Large-scale Data Processing and Optimisation

Eiko Yoneki

/\/‘ University of Cambridge Computer Laboratory

Massive Data: Scale-Up vs Scale-Out

» Popular solution for massive data processing

- scale and build distribution, combine theoretically unlimited
number of machines in single distributed storage

- Parallelisable data distribution and processing is key

= Scale-up: add resources to single node (many cores) in system
(e.g. HPC)

» Scale-out: add more nodes to system (e.g. Amazon EC2)

Technologies supporting Cluster Computing

Distributed infrastructure
= Cloud (e.g. Infrastructure as a service, Amazon EC2, GCP, Azure)

cf. Many core (parallel computing)

Storage

= Distributed storage (e.g. Amazon S3, Hadoop Distributed File System
(HDFS), Google File System (GFS))

Data model/indexing

= High-performance schema-free database (e.g. NoSQL DB - Redis,
BigTable, Hbase, Neo4])

Programming model
= Distributed processing (e.g. MapReduce)

Data Processing Stack

» Data Processing Layer

Streaming T T Graph Processing
Mach L
Processing FrQuery Language achine *earning Pregel, Giraph,
. ig, Hive, SparksSQL, Rllib, Caffe, Keras,
Storm, SEEP, Naiad, DryadLINQ Torch. MLIib GraphLab, PowerGraph,
Spark Streaming, Flink, Ty . (Dato), GraphX,
Milwheel, Google Execution Engine X-Stream...
Dataflow... MapReduce, Spark, Tensorflow, Ray, Flumejava...

Storage Layer

Distributed Operational Store/NoSQL DB Logging System/Distributed
File Systems Big Table, Hbase, Dynamo, Messaging Systems
GFS, HDFS, Amazon S3, Flat FS.. Cassandra, Redis, Mongo, Kafka, Flume...
Spanner...

Resource Management Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack...

Data Flow Programming

= Non-standard programming models
= Powerful abstraction: mapping computation into

dataflow graphs

X

e

Function f(x, y, z) = x*y + z

out

MapReduce Programming

Target problem needs to be parallelisable
Split into a set of smaller code (map)
Next small piece of code executed in parallel

Results from map operation get synthesised into a result of
original problem (reduce)

Input data

=

Reduce(]

QOutput data

Data Flow Programming Examples

= Data (flow) parallel programming
= e.g. MapReduce, Dryad/LINQ, NAIAD, Spark, Tensorflow...

MapReduce: DAG (Directed Acyclic Graph) TensorFlow
I-Fi)adoop based: Dryad/Spark... \ []
32 |-14]51| .. m
-10) 2 | 24| .. o m
Two-Stage fixed dataflow
More flexible dataflow model
7
7
i
'-.n_'..

100B neurons(700T

& links) requires 100s ;»"

GB memory

o Lok .
el -

Bipartite graph of |

phrases in £ o -
documents i o Airline Graphs
Web 1.4B
Protein Interactions emedia data pages(6.6B
[genomebiology.com] \k“ ep‘ links)
P
8

Graph Computation Challenges

Graph algorithms (BFS, Shortest path)
Query on connectivity (Triangle, Pattern)
Structure (Community, Centrality)

ML & Optimisation (Regression, SGD)

ol B\

= Data driven computation: dictated by graph’s structure and
parallelism based on partitioning is difficult

* Poor locality: graph can represent relationships between irregular
entries and access patterns tend to have little locality

»= High data access to computation ratio: graph algorithms are often
based on exploring graph structure leading to a large access rate to

computation ratio .

