. The top left corner of the rectangles was also
sampled uniformly, with the constraint that the whole rectangle fits in the image. Each image is
labelled as one of two classes: tall or wide. This task was easier than the MNIST digit classification,
so we only used 1000 training examples, and 200 validation examples, but westill used 50 000
testing examples.

The rectangles imagesdata set (Figure 4, middle) is a variation onrectangles in which the
foreground rectangles were filled with one natural image patch, and composited on top of a different
background natural image patch. The process for sampling rectangle shapes was similar to the one
used forrectangles, except a) the area covered by the rectangles was constrained to be between
25% and 75% of the total image, b) the length and width of the rectangles were forced to be of at
least 10 pixels, and c) their difference was forced to be of at least 5 pixels. This task was harder
thanrectangles, so we used 10000 training examples, 2000 validation examples, and 50 000testing
examples.

Theconvexdata set (Figure 4, bottom) is a binary image classification task. Each 28x28 image
consists entirely of 1-valued and 0-valued pixels. If the 1-valued pixels form a convex region in
image space, then the image is labelled as being convex, otherwise it is labelled as non-convex. The
convex sets consist of a single convex region with pixels of value 1.0. Candidate convex images
were constructed by taking the intersection of a number of half-planes whose location and orienta-

289

BERGSTRA ANDBENGIO

tion were chosen uniformly at random. The number of intersecting half-planes was also sampled
randomly according to a geometric distribution with parameter 0.195. A candidateconvex image
was rejected if there were less than 19 pixels in the convex region. Candidatenon-convex images
were constructed by taking the union of a random number of convex sets generated as above, but
with the number of half-planes sampled from a geometric distribution with parameter 0.07 and with
a minimum number of 10 pixels. The number of convex sets was sampled uniformlyfrom 2 to
4. The candidate non-convex images were then tested by checking a convexity condition for every
pair of pixels in the non-convex set. Those sets that failed the convexity test were added to the data
set. The parameters for generating the convex and non-convex sets were balanced to ensure that the
conditional overall pixel mean is the same for both classes.

2.4 Case Study: Neural Networks

In Larochelle et al. (2007), the hyper-parameters of the neural network were optimized by search
over a grid of trials. We describe the hyper-parameter configuration space of our neural network
learning algorithm in terms of the distribution that we will use to randomly sample from that con-
figuration space. The first hyper-parameter in our configuration is the type of data preprocessing:
with equal probability, one of (a) none, (b) normalize (center each feature dimension and divide by
its standard deviation), or (c) PCA (after removing dimension-wise means, examples are projected
onto principle components of the data whose norms have been divided by their eigenvalues). Part
of PCA preprocessing is choosing how many components to keep. We choose a fraction of variance
to keep with a uniform distribution between 0.5 and 1.0. There have been several suggestions for
how the random weights of a neural network should be initialized (we will lookat unsupervised
learningpretrainingalgorithms later in Section 5). We experimented with two distributions and two
scaling heuristics. The possible distributions were (a) uniform on(−1,1), and (b) unit normal. The
two scaling heuristics were (a) a hyper-parameter multiplier between 0.1 and 10.0 divided by the
square root of the number of inputs (LeCun et al., 1998b), and (b) the square root of 6 divided by
the square root of the number of inputs plus hidden units (Bengio and Glorot, 2010). The weights
themselves were chosen using one of three random seeds to the Mersenne Twister pseudo-random
number generator. In the case of the first heuristic, we chose a multiplier uniformly from the range
(0.2,2.0). The number of hidden units was drawn geometrically3 from 18 to 1024. We selected
either a sigmoidal or tanh nonlinearity with equal probability. The output weights from hidden units
to prediction units were initialized to zero. The cost function was the mean error over minibatches
of either 20 or 100 (with equal probability) examples at a time: in expectation these give the same
gradient directions, but with more or less variance. The optimization algorithmwas stochastic gra-
dient descent with [initial] learning rateε0 drawn geometrically from 0.001 to 10.0. We offered the
possibility of an annealed learning rate via a time pointt0 drawn geometrically from 300 to 30000.
The effective learning rateεt aftert minibatch iterations was

εt =
t0ε0

max(t, t0)
. (7)

We permitted a minimum of 100 and a maximum of 1000 iterations over the training data,stopping
if ever, at iterationt, the best validation performance was observed before iterationt/2. With 50%

3. We will use the phrasedrawn geometricallyfrom A to B for 0< A< B to mean drawing uniformly in the log domain
between log(A) and log(B), exponentiating to get a number betweenA andB, and then rounding to the nearest integer.
The phrasedrawn exponentiallymeans the same thing but without rounding.

290

RANDOM SEARCH FORHYPER-PARAMETER OPTIMIZATION

probability, anℓ2 regularization penalty was applied, whose strength was drawn exponentially from
3.1×10−7 to 3.1×10−5. This sampling process covers roughly the same domain with the same
density as the grid used in Larochelle et al. (2007), except for the optional preprocessing steps. The
grid optimization of Larochelle et al. (2007) did not consider normalizing or keeping only leading
PCA dimensions of the inputs; we compare to random sampling with and without these restrictions.4

We formed experiments for each data set by drawingS= 256 trials from this distribution. The
results of these experiments are illustrated in Figures 5 and 6. Random sampling of trials is surpris-
ingly effective in these settings. Figure 5 shows that even among the fraction of jobs (71/256) that
used no preprocessing, the random search with 8 trials is better than the grid search employed in
Larochelle et al. (2007).

