R244: Large-Scale Data Processing and Optimisation

Course Guide

Eiko Yoneki

Systems Research Group
University of Cambridge Computer Laboratory

R244 Course Objectives

- Understand key concepts of dataflow programming for scalable data processing
- Understand how to build distributed systems in data-driven approach
- Understand a large and complex parameter space in computer system's optimisation and applicability of Machine Learning approach

- Research skills
 - Establish basic research domain knowledge in large data processing and Optimisation with ML
 - Obtain your view of research area for thinking forward
 - NOT to learn ML tools for ML applications
Course Structure

- 8 Sessions
 - Introduction
 - Guidance of R244
 - How to read/review/present a paper
 - Overview of large-scale data processing and optimisation
 - 5 reading club session
 - 1 Hand-on tutorial on Dataflow programming using TensorFlow
 - 1 Guest lecture on Probabilistic Programming
 - Final session: mini-project presentation

Topic Areas

Session 1: Introduction
Session 2: Data Flow Programming: Map/Reduce to TensorFlow
Session 3: Large-scale Graph Data Processing
Session 4: Hands-on Tutorial: Distributed systems with Tensorflow
Session 5: Many Aspects of Optimisation in Computer Systems
Session 6: Probabilistic Programming + Guest lecture (Brooks Paige)
Session 7: Optimisation of Computer Systems using ML
Session 8: Project Study Presentation (2021.11.29 @11:00)
Course Structure

- Reading Club (not Lecture Class!)
 - 4~5 Paper review presentations and discussion per session (~=20 minutes presentation + discussion)
 - Each of you will present ~2 reviews during the course
 - Revised (if necessary) presentation slides needs to be emailed on the following day
 - Review_Log: minimum 1 per session
 - Email me by noon on Sunday
 - Template of review log on the webpage
 - Prepare questions
 - Active participation to review discussion!

Review_Log

<table>
<thead>
<tr>
<th>Paper Review Log: Session x (2021/xx/xx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and (crsid):</td>
</tr>
<tr>
<td>Paper Title and Authors</td>
</tr>
<tr>
<td>1. Paper Summary (<100 words)</td>
</tr>
<tr>
<td>Describe a brief summary (extract essentials)</td>
</tr>
<tr>
<td>2. Punch-line of the Paper (<200 words):</td>
</tr>
<tr>
<td>What is the significant contribution?</td>
</tr>
<tr>
<td>What is the difference from the existing work?</td>
</tr>
<tr>
<td>3. Any major criticism to the authors (<150 words)</td>
</tr>
<tr>
<td>Any criticism and suggestions to the authors?</td>
</tr>
</tbody>
</table>
Course Work: Reports 1&2

- **Review report** on full length of paper (<1800 words)
 - Describe the contribution of paper in depth with criticism
 - Crystallise the significant novelty in contrast to the other related work
 - Suggestion for future work
- **Survey report** on sub-topic in data centric networking (<2000 words)
 - Pick up ~5 papers as core papers in your survey scope
 - Read them and expand your reading through related work
 - Comprehend your view and finish as your survey paper

Study of Open Source Project

- Open Source project normally comes with new proposal of system/networking architecture
- Understand the prototype of proposed architecture, algorithms, and systems through running an actual prototype
- Any additional work
 - Writing applications
 - Extending prototype to another platform
 - Benchmarking using online large dataset
- Present/explain how prototype runs
- Some projects are rather large and may require extensive environment and time; make sure you are able to complete this assignment
Course Work: Reports 3

- **Report on project study** and exploration of a prototype (<2500 words)
 - Project selection by **November 12, 2021**
 - Title and brief description (>150 words) by email
 - Project presentation on **November 29, 2020**
 - Final report on the project study by **January 19, 2022**
 (by December 21, 2021 is preferable)

Candidates of Open Source Project

http://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2021_2022/opensource_projects.html

- List is not exhausted and discuss with me if you find more interesting one for you
- Expectation of workload on open source project study is about intensive 3-7 full days work except writing up report
- One approach: pick one in the session topic, which you are interested in along your survey report
Important Dates

- November 12 (Friday) 16:00
 - Project selection
- November 12 (Friday) 16:00
 - Review report
- December 3 (Friday) 16:00
 - Survey report
- January 19, 2022 (Wednesday) – December 21 (Tuesday) is preferable
 - Open source project study report

Assessment

The final grade for the course will be provided as a letter grade or percentage and the assessment will consist of two parts:

- 25%: for a reading club (presentation, participation, tutorial session exercise and `review_log`): no mark
 - 10%: Presentation
 - 15%: Participation
- 75%: for the three reports: with marks
 - 15%: Intensive review report
 - 25%: Survey report
 - 35%: Project study
How to Read a Paper?