Data-Parallel vs. Graph-Parallel

» Data-Parallel for all? Graph-Parallel is hard!
= Data-Parallel (sort/search - randomly split data to feed MapReduce)

= Not every graph algorithm is parallelisable (interdependent
computation)

= Not much data access locality
= High data access to computation ratio

Data-Parallel Graph-Parallel

Table /

L B Result

Dependency Graph

10

10

Graph-Parallel

= Graph-Parallel (Graph Specific Data Parallel)

= Vertex-based iterative computation model
= Use of iterative Bulk Synchronous Parallel Model
> Pregel (Google), Giraph (Apache), Graphlab,
GraphChi (CMU - Dato)

= Optimisation over data parallel
=» GraphX/Spark (U.C. Berkeley)

= Data-flow programming — more general framework
= NAIAD (MSR), TensorFlow..

11

11

Bulk synchronous parallel: Example

» Finding the largest value in a connected graph

Local Computation |
-

r Message
Communication 9

‘

Local Computation

‘

Communication

‘

12

12

Are Large Clusters and Many cores Efficient?

Graph Edges Hardware

1 trillion Tsubame

» Brute force approach really efficiently works?
= Increase of number of cores (including use of GPU)

= Increase of nodes in clusters
Big Iron

Large Cluster

Avery Ching,
A billion edges isn’t cool. F k
You know what’s cool?

AJRILLION edges.

1 trillion

1 trillion

1 trillion

Blue Gene

Yes, using 3940 machines

13

Do we really need large clusters?

» Laptops are sufficient?

[Twenty pagerank iterations]

System cores twitter_rv uk_2007_05
Spark 128 857s 1759s
Giraph 128 596s 1235s
GraphLab 128 49s) 833s
GraphX 128 419s Ca62s
B [Single thread | 1] Czo0s Cesi1s

[Label propagation to fixed-point (graph connectivity)]

Fixed-point iteration:
All vertices active in
each iteration

(50% computation, 50%
communication)

| System | cores | twitter_rv | uk_2007_05
[Spark | 128| 1784s | 8000s+
[Giraph | 128| 200s | 8000s+
|GraphLab | 128| 242s| 714s
|Graphx | 128| 251s]| 800s
B [Single thread | 1] Cas53sh Ca17s

Traversal: Search
proceeds in a frontier
(90% computation, 10%)
communication)

from Frank McSherry HotOS 2015

14

14

Data Processing for Neural Networks

= Practicalities of training Neural Networks
» Leveraging heterogeneous hardware

Modern Neural Networks Applications:

Image Classification

airplane
automobile
bird

cat

deer

dog

frog

horse

ship

truck

=EEY - BENT-
REETCweE=S

Reinforcement Learning

15

15

= One or more beefy
GPUs

Performance Improvement

= Parameter Architecture: exploit
both Data Parallelism and Model

Parallelism (by Google)

Parameter Server W = W - WAW

0000000
/o A\
w [0 00 00

Replicas

00 0dl oo
e s I

Shards

16

16

Computer Systems Optimisation

» How do we improve performance:
= Manual tuning
= Auto-tuning

» What is performance? - objective function of optimisation
= Resource usage (e.g. time, power)
= Computational properties (e.g. accuracy, fairness, latency)

= What is Optimisation Model?
= Short-term dynamic control (e.g. stream processing: distinct workload or
dynamic workload)
= Combinatorial optimisation (e.g. indexing DB, device assignment)

[Many systems problems are combinatorial in nature]

17

17

Turing Computer System is Complex Task

» Increasing data volumes and high-dimension parameter space
» Expensive Objective Functions
» Hand-crafted solutions impractical, often left static or configured

through extensive offline analysis
= Not well-tuned system’s performance | Peepleaming

- Learning-rate

doeS nOt Scale : . < - Number of Dense Layers

- Number of Dense Nodes

7 N 7N N - Activation Function
ﬂ:l uster Workload \ Feature extraction + Classification
Mana gement

° o ?
.«e.. Compiler Optimisation

I Clang Front End ‘l
® 9 ce LLVM Optlmlzer IR—] IR—+ IR—|
oL
[] ‘{\e
Code Generator

-

18

Auto-tuning Complex Systems

= Many dimensions

= Expensive objective function

®* Hand-crafted solutions impractical
(e.g. extensive offline analysis)