Typically, the extent of a grid search is determined by a computational budget. Figure 6 shows
what is possible if we use random search in a larger space that requiresmore trials to explore. The
larger search space includes the possibility of normalizing the input or applying PCA preprocessing.
In the larger space, 32 trials were necessary to consistently outperformgrid search rather than 8,
indicating that there are many harmful ways to preprocess the data. However, when we allowed
larger experiments of 64 trials or more, random search found superior results to those found more
quickly within the more restricted search. This tradeoff between exploration and exploitation is
central to the design of an effective random search.

The efficiency curves in Figures 5 and 6 reveal that different data sets give rise to functionsΨ
with different shapes. Themnist basic results converge very rapidly toward what appears to be a
global maximum. The fact that experiments of just 4 or 8 trials often have the same maximum as
much larger experiments indicates that the region ofΛ that gives rise to the best performance is
approximately a quarter or an eighth respectively of the entire configuration space. Assuming that
the random search has not missed a tiny region of significantly better performance, we can say that
random search has solved this problem in 4 or 8 guesses. It is hard to imagine any optimization
algorithm doing much better on a non-trivial 7-dimensional function. In contrast themnist rotated
background imagesandconvexcurves show that even with 16 or 32 random trials, there is consid-
erable variation in the generalization of the reportedly best model. This indicates that theΨ function
in these cases is more peaked, with small regions of good performance.

3. The Low Effective Dimension ofΨ

Section 2 showed that random sampling is more efficient than grid sampling foroptimizing func-
tions Ψ corresponding to several neural network families and classification tasks. In this section
we show that indeedΨ has a low effective dimension, which explains why randomly sampled trials
found better values. One simple way to characterize the shape of a high-dimensional function is
to look at how much it varies in each dimension. Gaussian process regression gives us the statis-
tical machinery to look atΨ and measure its effective dimensionality (Neal, 1998; Rasmussen and
Williams, 2006).

We estimated the sensitivity ofΨ to each hyper-parameter by fitting a Gaussian process (GP)
with squared exponential kernels to predictΨ(λ) from λ. The squared exponential kernel (or
Gaussian kernel) measures similarity between two real-valued hyper-parameter valuesa andb by

exp(−
(

a−b
l

)2
). The positive-valuedl governs the sensitivity of the GP to change in this hyper-

4. Source code for the simulations is available athttps://github.com/jaberg/hyperopt .

291

BERGSTRA ANDBENGIO

1 2 4 8 16 32

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
ac
cu
ra
cy

mnist basic

1 2 4 8 16 32

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

mnist background images

1 2 4 8 16 32

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

mnist background random

1 2 4 8 16 32

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

mnist rotated

1 2 4 8 16 32

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

mnist rotated background images

1 2 4 8 16 32

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

convex

1 2 4 8 16 32

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

rectangles

1 2 4 8 16 32

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

rectangles images

Figure 5: Neural network performance without preprocessing. Random experiment efficiency
curves of a single-layer neural network for eight of the data sets usedin Larochelle et al.
(2007), looking only at trials with no preprocessing (7 hyper-parameters to optimize).
The vertical axis is test-set accuracy of the best model by cross-validation, the horizontal
axis is the experiment size (the number of models compared in cross-validation). The
dashed blue line represents grid search accuracy for neural network models based on a
selection by grids averaging 100 trials (Larochelle et al., 2007). Random searches of 8
trials match or outperform grid searches of (on average) 100 trials.

parameter. The kernels defined for each hyper-parameter were combined by multiplication (joint
Gaussian kernel). We fit a GP to samples ofΨ by finding thelength scale(l) for each hyper-
parameter that maximized the marginal likelihood. To ensure relevance could be compared between
hyper-parameters, we shifted and scaled each one to the unit interval. For hyper-parameters that
were drawn geometrically or exponentially (e.g., learning rate, number of hidden units), kernel
calculations were based on the logarithm of the effective value.

292

RANDOM SEARCH FORHYPER-PARAMETER OPTIMIZATION

1 2 4 8 16 32 64

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
ac
cu
ra
cy

mnist basic

1 2 4 8 16 32 64

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

mnist background images

1 2 4 8 16 32 64

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

mnist background random

1 2 4 8 16 32 64

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

mnist rotated

1 2 4 8 16 32 64

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

mnist rotated background images

1 2 4 8 16 32 64

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

convex

1 2 4 8 16 32 64

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

rectangles

1 2 4 8 16 32 64

experiment size (# trials)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu
ra
cy

rectangles images

Figure 6: Neural network performance when standard preprocessing algorithms are considered (9
hyper-parameters). Dashed blue line represents grid search accuracy using (on average)
100 trials (Larochelle et al., 2007), in which no preprocessing was done. Often the extent
of a search is determined by a computational budget, and with random search 64 trials are
enough to find better models in a larger less promising space. Exploring just four PCA
variance levels by grid search would have required 5 times as many (average 500) trials
per data set.