- Scope of R244 is wide
 - ...includes distributed systems, OS, networking, programming language, database...
- Type of papers
 - Building a real system
 - Proposing algorithm/logic on architecture design
 - Optimising computer systems
 - New idea
Critical Thinking

- Reading research paper is not like reading a textbook
- But the most important one is that the paper is not necessary the truth
 - there is no right and wrong, just good and bad
 - There are inherently subjective qualities...but you can’t get away with just your opinion: must argue
- Critical thinking is the skill of marrying subjective and objective judgment of a piece of work

First Let’s Argue for...

- What is the problem?
- What is important?
- Why isn’t it solved in previous work?
 - Why graph specific parallel processing? MapReduce is not good enough?
- What is the approach?
 - Graph specific MapReduce
- Why is this novel/innovative?
 - Iterative operation for graph parallel
And Now against...

- Problem is overstated (or oversold)
- Problem does not exist
- Approach is broken
 - It does not work for all the algorithms...
- Solution is insufficient
 - Only works when data is in memory...
- Evaluation is unfair/biased
 - Use HPC for experiment

So Which is RIGHT Answer?

- There isn’t one!
 - Most of arguments are mostly correct...
- Your judge on what is valuable on topic
- In this course, we’ll be reviewing a selection of ~20 papers (4-5 per week)
 - All of these papers were peer-reviewed and published
 - However you can pick your opinion on papers!
Reviewing Tips & Tricks

- Identify a core/major idea of the topic
- Read related work and/or background section and read key other papers on the topic
- Capture the author’s claim of contribution in introduction section and judge if it is delivered
- Understand the methodology that demonstrates paper’s approach
- Capture what authors evaluate and judge if that is a good way to evaluate the proposed idea
- For theory/algorithm paper, capture what it produces as a result (rather than how)

Key in Review Comments

- What do YOU think?
 - Where you finally get to explain your opinion!
 - You should aim to give a judgement on the work
 - Your judgement should be backed by your argument

- Questions for the authors
How to Review a Paper Aid...

- Simon Peyton-Jones: How to write a great paper and give a great talk about it, Microsoft Research Cambridge.
- David A. Patterson: How to Have a Bad Career in Research/Academia, 2001.

See course web page for the paper links.

Structure of Presentation

- Cover 3 things in your presentation
 1. Background/context
 - What motivated the authors?
 - What else was going on in the research community?
 - How have things changed since?
 2. What is problem to be tackled?
 - What is the problem they tried to solve?
 - What are the key ideas?
 - What did the authors actually do?
 - What were the results?
 3. Your opinion of the paper
 - What you agree and what you disagree?
 - What is the strength and weakness of their approach?
 - What are the key takeaway?
 - What was the impact (possible impact)?

S. Hand’10
Preparing...

- Not too much basics: remember, others would have read the paper
 - Brief overview
 - Do not make exact repeat of the paper

- Aim: generate discussion – spit your straight opinion about the paper to stir the discussion
 - Explore the arguments they make and the conclusions they draw.
 - What is your opinion on it?
 - When you argue, state clearly the point of argument

Presenting...

- Practice beforehand to ensure length of your presentation

- Getting nervous is normal!
 - We are in the same boat and we help each other to understand the paper
 - Presentation is a tool to provide a discussion forum

- Try not to get defensive or angry at questions
 - It is not your paper!
Listening Presentation…

- You need to get involved
- Ask questions from your review – bring your review_log copy
- Always be respectful of the speaker

How to Write Reviews (Report 1)

- **Paper Summary**
 - Provide a brief summary of the paper
 - At this stage you should try to be objective
- **Problem**
 - What is the problem? Why is it important? Why is previous work insufficient?
- **Solution or Approach**
 - What is their approach?
 - How does it solve the problem?
 - How is the solution unique and/or innovative?
 - What are the details?
- **Evaluation is unfair/biased**
 - How do they evaluate their solution?
 - What questions do they answer?
 - What are the strength/weakness of the system and evaluation itself?
How to write Survey paper (Report 2)

- Demonstrate a summary of recent research results in a novel way that integrates and adds understanding to work in the research area
- Must expose relevant details associated, but it is important to keep a consistent level of details and to avoid simply listing the different works
- For example:
 - Define the scope of your survey
 - Classify and organize the trend
 - Critical evaluation of approaches (pros/cons)
 - Add your analysis or explanation (e.g. table, figure)
 - Add reference and pointer to further in-depth information

Summary

- R244 course web page:

 http://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2021_2022

 Email: eiko.yoneki@cl.cam.ac.uk

- Slides of presentation, forms, other information will be on the web

- Please email me your presentation slides after the session