Grid search 6 € [1, 2, 3, ...]
Random search

Evolutionary approaches (e.gf- PetaBricks)

Hill-climbing (e.g. @pen“umer)

Bayesian optimisation (e.g. spearMNT)

» Blackbox Optimisation

v can surpass human
expert-level tuning

1000s of evaluations
of objective function

Computation more
expensive

Fewer samples
19

19

Search Parameter Space

Random search: No risk of ’getting stuck’
potentially many samples required

Evolution strategies: Evaluate
permutations against fitness function

Bayes Opt: Sample efficient, requires
continuous function, some configuration

Genetic
algorithm /
Simulated
annealing

Random Search

No overhead Slight overhead

Medium-high
#evaluation

High #evaluation

High overhead

Low #evaluation

Bayesian
Optimisation

20

20

10

Parameter Space of Task Scheduler

= Tuning distributed SGD scheduler over TensorFlow
= 10 heterogeneous machines with ~32 parameters
= ~1053 possible valid configurations
= QObjective function: minimise distributed SGD iteration time

050 EQ ;

Parameter X v
server

Worker X v v v

Inputs 0 10 16 10-28

21

21

Bayesian Optimisation

= Iteratively builds probabilistic model of objective function
» Typically Gaussian process as probabilistic model

= Data efficient: converges quickly

X

Input: Objective function f() ~ s
Input: Surrogate function initial distribution G Configuration | ©) | Gaussian l . Predicted
Input: Acquisition function a() Space | FEEss J = Performance
1: fori=1.2,...do ~ @2\\@
2: Sample point: x; + argmax, a(G,x) @ Objective N\ Performance
3 Evaluate new point: y, < f(x;) Function
4: Update surrogate distribution: G < G | (x;,)
5. end for

(D) Find promising point (high performance value in the model)
(2) Evaluate the objective function at that point

(3) Update the model to reflect this new measurement
22

22

11

Bayesian Optimisation

2

1-

Obijective ©

Domain

23

Bayesian Optimisation

2

1-

Objective o

Domain

24

Bayesian Optimisation

Obijective ©

-3

1
Domain
25
Bayesian Optimisation
Objective - — =
Domain

26

Bayesian Optimisation

2

1-

Objective - 7
1
Domain
27
Bayesian Optimisation
Objective - T =
1
Domain

28

Bayesian Optimisation

2

1-

Objective ¢ \/

Domain

29

Bayesian Optimisation

2

1-

Objective o"‘"'__——_qh‘—__hhhh“\“‘“\s\\\‘~\\\\\ﬁ“____,—’,,,’z

Domain

30

Bayesian Optimisation

3

2+ x

1

Objective ° /x—/

Domain

31
Bayesian Optimisation
Objective o
Domain
32

16

Bayesian Optimisation

Obijective ©

2

1
Domain
33
Bayesian Optimisation
Objective o
1
Domain

Bayesian Optimisation

2
1

Obijective ©

Domain
35
Bayesian Optimisation
Objective o
Domain
36

18

Further Bayesian Optimisation...

= BO overview/Tutorial

= https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2021_2022/aid/BO
_overview_Archambeau.pdf

= https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2021_2022/aid/BO
_overview_adams.pdf

= https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2021_2022/aid/BO
_overview_gonzalez.pdf

= Papers
= Review paper by Shahriari, et al. (2016): Taking the Human Out of the
Loop: A Review of Bayesian Optimization. Proceedings of the IEEE
104(1):148-175, 2016.
= Slides by Ryan Adams (2014): A Tutorial on Bayesian Optimization for
Machine Learning. CIFAR NCAP Summer School.