Figure 7 shows the relevance of each component ofΛ in modellingΨ(λ). Finding the length
scales that maximize marginal likelihood is not a convex problem and many localminima exist. To
get a sense of what length scales were supported by the data, we fit each set of samples fromΨ
50 times, resampling different subsets of 80% of the observations every time, and reinitializing the
length scale estimates randomly between 0.1 and 2. Figure 7 reveals two important properties ofΨ
for neural networks that suggest why grid search performs so poorly relative to random experiments:

1. a small fraction of hyper-parameters matter for any one data set, but

293

BERGSTRA ANDBENGIO

� � � � � ��

relevance (1 / length scale)

mnist basic

� � � � � ��

relevance (1 / length scale)

mnist background images

� � � � � ��

relevance (1 / length scale)

mnist background random

� � � � �

relevance (1 / length scale)

mnist rotated

��� ��� ��� ��� ��� ��� ��� ���

relevance (1 / length scale)

convex

� � � � � � � 	

relevance (1 / length scale)

mnist rotated back. images

� � � � � � �

relevance (1 / length scale)

rectangles

� � � � � � � 	

relevance (1 / length scale)

rectangles imagesLegend

activation .

n. hidden units

initial W algo.

initial W norm

weight penalty

learning rate

learn rate anneal.

h.u.

a.f.

w.a.

w.n.

w.p.

l.r.

l.a.

h.u.

a.f.

w.a.

w.n.

w.p.

l.r.

l.a.

h.u.

a.f.

w.a.

w.n.

w.p.

l.r.

l.a.

Figure 7: Automatic Relevance Determination (ARD) applied to hyper-parameters of neural net-
work experiments (with raw preprocessing). For each data set, a small number of hyper-
parameters dominate performance, but the relative importance of each hyper-parameter
varies from each data set to the next. Section 2.4 describes the seven hyper-parameters in
each panel. Boxplots are obtained by randomizing the subset of data usedto fit the length
scales, and randomizing the length scale initialization. (Best viewed in color.)

294

RANDOM SEARCH FORHYPER-PARAMETER OPTIMIZATION

2. different hyper-parameters matter on different data sets.

Even in this simple 7-d problem,Ψ has a much lower effective dimension of between 1 and 4,
depending on the data set. It would be impossible to cover just these few dimensions with a reli-
able grid however, because different data sets call for grids on different dimensions. The learning
rate is always important, but sometimes the learning rate annealing rate was important (rectangles
images), sometimes theℓ2-penalty was important (convex, mnist rotated), sometimes the number
of hidden units was important (rectangles), and so on. While random search optimized theseΨ
functions with 8 to 16 trials, a grid with, say, four values in each of these axes would already require
256 trials, and yet provide no guarantee thatΨ for a new data set would be well optimized.

Figure 7 also allows us to establish a correlation between effective dimensionality and ease of
optimization. The data sets for which the effective dimensionality was lowest (1or 2) weremnist
basic, mnist background images, mnist background random, andrectangles images. Looking
back at the corresponding efficiency curves (Figure 5) we find that these are also the data sets
whose curves plateau most sharply, indicating that these functions are theeasiest to optimize. They
are often optimized reasonably well by just 2 random trials. Looking to Figure 7 at the data sets with
largest effective dimensionality (3 or 4), we identifyconvex, mnist rotated, rectangles. Looking
at their efficiency curves in Figure 5 reveals that they consistently required at least 8 random trials.
This correlation offers another piece of evidence that the effective dimensionality ofΨ is playing a
strong role in determining the difficulty of hyper-parameter optimization.

4. Grid Search and Sets with Low Effective Dimensionality

It is an interesting mathematical challenge to choose a set of trials for sampling functions of un-
known, but low effective dimensionality. We would like it to be true that no matterwhich dimen-
sions turn out to be important, our trials sample the important dimensions evenly. Sets of points with
this property are well studied in the literature of Quasi-Random methods for numerical integration,
where they are known aslow-discrepancy setsbecause they try to match (minimize discrepancy
with) the uniform distribution. Although there are several formal definitionsof low discrepancy,
they all capture the intuition that the points should be roughly equidistant fromone another, in order
that there be no “clumps” or “holes” in the point set.

Several procedures for constructing low-discrepancy point sets in multiple dimensions also try
to ensure as much as possible that subspace projections remain low-discrepancy sets in the subspace.
For example, the Sobol (Antonov and Saleev, 1979), Halton (Halton, 1960), and Niederreiter (Brat-
ley et al., 1992) sequences, as well as latin hypercube sampling (McKay et al., 1979) are all more
or less deterministic schemes for getting point sets that are more representative of random uniform
draws than actual random uniform draws. In Quasi Monte-Carlo integration, such point sets are
shown to asymptotically minimize the variance of finite integrals faster than true random uniform
samples, but in this section, we will look at these point sets in the setting of relatively small sample
sizes, to see if they can be used for more efficient search than random draws.

