Alternative Graph Embeddings for Placeto

Zak Singh, 29/11/21
What is Placeto?

• Placeto is a method for device placement (assigning operations in a computation graph to devices)

• Why does it exist?
 • Existing RL-based placement solvers must be trained for each computation graph individually
 • In some cases upwards of 24hrs
 • Placeto’s main goal: generalize to unseen computation graphs
Placeto’s Iterative Placement
Co-location heuristics

- Problem: Tensorflow graphs can have tens of thousands of nodes, would take too long to process each operator iteratively

- Solution: group operators via heuristics
 - If operation A is only used by operation B, they are co-located
 - All operations in an LSTM “step” are co-located

- This shrinks problem space: no longer finding placement for ALL nodes; we only have to solve placement for each group

- Required to make training time reasonable

(Slide adapted from my prev. presentation on Mirhoseini et al.’s work)

<table>
<thead>
<tr>
<th>Model</th>
<th>#operations</th>
<th>#groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNNLM</td>
<td>8943</td>
<td>188</td>
</tr>
<tr>
<td>NMT</td>
<td>22097</td>
<td>280</td>
</tr>
<tr>
<td>Inception-V3</td>
<td>31180</td>
<td>83</td>
</tr>
</tbody>
</table>

Table 1. Model statistics.
Graph Embedding

- Map each “group” of operators to a representation vector which encodes its neighborhood information
- Goal: groups of operators from similar graphs get mapped to similar representations
 - Generalizability!
- Implemented via traditional bidirectional messaging passing, plus...
- Each node gets “pooled attributes” appended to its representation to capture regional information
 - Set of all upstream nodes
 - Set of all downstream nodes
 - Set of unreachable nodes
Limits of Generalizability

- Placeto’s authors only show that the learned policy can generalize to “computation graphs from the same family as the training set”
- Meaning: if the policy is trained on convolutional networks, it can only place other CNNs
- Questions remain:
 - Why can’t the policy be trained on a set consisting of multiple types of networks (CNNs + Transformers + MLPs etc…)?
 - How limiting is this? No benchmarks on “cross-family” placement are provided
 - Is it caused by the graph embedding procedure?
Proposed: Alternative graph embeddings

- “Pooled attributes” are one of many solutions to encode regional graph information into node representations
- GNN literature has papers dedicated solely to this problem domain
 - Example: Position-aware GNNs
- Proposed work: extend Placeto with these alternative graph embedding procedures, benchmark vs. “pooled attributes” approach
- Understand the value of contextual information in operator placement decisions
 - Is it the limiting factor in Placeto’s generalizability issues?
Position-aware GNNs

- **Goal:** learn position in broader graph structure

- Node position can be captured by quantifying the distance between each node and a set of “anchor sets”

- Anchor sets are chosen randomly

- Process can be repeated multiple times (similar to message passing)
Extension: Automatic Grouping

- Placeto’s colocation heuristics are manual
- Could implement the network used by Mirhoseini et al. (discussed last week) to learn these groups instead of relying on heuristics
- Would fully automate placement and make this scalable to any computation graph
Challenges so far

• Placeto’s published GitHub repo is missing some files, code doesn’t compile as-is…

• Mostly utilities they used during development (simplified graphs to test on, benchmarking code, etc)

• Looks like they selectively published files and omitted ones they didn’t think were needed for reproducing their results, probably an honest mistake
Timeline

• 29/11-3/12: Finish repairing codebase, replicate results from the paper

• 6/12-10/12: Implement alternative graph embeddings (Directed Acyclic GNNs, Position-aware GNNs)

• 13/12-17/12: Benchmark alternative graph embeddings, develop automatic grouping if time permits

• 17/12-deadline: Draft report
Questions?