= Slides by Peter Frazier (2010): Tutorial: Bayesian Methods for Global and

Simulation Optimization. INFORMS Annual Meeting. 37
37
Bayesian Optimisation
= Iteratively builds probabilistic model of objective function
» Typically Gaussian process as probabilistic model
= Data efficient: converges quickly
Configuration) Gaussian i Predicted
Space _ | Process | Performance
@ Performance
Function
Pros:
v/ Data efficient: converges in few iterations
v/ Able to deal with noisy observations
Cons:
X In many dimensions, model does not converge to the objective function
38

19

Structured Bayesian Optimisation (SBO)

Probabilistic Model written in
l ; Probabilistic C++
Gauss
) N Proc
Configuration ® Probabilistic Predicted
Space Program® @ Performance
& Objective \ Performance & Developer-specified,
Function Runtime prOperﬁeS model of performance

from observed

performance + arbitrary
v Better convergence runtime characteristics
v Use all measurements

BOAT: a framework to build BespOke Auto-Tuners
39

39

Probabilistic Model

» Probabilistic models incorporate random variables and
probability distributions into the model

= Deterministic model gives a single possible outcome
= Probabilistic model gives a probability distribution

» Used for various probabilistic logic inference (e.g. MCMC-
based inference, Bayesian inference...)

Tutorial: Session 6 — Guest Lecture by Brooks Paige

40

42

Probabilistic Programming

PL Al ML STATS
2020 D =
ynamic Pvro
”a',g”‘ Gamble Support by
webPPL probabilistic c&fiward
Probabilistic C A
Venture Anglican STANLIDBI
2010 i Church
HANSEI Figaro Infer.NET PyMC
Factorie JAGS
Blog
ALisp
2000 IBAL
PRISM ICL KMP WinBUGS
Discrete Static
Support Support
1990 BUGS
B. Paige
41
s
'-.n_'..

Semi-parametric Model

= Easy to use and
well suited to SBO

= Understand
general trend of
Objective function

= High precision in
region of optimum
for finding highest
performance

4
. / Too generic
7 “48 0 e
2 ©2
E £
= =
! Too restrictive !
C 1000 2000 &% 1000 2000
Vector size Vector size

(a) Parametric (Linear regression)

4

5 Just right
g 1
02
E
= Ground Truth
1 ~{~ Model Observation
—— Predicted Time
1000 200
Vector size

(c) Semi-parametric (Combination)

(b) Non-parametric (Gaussian process)

42

21

Example: JVM Garbage Collection

= Cassandra's garbage collection

Cassandra

Garbage collection flags:
JVM e Young generation size
e Survivor ratio

e Max tenuring threshold

= Minimise 99th percentile latency of Cassandra

43

43

Performance Improvement from Structure

User-given probabilistic model structured in semi-parametric
model using Directed Acyclic Graph

GC Rate
GC Average Gévéaragtfe
Duration Model uration
Tune three JVM parameters of database

(Cassandra) to minimise latency

99th Percentile
Latency

Latency
Model

a4

44

DAG model in BOAT

CassandraModel : public DAGModel<CassandraModel> {

void model(int ygs, int sr, int mtt){
// Calculate the size of the heap regions
es = ygs * sr / (sr + 2.0);// Eden space's size

// Define the dataflow between semi-parametric models
rate = output(“rate”, rate_model, es);
duration = output(“duration”, duration_model,

es, ss, mtt);
latency = output("latency"”, latency_model,
rate, duration, es, ss, mtt);

}

ProbEngine<GCRateModel> rate_model;
ProbEngine<GCDurationModel> duration_model;
ProbEngine<LatencyModel> latency_model;

1

ss = ygs / (sr + 2.0); // Survivor space's size

45

45

GC Rate Semi-parametric model

struct GCRateModel : public SemiParametricModel<GCRateModel> {

GCRateModel() {
allocated_mbs_per_sec =
std: :uniform_real_distribution<>(©.8, 5000.0) (generator);
// set the GP parameters here

}

double parametric(double eden_size) const {
// Model the rate as inversely proportional to Eden's size
return allocated_mbs_per_sec / eden_size;