Rather than repeat the very computationally expensive experiments conducted in Section 2,
we used an artificial simulation to compare the efficiency of grids, random draws, and the four
low-discrepancy point sets mentioned in the previous paragraph. The artificial search problem was
to find a uniformly randomly placed multi-dimensional target interval, which occupies 1% of the
volume of the unit hyper-cube. We looked at four variants of the searchproblem, in which the target
was

295

BERGSTRA ANDBENGIO

1. a cube in a 3-dimensional space,

2. a hyper-rectangle in a 3-dimensional space,

3. a hyper-cube in a 5-dimensional space,

4. a hyper-rectangle in a 5-dimensional space.

The shape of the target rectangle in variants (2) and (4) was determined by sampling side lengths
uniformly from the unit interval, and then scaling the rectangle to have a volumeof 1%. This
process gave the rectangles a shape that was often wide or tall - much longer along some axes than
others. The position of the target was drawn uniformly among the positions totally inside the unit
hyper-cube. In the case of tall or wide targets (2) and (4), the indicatorfunction [of the target] had
a lower effective dimension than the dimensionality of the overall space because the dimensions in
which the target is elongated can be almost ignored.

The simulation experiment began with the generation of 100 random search problems. Then for
each experiment design method (random, Sobol, latin hypercube, grid) wecreated experiments of
1, 2, 3, and so on up to 512 trials.5 The Sobol, Niederreiter, and Halton sequences yielded similar
results, so we used the Sobol sequence to represent the performanceof these low-discepancy set
construction methods. There are many possible grid experiments of any sizein multiple dimensions
(at least for non-prime experiment sizes). We did not test every possible grid, instead we tested
every grid with a monotonic resolution. For example, for experiments of size 16 in 5 dimensions
we tried the five grids with resolutions (1, 1, 1, 1, 16), (1, 1, 1, 2, 8), (1, 1, 2, 2, 4), (1, 1, 1, 4,
4), (1, 2, 2, 2, 2); for experiments of some prime sizeP in 3 dimensions we tried one grid with
resolution (1, 1,P). Since the target intervals were generated in such a way that rectanglesidentical
up to a permutation of side lengths have equal probability, grids with monotonic resolution are
representative of all grids. The score of an experiment design method for each experiment size was
the fraction of the 100 targets that it found.

To characterize the performance of random search, we used the analytic form of the expectation.
The expected probability of finding the target is 1.0 minus the probability of missing the target
with every single one ofT trials in the experiment. If the volume of the target relative to the unit
hypercube is (v/V = 0.01) and there areT trials, then this probability of finding the target is

1− (1−
v
V
)T = 1−0.99T .

Figure 8 illustrates the efficiency of each kind of point set at finding the multidimensional in-
tervals. There were some grids that were best at finding cubes and hyper-cubes in 3-d and 5-d, but
most grids were the worst performers. No grid was competitive with the othermethods at finding
the rectangular-shaped intervals, which had low effective dimension (cases 2 and 4; Figure 8, right
panels). Latin hypercubes, commonly used to initialize experiments in Bayesianoptimization, were
no more efficient than the expected performance of random search. Interestingly, the Sobol se-
quence was consistently best by a few percentage points. The low-discrepancy property that makes
the Sobol useful in integration helps here, where it has the effect of minimizing the size of holes
where the target might pass undetected. The advantage of the Sobol sequence is most pronounced in
experiments of 100-300 trials, where there are sufficiently many trials for the structure in the Sobol

5. Samples from the Sobol sequence were provided by the GNU ScientificLibrary (M. Galassi et al., 2009).

296

RANDOM SEARCH FORHYPER-PARAMETER OPTIMIZATION

Figure 8: The efficiency in simulation of low-discrepancy sequences relative to grid and pseudo-
random experiments. The simulation tested how reliably various experiment design meth-
ods locate a multidimensional interval occupying 1% of a unit hyper-cube. There is one
grey dot in each sub-plot for every grid of every experiment size thathas at least two ticks
in each dimension. The black dots indicate near-perfect grids whose finest and coarsest
dimensional resolutions differ by either 0 or 1. Hyper-parameter searchis most typi-
cally like the bottom-right scenario. Grid search experiments are inefficientfor finding
axis-aligned elongated regions in high dimensions (i.e., bottom-right). Pseudo-random
samples are as efficient as latin hypercube samples, and slightly less efficient than the
Sobol sequence.

depart significantly from i.i.d points, but not sufficiently many trials for random search to succeed
with high probability.

A thought experiment gives some intuition for why grid search fails in the case of rectangles.
Long thin rectangles tend to intersect with several points if they intersect withany, reducing the
effective sample size of the search. If the rectangles had been rotated away from the axes used to
build the grid, then depending on the angle the efficiency of grid could approach the efficiency of
random or low-discrepancy trials. More generally, if the target manifold were not systematically
aligned with subsets of trial points, then grid search would be as efficient as the random and quasi-
random searches.

297

BERGSTRA ANDBENGIO

5. Random Search vs. Sequential Manual Optimization

To see how random search compares with a careful combination of grid search and hand-tuning
in the context of a model with many hyper-parameters, we performed experiments with the Deep
Belief Network (DBN) model (Hinton et al., 2006). A DBN is a multi-layer graphical model with
directed and undirected components. It is parameterized similarly to a multilayer neural network for
classification, and it has been argued thatpretraininga multilayer neural network by unsupervised
learning as a DBN acts both to regularize the neural network toward better generalization, and to
ease the optimization associated withfinetuningthe neural network for a classification task (Erhan
et al., 2010).

A DBN classifier has many more hyper-parameters than a neural network.Firstly, there is the
number of units and the parameters of random initialization for each layer. Secondly, there are
hyper-parameters governing the unsupervised pretraining algorithm for each layer. Finally, there
are hyper-parameters governing the global finetuning of the whole modelfor classification. For the
details of how DBN models are trained (stacking restricted Boltzmann machines trained by con-
trastive divergence), the reader is referred to Larochelle et al. (2007), Hinton et al. (2006) or Bengio
(2009). We evaluated random search by training 1-layer, 2-layer and3-layer DBNs, sampling from
the following distribution:

• We chose 1, 2, or 3 layers with equal probability.

• For each layer, we chose:

– a number of hidden units (log-uniformly between 128 and 4000),

– a weight initialization heuristic that followed from a distribution (uniform or normal),
a multiplier (uniformly between 0.2 and 2), a decision to divide by the fan-out (true or
false),

– a number of iterations of contrastive divergence to perform for pretraining (log-uniformly
from 1 to 10000),

– whether to treat the real-valued examples used for unsupervised pretraining as Bernoulli
means (from which to draw binary-valued training samples) or as a samples themselves
(even though they are not binary),

– an initial learning rate for contrastive divergence (log-uniformly between 0.0001 and
1.0),

– a time point at which to start annealing the contrastive divergence learningrate as in
Equation 7 (log-uniformly from 10 to 10 000).

• There was also the choice of how to preprocess the data. Either we used the raw pixels or
we removed some of the variance using a ZCA transform (in which examples are projected
onto principle components, and then multiplied by the transpose of the principle components
to place them back in the inputs space).

• If using ZCA preprocessing, we kept an amount of variance drawn uniformly from 0.5 to 1.0.

• We chose to seed our random number generator with one of 2, 3, or 4.

• We chose a learning rate for finetuning of the final classifier log-uniformlyfrom 0.001 to 10.

298

RANDOM SEARCH FORHYPER-PARAMETER OPTIMIZATION

• We chose an anneal start time for finetuning log-uniformly from 100 to 10000.

• We choseℓ2 regularization of the weight matrices at each layer during finetuning to be either
0 (with probability 0.5), or log-uniformly from 10−7 to 10−4.

This hyper-parameter space includes 8 global hyper-parameters and 8hyper-parameters for each
layer, for a total of 32 hyper-parameters for 3-layer models.

A grid search is not practical for the 32-dimensional search problem ofDBN model selection,
because even just 2 possible values for each of 32 hyper-parameterswould yield more trials than
we could conduct (232 > 109 trials and each can take hours). For many of the hyper-parameters,
especially real valued ones, we would really like to try more than two values. The approach taken
in Larochelle et al. (2007) was a combination of manual search, multi-resolution grid search and
coordinate descent. The algorithm (including manual steps) is somewhat elaborate, but sensible,
and we believe that it is representative of how model search is typically done in several research
groups, if not the community at large. Larochelle et al. (2007) describe itas follows:

“The hyper-parameter search procedure we used alternates betweenfixing a neural net-
work architecture and searching for good optimization hyper-parameterssimilarly to
coordinate descent. More time would usually be spent on finding good optimization
parameters, given some empirical evidence that we found indicating that thechoice of
the optimization hyper-parameters (mostly the learning rates) has much more influence
on the obtained performance than the size of the network. We used the same procedure
to find the hyper-parameters for DBN-1, which are the same as those of DBN-3 except
the second hidden layer and third hidden layer sizes. We also allowed ourselves to
test for much larger first-hidden layer sizes, in order to make the comparison between
DBN-1 and DBN-3 fairer.

“We usually started by testing a relatively small architecture (between 500 and 700
units in the first and second hidden layer, and between 1000 and 2000 hidden units
in the last layer). Given the results obtained on the validation set (comparedto those
of NNet for instance) after selecting appropriate optimization parameters, we would
then consider growing the number of units in all layers simultaneously. The biggest
networks we eventually tested had up to 3000, 4000 and 6000 hidden units in the first,
second and third hidden layers respectively.

“As for the optimization hyper-parameters, we would proceed by first trying a few com-
binations of values for the stochastic gradient descent learning rate of the supervised
and unsupervised phases (usually between 0.1 and 0.0001). We then refine the choice of
tested values for these hyper-parameters. The first trials would simply give us a trend on
the validation set error for these parameters (is a change in the hyper-parameter making
things worse of better) and we would then consider that information in selecting ap-
propriate additional trials. One could choose to use learning rate adaptationtechniques
(e.g., slowly decreasing the learning rate or using momentum) but we did not find these
techniques to be crucial.