}

double allocated_mbs_per_sec;

1

46

46

23

Evaluation: Garbage collection

25
= I Cassandra default
Es0 =1 Optimised
>
v
c
[
© 15
—
<
10
I~
[}
a.
c 5
&
)]
0

A B D
YCSB core workload

47

47

Evaluation: Garbage collection

N
o

\ —k— OpenTuner
\ —&— Spearmint |
—}— Bespoke optimiser

=
Ul

m

£

>

(]

j

2

v 9
c 10}
v 1
bt

g

s 2|
()]

(o)}

m O 5 10 15 20 25 30

Iteration

48

48

24

Distributed Scheduling of Neural Networks (SGD)

= Tune scheduling over 10 machines, setting ~30 parameters
(e.g. ~1033 possible valid configurations)

L‘Q%Q LQ ©

! ‘
& & - S

Parameter X X Ve o

server

Worker x v v v

Inputs

Machiné mébels

Predicted 49

performance

49

Evaluation: Neural network scheduling

? OpenTuner Default configuration: 9.82s

¢ Spearmint OpenTuner: 8.71s
-+ Bespoke optimizer BOAT: 4.31s

100}

500 k4

Existing systems don’t converge!

10}

Best SGD iteration time (s)
(9]

0 5 10 15 20 25 30
lteration

50

50

= Manual Tuning

= Automated Tuning

Generic Auto-Tuning with DAG Models

= User to learn expert knowledge and not transferable
= e.g. Ottertune (manually selects limited humber of parameters then use BO)

= Divide-and-diverge sampling to explore the configuration space, and recursive-
bound-and-search to exploit the most promising areas

= Use of Gaussian processes, but show that it struggles to make accurate
performance predictions because of Spark's high dimensionality
- Generic Auto-Tuning with DAG models

Use of DAG models for surrogate model, which mitigates the curse of
dimensionality while also retaining all configurable variables

= Exploit data analysis to identify parameter dependencies
= Automatic building of DAG models: use of Bayesian Networks
= Integration to BoTorch (i.e. support in Pyro as PPL)

51

Surrogate Model in Bayesian Optimisation

Table 2.1: Comparison of surrogate models for BO

Model Advantages Disadvantages
Parametric e Quickly fit long-distance e Require known structure of
models trends f

Gaussian pro- e Expressive

e Fitting is O(n*) in train-data

estimators [7] size
e Categorical and hierarchical
configuration space supported

cesses [38] size [40]
e Flexible e Continuous, non-hierarchical
configuration space only
Tree-Parzen e Fitting is O(n) in train-data e Less sample efficient than

GP [41]

Random e Computationally very cheap
forests [29]
e Categorical and hierarchical
configuration space supported

e Inaccurately extrapolates un-
certainty [40]

» Structural information (e.g. DAG model) improves Optimisation.

52

26

DAG model integration to BoTorch

Objective function
MNext

Observations configuration

Optimising the

| ")
R e acquisition function

DAG

S

Fitting the Acquisition
surrogate model Predictions function

Torch / SciPy / Pyro BoTorch

53

4

Automation of DAG model building

J Learning DAG Dependency DAG
Trace 5 BIC
Metrics [| L4 (o O » n
.]
Probabilistic DAG

Expert Knowledge =

» Dependency DAG E :'ég%:r(g)) -
— f,~ GP(T,, 1,)

System’s inherent
structure builds
dependency graphs

Decomposability allows
tuning a larger number
of parameters,
providing interpretable
optimisation
suggestions

Natural way to encode

expert knowledge in its
graph

54

27

.. Compiler Optimisation

— LLVM Compiler pass list optimisation
—I_l (BaysOpt vs Random Search)

LLVM Opurnlzer IR—>| 9.5

Code Generator \ m

Monte
Bayes Optimisation

)
Q
E
=
c
=]
14

10
Iteration

55

55

Reinforcement Learning for Optimisation

Many problems in systems are sequential Decision Making

and/or Combinatorial Problems on graph data
= Compiler Optimisation
= Input: XLA/HLO graph
= Objective: Scheduling fusion of ops
= Chip placement
= Input: Chip netlist graph
= Objective: placement on 2D of ND grids
= Datacentre resource allocation
= Input: job - workload graph
= Objective: Placement on datacentre cells and racks
= Packet Classification
= Input: network packets
= Objective: minimise the classification time and memory footprint
= Network congestion control with multiple connections

= Wide range of signals to make decisions (e.g., VM allocation)

= Database: Query optimiser, Dynamic indexing...
56

56

Reinforcement Learning

» Agent interacts with Dynamic
environment

» Goal: Maximise expectations over Siute +

. . Acti
rewards over agent’s lifetime ¥ Reward el

= Notion of Planning/Control, not
single static configuration Environment

What makes RL different from other ML paradigms?
= There is no supervisor, only a reward signal
= Feedback is delayed, not instantaneous
= Time really matters (sequential)
= Agent’s actions affect the subsequent data it receives

Model-free and Model-based RL

57

A brief history of Deep Reinforcement Learning Tools

Gen (2014-16): Loose research scripts (e.g. DQN), high expertise
required, only specific simulators

Gen (2016-17): OpenAl gym gives unified task interface, reference
implementations

= Good results on some environments (e.g. game), difficult to retool to new
domains and execution modes

= Abstractions/Libraries: not fully reusable, customised towards game
simulators

= High implementation risk: lack of systematic testing, performance
strongly impacted by noisy heuristics

Gen (2017-18): Generic declarative APIs, distributed abstractions
(Ray RIlib, RLGraph), some standard flavours emerge

Still Problems... Tightly coupled execution/logic, testing, reuse... "

58

29

-§
RLIib (UC Berkeley) Architecture
User perspective: three main
layers to RLIib: / 1. APIs that make RL accessible
Openal |[0o Policy | [Offine to a variety of applications
G ulti-Agent Sarvi Dat
ym erving ata
Custom Algorithms RLIib Algorithms 2. Collection Of.beSt_m_daSS
reference algorithms
™~ 3. Primitives for implementin
P g
new RL algorithms
59
59
RLgraph: Modular Dataflow Composition
[Agent/MuIti Agent RL apps/optimisation modules]
-
Prebuilt models, Inference | Agent API ‘
API, Component Configuration | _ irg_ﬁ';ﬂ BGJ:E:,
Model Design, Dataflow Composition |:> if;’f'ﬁ:g OF registry
RL Component Graph | Local backends |
Local Backends Variables/Operations . . .
* ... is a programming model to design
TensorFlow PyTorch and execute RL algorithms across
= = = execution paradigms
Distributed Execution Engine
Distributed TF — Ray * ... generates incrementally testable,
transparently configurable code
Hardware: CPU, GPU, TPU, FPGAs... throth a Staged build process
60

RL in Computer Systems: Practical Considerations

= Action spaces do not scale well:
= Systems problems often combinatorial
= Exploration in production system not a good idea
= Unstable, unpredictable
» Simulations can oversimplify problem
= Expensive to build, not justified versus gain
» Unlike supervised learning: Not single dominant execution pattern
= Algorithms highly sensitive to hyper-parameters

» Online steps take too long

61

61

Optimising DNN Computation with Graph Substitutions

= TASO (SOSP, 2019): Performance improvement by
transformation of computation graphs
*= In progress: use of Reinforcement Learning

relu X
matmul matmul
A B A B
(a) before substitution (b) after substitution

62

62

31

Chip Placement with Reinforcement Learning

= A. Mirhoseini and A. Goldie: Chip Placement with Deep
Reinforcement Learning, ISPD, 2020.