There was large variation in the number of trials used in Larochelle et al. (2007) to optimize the
DBN-3. One data set (mnist background images) benefited from 102 trials, while another (mnist
background random) only 13 because a good result was found more quickly. The average number

299

BERGSTRA ANDBENGIO

� � � � �� �� �� ���

���������� 	�
� �� ����	�

���

���

���

���

��	

���

��

���
�
��
�
��

mnist basic

� � � � �� �� �� ���

���������� 	�
� �� ����	�

���

���

���

���

��	

���

��

���

�
��
�
��

mnist background images

� � � � �� �� �� ���

���������� 	�
� �� ����	�

���

���

���

���

��	

���

��

���

�
��
�
��

mnist background random

� � � � �� �� �� ���

experiment size (# trials)

���

���

���

���

��	

���

��

���

ac
cu

ra
cy

mnist rotated

� � � � �� �� �� ���

���������� 	�
� �� ����	�

���

���

���

���

��	

���

��

���

�
��
�
��

mnist rotated back. images

� � � � �� �� �� ���

experiment size (# trials)

���

���

���

���

��	

���

��

���

ac
cu

ra
cy

convex

� � � � �� �� �� ���

experiment size (# trials)

���

���

���

���

��	

���

��

���

ac
cu

ra
cy

rectangles

� � � � �� �� �� ���

experiment size (# trials)

���

���

���

���

��	

���

��

���

ac
cu

ra
cy

rectangles images

Figure 9: Deep Belief Network (DBN) performance according to randomsearch. Here random
search is used to explore up to 32 hyper-parameters. Results obtained bygrid-assisted
manual search using an average of 41 trials are marked in finely-dashedgreen (1-layer
DBN) and coarsely-dashed red (3-layer DBN). Random experiments of 128 random trials
found an inferior best model for three data sets, a competitive model in four, and superior
model in one (convex). (Best viewed in color.)

of trials across data sets for the DBN-3 model was 41. In considering the number of trials per data
set, it is important to bear in mind that the experiments on different data sets were not performed
independently. Rather, later experiments benefited from the experience the authors had drawn from
earlier ones. Although grid search was part of the optimization loop, the manual intervention turns
the overall optimization process into something with more resemblance to an adaptive sequential
algorithm.

Random search versions of the DBN experiments from Larochelle et al. (2007) are shown in
Figure 9. In this more challenging optimization problem random search is still effective, but not

300

RANDOM SEARCH FORHYPER-PARAMETER OPTIMIZATION

superior as it was as in the case of neural network optimization. Comparing tothe 3-layer DBN
results in Larochelle et al. (2007), random search found a better modelthan the manual search in
one data set (convex), an equally good model in four (mnist basic, mnist rotated, rectangles, and
rectangles images), and an inferior model in three (mnist background images, mnist background
random, mnist rotated background images). Comparing to the 1-layer DBN results, random
search of the 1-layer, 2-layer and 3-layer configuration space found at least a good a model in all
cases. In comparing these scores, the reader should bear in mind that thescores in the original
experiments were not computed using the same score-averaging techniquethat we described in
Section 2.1, and our averaging technique is slightly biased toward underestimation. In the DBN
efficiency curves we see that even experiments with larger numbers of trials (64 and larger) feature
significant variability. This indicates that the regions of the search space with the best performance
are small, and randomly chosen i.i.d. trials do not reliably find them.

6. Future Work

Our result on the multidimensional interval task, together with the GPR characterization of the shape
of Ψ, together with the computational constraint that hyper-parameter searches only draw on a few
hundred trials, all suggest that pseudo-random or quasi-random trials are optimal for non-adaptive
hyper-parameter search. There is still work to be done for each model family, to establish how it
should be parametrized for i.i.d. random search to be as reliable as possible, but the most promising
and interesting direction for future work is certainly in adaptive algorithms.

There is a large body of literature on global optimization, a great deal of which bears on the ap-
plication of hyper-parameter optimization. General numeric methods such as simplex optimization
(Nelder and Mead, 1965), constrained optimization by linear approximation (Powell, 1994; Weise,
2009), finite difference stochastic approximation and simultaneous prediction stochastic approxi-
mation (Kleinman et al., 1999) could be useful, as well as methods for searchin discrete spaces
such as simulated annealing (Kirkpatrick et al., 1983) and evolutionary algorithms (Rechenberg,
1973; Hansen et al., 2003). Drew and de Mello (2006) have already proposed an optimization al-
gorithm that identifies effective dimensions, for more efficient search. They present an algorithm
that distinguishes between important and unimportant dimensions: a low-discrepancy point set is
used to choose points in the important dimensions, and unimportant dimensions are “padded” with
thinner coverage and cheaper samples. Their algorithm’s success hinges on the rapid and successful
identification of important dimensions. Sequential model-based optimization methods and partic-
ularly Bayesian optimization methods are perhaps more promising because theyoffer principled
approaches to weighting the importance of each dimension (Hutter, 2009; Hutter et al., 2011; Srini-
vasan and Ramakrishnan, 2011).

With so many sophisticated algorithms to draw on, it may seem strange that grid search is still
widely used, and, with straight faces, we now suggest using random search instead. We believe the
reason for this state of affairs is a technical one. Manual optimization followed by grid search is
easy to implement: grid search requires very little code infrastructure beyond access to a cluster
of computers. Random search is just as simple to carry out, uses the same tools, and fits in the
same workflow. Adaptive search algorithms on the other hand require more code complexity. They
require client-server architectures in which a master process keeps track of the trials that have com-
pleted, the trials that are in progress, the trials that were started but failed tocomplete. Some kind
of shared database and inter-process communication mechanisms are required. Trials in an adaptive

301

BERGSTRA ANDBENGIO

experiment cannot be queued up all at once; the master process must beinvolved somehow in the
scheduling and timing of jobs on the cluster. These technical hurdles are not easy to jump with the
standard tools of the trade such as MATLAB or Python; significant software engineering is required.
Until that engineering is done and adopted by a community of researchers,progress on the study of
sophisticated hyper-parameter optimization algorithms will be slow.

7. Conclusion

Grid search experiments are common in the literature of empirical machine learning, where they are
used to optimize the hyper-parameters of learning algorithms. It is also common toperform multi-
stage, multi-resolution grid experiments that are more or less automated, because a grid experiment
with a fine-enough resolution for optimization would be prohibitively expensive. We have shown
that random experiments are more efficient than grid experiments for hyper-parameter optimization
in the case of several learning algorithms on several data sets. Our analysis of the hyper-parameter
response surface (Ψ) suggests that random experiments are more efficient because not all hyper-
parameters are equally important to tune. Grid search experiments allocate toomany trials to the
exploration of dimensions that do not matter and suffer from poor coverage in dimensions that are
important. Compared with the grid search experiments of Larochelle et al. (2007), random search
found better models in most cases and required less computational time.

Random experiments are also easier to carry out than grid experiments forpractical reasons
related to the statistical independence of every trial.

• The experiment can be stopped any time and the trials form a complete experiment.

• If extra computers become available, new trials can be added to an experiment without having
to adjust the grid and commit to a much larger experiment.

• Every trial can be carried out asynchronously.

• If the computer carrying out a trial fails for any reason, its trial can be either abandoned or
restarted without jeopardizing the experiment.

Random search is not incompatible with a controlled experiment. To investigate the effect
of one hyper-parameter of interest X, we recommend random search (instead of grid search) for
optimizing over other hyper-parameters. Choose one set of random values for these remaining
hyper-parameters and use that same set for each value of X.

Random experiments with large numbers of trials also bring attention to the question of how
to measure test error of an experiment when many trials have some claim to being best. When
using a relatively small validation set, the uncertainty involved in selecting the best model by cross-
validation can be larger than the uncertainty in measuring the test set performance of any one model.
It is important to take both of these sources of uncertainty into account when reporting the uncer-
tainty around the best model found by a model search algorithm. This technique is useful to all
experiments (including both random and grid) in which multiple models achieve approximately the
best validation set performance.

Low-discrepancy sequences developed for QMC integration are also good alternatives to grid-
based experiments. In low dimensions (e.g., 1-5) our simulated results suggest that they can hold
some advantage over pseudo-random experiments in terms of search efficiency. However, the trials

302

RANDOM SEARCH FORHYPER-PARAMETER OPTIMIZATION

of a low-discrepancy experiment are not i.i.d. which makes it inappropriateto analyze performance
with the random efficiency curve. It is also more difficult in practice to conduct a quasi-random
experiment because like a grid experiment, the omission of a single point can be more severe.
Finally, when there are many hyper-parameter dimensions relative to the computational budget for
the experiment, a low-discrepancy trial set is not expected to behave very differently from a pseudo-
random one.

Finally, the hyper-parameter optimization strategies considered here are non-adaptive: they do
not vary the course of the experiment by considering any results that are already available. Random
search was not generally as good as the sequential combination of manualand grid search from
an expert (Larochelle et al., 2007) in the case of the 32-dimensional search problem of DBN op-
timization, because the efficiency of sequential optimization overcame the inefficiency of the grid
search employed at each step of the procedure. Future work should consider sequential, adaptive
search/optimization algorithms in settings where many hyper-parameters of an expensive function
must be optimized jointly and the effective dimensionality is high. We hope that future work in that
direction will consider random search of the form studied here as a baseline for performance, rather
than grid search.

Acknowledgments

This work was supported by the National Science and Engineering Research Council of Canada and
Compute Canada, and implemented with Theano (Bergstra et al., 2010).

References

I. A. Antonov and V. M. Saleev. An economic method of computingLPτ-sequences.USSR Compu-
tational Mathematics and Mathematical Physics, 19(1):252–256, 1979.