Partitioning-Based Methods Stochastic/Hill-Climbing Methads
(e.g. MinCut) (e.g. Simulated Annealing)

e A form of graph resource optimization

Analytic Solvers Learning-Based Methods i i : - 2
(eg.RePlAce) consumption, chip area and cost, while adhering to constraints, such as

e Place the chip components to minimize the latency of computation, power
congestion, cell utilization, heat profile, etc.

Port P1
Ho

Macro(M1)

3
PO_M1 P1_M1

Macro(M0) p1 mo §
PO_MO

Port PO
—

63

63

Summary: Massive Data Processing and Optimisation

- Dataflow is key to improve performance

- Parameter space is complex, large and dynamic/combinatorial

= Systems are nonlinear and difficult to model manually - Exploit ML

» Reinforcement Learning to optimise dynamic combinatorial problem
= Key concept behind is Dataflow (~=Graph) structural
transformation/Decomposition

- Exploit structural information for model decomposition to accelerate
optimisation process

- Bayesian Optimisation and Reinforcement Learning are key

64

64

Rise of Data Science

Interest over time Google Trends

® Data Science @ Machine Learning Data Visualization @ Artificial Intelligence @ Deep Learning

IIII W" ad - -

Worldwide. 02/06/2012 - 02/06/2017.

65

Machine Learning Conferences

* Large ML research community runs large conferences

-'.'\';‘ 3 '

ICML

International Conference Intemational Conference ECML PKDD International ODsC Internatianal
Conference on Meural Joint on Computer Conference Conference
on Machin Informatio Conferanc Vision and an Comput an Acoust

-

i

Y

b - ; ey
| CBB
¥
! m I..

b awt

Y
Europaan ICAART ACH SIGK Strata Data ICPRAN International Wexican International
Conference International Conference Semantic International Conference
on Artificial Conferenc Web Confe Conferenc on Comput

66

33

Scale of Community Size in ML/AI

Large Conference Attendance

6000

w
® 4000
'g s CVPR
,.3_, ICML
= 2000 m— |CRA

e

0
1990 2000 2010
Year

67

NIPS/NEURIPS: 8000 Attendees in 2017

Randomness of Paper acceptance?

2016: 2,406 submissions and 568 acceptance (24% acceptance rate)
2017: 3,240 submissions and 679 acceptance (21% acceptance rate)
2020: 9,467 submissions and 1,990 acceptance (20% acceptance rate)

In 2014, Corinna Cortes and Neil Lawrence ran the NIPS experiment where

1/10th of papers submitted to NIPS went through the NIPS review process

twice, and then the accept/reject decision was compared.
http://blog.mrtz.org/2014/12/15/the-nips-experiment.html ““acebris o rie wr comirree

PAPERS REJECTED
BY OTHER COMMITTEE

In particular, about 57% of the papers accepted by the first
committee were rejected by the second one and vice versa. In
other words, most papers at NIPS would be rejected if one rera
the conference review process (with a 95% confidence interval
of 40-75%).

Check out newer paper on this topic:
https://arxiv.org/pdf/2109.09774.pdf BN ek comibree

68

MLSys Conference spawn in 2018-2019

= MLSys (originally SysML) is a conference Steering Committee
targeting research at the intersection of {\o‘?’ _

. . N Jennifer Chayes
systems and machine learning ‘é\b\'&{\ Bill Dally
https://mlsys.org é'“o?& Jeff Dean

= Aims to elicit new connections amongst M'\ihae'L" Jc‘”da”
these fields, including identifying best S
practices and design principles for learning Alex Smola
systems, as well as developing novel Dawn Song

learning methods and theory tailored to Eric Xing
practical machine learning workflows

69

Gap between Research and Practice

\
ool
Device Placement Optimization with Reinforcement Learning _ 20
\
70"
Azalia Mirhoseini*'? Hieu Pham”*'? Quoc V.Le' Benoit Steiner' Rasmus Larsen' Yuefeng Zhou'
Naveen Kumar® Mohammad Norouzi' Samy Bengio ! Jeff Dean!

70

70