R. Bellman.Adaptive Control Processes: A Guided Tour. Princeton University Press, New Jersey,
1961.

Y. Bengio. Learning deep architectures for AI.Foundations and Trends in Machine Learning, 2(1):
1–127, 2009. doi: 10.1561/2200000006.

Y. Bengio and X. Glorot. Understanding the difficulty of training deep feedforward neural networks.
In Y. W. Teh and M. Titterington, editors,Proc. of The Thirteenth International Conference on
Artificial Intelligence and Statistics (AISTATS’10), pages 249–256, 2010.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, and Y. Bengio.
Theano: a CPU and GPU math expression compiler. InProceedings of the Python for Scientific
Computing Conference (SciPy), June 2010. Oral.

C. Bishop.Neural Networks for Pattern Recognition. Oxford University Press, London, UK, 1995.

P. Bratley, B. L. Fox, and H. Niederreiter. Implementation and tests of low-discrepancy sequences.
Transactions on Modeling and Computer Simulation, (TOMACS), 2(3):195–213, 1992.

R. E. Caflisch, W. Morokoff, and A. Owen. Valuation of mortgage backed securities using brownian
bridges to reduce effective dimension, 1997.

303

BERGSTRA ANDBENGIO

C. Chang and C. Lin.LIBSVM: A Library for Support Vector Machines, 2001.

I. Czogiel, K. Luebke, and C. Weihs. Response surface methodology for optimizing hyper parame-
ters. Technical report, Universität Dortmund Fachbereich Statistik, September 2005.

S. S. Drew and T. Homem de Mello. Quasi-Monte Carlo strategies for stochastic optimization. In
Proc. of the 38th Conference on Winter Simulation, pages 774 – 782, 2006.

D. Erhan, Y. Bengio, A. Courville, P. Manzagol, P. Vincent, and S. Bengio. Why does unsupervised
pre-training help deep learning?Journal of Machine Learning Research, 11:625–660, 2010.

J. H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-
dimensional integrals.Numerische Mathematik, 2:84–90, 1960.

N. Hansen, S. D. M̈uller, and P. Koumoutsakos. Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation (CMA-ES).Evolutionary Computation, 11
(1):1–18, 2003.

G. E. Hinton. A practical guide to training restricted Boltzmann machines. Technical Report 2010-
003, University of Toronto, 2010. version 1.

G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 18:1527–1554, 2006.

F. Hutter.Automated Configuration of Algorithms for Solving Hard Computational Problems. PhD
thesis, University of British Columbia, 2009.

F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algo-
rithm configuration. InLION-5, 2011. Extended version as UBC Tech report TR-2010-10.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220
(4598):671–680, 1983.

N. L. Kleinman, J. C. Spall, and D. Q. Naiman. Simulation-based optimization with stochastic ap-
proximation using common random numbers.Management Science, 45(11):1570–1578, Novem-
ber 1999. doi: doi:10.1287/mnsc.45.11.1570.

H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. Anempirical evaluation of deep
architectures on problems with many factors of variation. In Z. Ghahramani,editor,Proceedings
of the Twenty-fourth International Conference on Machine Learning (ICML’07), pages 473–480.
ACM, 2007.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition.Proceedings of the IEEE, 86(11):2278–2324, November 1998a.

Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In G.Orr and K. Muller, editors,
Neural Networks: Tricks of the Trade. Springer, 1998b.

M. Galassi et al.GNU Scientific Library Reference Manual, 3rd edition, 2009.

304

RANDOM SEARCH FORHYPER-PARAMETER OPTIMIZATION

M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of threemethods for selecting
values of input variables in the analysis of output from a computer code.Technometrics, 21(2):
239–245, May 1979. doi: doi:10.2307/1268522.

A. Nareyek. Choosing search heuristics by non-stationary reinforcement learning.Applied Opti-
mization, 86:523–544, 2003.

R. M. Neal. Assessing relevance determination methods using DELVE. In C.M. Bishop, editor,
Neural Networks and Machine Learning, pages 97–129. Springer-Verlag, 1998.

J. A. Nelder and R. Mead. A simplex method for function minimization.The Computer Journal, 7:
308–313, 1965.

M. J. D. Powell. A direct search optimization method that models the objective and constraint
functions by linear interpolation.Advances in Optimization and Numerical Analysis, pages 51–
67, 1994.

C. E. Rasmussen and C. K. I. Williams.Gaussian Processes for Machine Learning. MIT Press,
2006.

Ingo Rechenberg.Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien derbiol-
ogischen Evolution. Fommann-Holzboog, Stuttgart, 1973.

A. Srinivasan and G. Ramakrishnan. Parameter screening and optimisationfor ILP using designed
experiments.Journal of Machine Learning Research, 12:627–662, February 2011.

P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and composing robust features
with denoising autoencoders. In W. W. Cohen, A. McCallum, and S. T. Roweis, editors,Pro-
ceedings of the Twenty-fifth International Conference on Machine Learning (ICML’08), pages
1096–1103. ACM, 2008.

T. Weise. Global Optimization Algorithms - Theory and Application. Self-Published, second edi-
tion, 2009. Online available at http://www.it-weise.de/.

305

